
4 Statische Operatoren

4.1 Grundprinzip

❐ Wenn bei der Deklaration eines Operators ein Doppelpfeil => anstelle eines einfachen
Pfeils −> verwendet wird, handelt es sich um einen statischen Operator.
(Operatoren, die mit einem einfachen Pfeil definiert sind, heißen zur Unterscheidung
auch dynamische Operatoren.)

❐ Ein statischer Operator hat ein „Gedächtnis“, in dem er sich alle bisherigen Aufr ufe
und die zugehörigen Resultatwer te „mer kt“.

❐ Wenn er erneut mit der gleichen Syntax und den gleichen Parameterwer ten wie
früher aufgerufen wird, liefer t er direkt den damaligen Resultatwer t aus dem
Gedächtnis, d. h. in so einem Fall wird die Implementierung des Operators nicht
er neut ausgewertet.

❐ Das kann prinzipiell dazu verwendet werden, Operatoren automatisch tabellen-
gestützt zu optimieren (dynamic programming). Allerdings sollte die Anzahl
verschiedenar tiger Aufr ufe dann nicht zu groß sein.

❐ Wesentlich wichtiger ist jedoch die Möglichkeit, damit benutzerdefinier te Daten-
str ukturen zu implementieren.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.1 Grundpr inzip
106

4.2 Operatoren ohne explizite Implementierung

❐ Wenn bei der Deklaration eines (statischen oder dynamischen) Operators keine
explizite Implementierung angegeben wird, besitzt der Operator als Implementierung
implizit einen Ausdr uck, der bei jeder Auswertung einen neuen (und damit
eindeutigen) synthetischen Wer t liefer t (so wie der Operator uniq in § 3.7.3).

❐ Da die Implementierung eines statischen Operators bei einem Aufr uf mit gleicher
Syntax und gleichen Parameterwer ten wie früher aber nicht ausgewertet wird, erhält
man in diesem Fall denselben synthetischen Wer t wie zuvor.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.2 Operatoren ohne explizite Implementierung
107

4.3 Offene Typen

4.3.1 Erste Idee

Point : type;

(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

p1 : Point; p1@x =! 3; p1@y =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

(p:Point) "." x -> (int = ?p@x);
(p:Point) "." y -> (int = ?p@y);

print only p1.x; print only ’ ’; print p1.y; $$ 3 4
print only p2.x; print only ’ ’; print p2.y $$ 5 6

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.1 Erste Idee 108

Erläuterung en

❐ Point ist eine Konstante des Metatyps type mit einem neuen synthetischen Wer t
und stellt deshalb einen neuen eindeutigen Typ dar.

❐ Für einen Wer t p dieses Typs Point liefer t p@x bzw. p@y jeweils einen synthetischen
Wert des Typs int?, d. h. eine Var iable mit Inhaltstyp int.

❐ Weil es sich um statische Operatoren handelt, erhält man beim ersten Aufr uf für
einen bestimmten Punkt p jeweils eine neue Var iable, bei einem späteren Aufr uf mit
dem gleichen Punkt p jedoch dieselbe Var iable wie zuvor.

❐ p1 und p2 sind Konstanten des Typs Point mit einem jeweils neuen synthetischen
Wert und stellen deshalb eindeutige Objekte des Typs Point dar.

❐ Deshalb liefer t jeder der Ausdrücke p1@x, p1@y, p2@x und p2@y eine andere, aber
bei jedem Aufr uf die gleiche Var iable, die dementsprechend zur Speicherung der
jeweiligen Koordinate des jeweiligen Punkts verwendet werden kann.

❐ Der Ausdr uck p.x bzw. p.y stellt lediglich eine Abkürzung für ?p@x bzw. ?p@y dar.

❐ Weil sich der Inhalt der Var iablen p@x und p@y zwischen Aufr ufen von p.x und p.y
änder n kann, müssen diese Operatoren dynamisch sein.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.1 Erste Idee 109

4.3.2 Verallg emeinerung und Verbesserung

Generische Definitionen

(U:type) "->" (V:type) => (type);

[(U:type) (V:type)]
(u:U) "@" (a:U->V) => (V? = u /\ a /\ v:V?);

[(U:type) (V:type)]
(u:U) "." (a:U->V) -> (V = ?u@a);

excl
U : type; u1 : U; a1 : U -> U; u2 : U; a2 : U -> U; v : int?;
(u1@a1) <-> (?v); u1 <-> v; a1 <-> v;
(u2.a2) <-> (?v); u2 <-> v; a2 <-> v

end

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.2 Verallgemeiner ung und Verbesser ung 110

Konkrete Verwendung

Point : type;
x : Point -> int;
y : Point -> int;

p1 : Point; p1@x =! 3; p1@y =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

print only p1.x; print only ’ ’; print p1.y; $$ 3 4
print only p2.x; print only ’ ’; print p2.y $$ 5 6

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.2 Verallgemeiner ung und Verbesser ung 111

Erläuterung en

❐ Für zwei beliebige Typen U und V liefer t U−>V jeweils einen eindeutigen Typ, der zur
Repräsentation von Attr ibuten des Typs U mit Zieltyp V dient.

❐ Für ein Objekt u eines beliebigen Typs U und ein Attribut a dieses Typs mit Zieltyp V
liefer t u@a nor malerweise (wenn u und a nicht nil sind) jeweils eine eindeutige
Variable v mit Inhaltstyp V, die zur Speicherung des Wer ts des Attributs a des
Objekts u dient.

❐ Ausnahme: Wenn u oder a nil ist, liefer t u@a ebenfalls nil (d. h. eine nil-Var iable),
sodass Zuweisungen an u@a dann wirkungslos sind und ?u@a wieder um nil liefer t
(vgl. § 2.7; die Konjunktion •/\•, deren rechter Operand nur bei Bedarf ausgewertet
wird, wird auf einem Aufgabenblatt definiert).

❐ u.a ist wiederum nur eine Abkürzung für ?u@a.

❐ Die Operatoren •@• und •.• sollen die gleichen Bindungseigenschaften wie die
vordefinier te Variablenabfrage besitzen.

❐ In der konkreten Verwendung sind x und y Konstanten des Typs Point−>int mit
jeweils eindeutigen Wer ten, die somit zwei verschiedene Attribute des Typs Point mit
Zieltyp int darstellen.

❐ Damit haben Ausdrücke wie p1@x, p2@y, p1.y etc. dieselbe Bedeutung wie zuvor.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.2 Verallgemeiner ung und Verbesser ung 112

4.3.3 Generischer Konstruktor und Attributänderungsoperator

Generische Definitionen

$$ Neues Objekt des offenen Typs U erzeugen
$$ und v1, v2 ... als Werte der Attribute a1, a2 ... speichern.
(U:type) "(" [(V1:type)] (a1:U->V1) "=" (v1:V1)

{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =
u : U;
u@a1 =! v1;
{ u@a2 =! v2 };
u

);

$$ v1, v2 ... als neue Werte der Attribute a1, a2 ...
$$ des Objekts u speichern.
[(U:type)] (u:U) "(" [(V1:type)] (a1:U->V1) "=" (v1:V1)

{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =
u@a1 =! v1;
{ u@a2 =! v2 };
u

)

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.3 Generischer Konstr uktor und . . . 113

Konkrete Verwendung

$$ Punkt p mit Koordinaten 1 und 2 erzeugen.
p := Point(x = 1, y = 2);

$$ Koordinaten von p auf 5 und 6 setzen.
p(y = 6, x = 5)

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.3 Generischer Konstr uktor und . . . 114

4.3.4 Generische offene Typen

Beispiel: Listen

$$ Generischer Typ T*
$$ zur Repräsentation von Listen mit Elementtyp T.
(T:type) "*" => (type);

$$ * soll stärker binden als ->,
$$ damit T -> T* als T -> (T*) interpretiert wird.
excl (int -> int)* end;

$$ Generische Attribute head und tail von T*.
[(T:type)] head => (T* -> T);
[(T:type)] tail => (T* -> T*);

$$ Liste mit erstem Element h und optionaler Restliste t.
[(T:type)] (h:T) "->" [(t:T*)] -> (T* =
T*(head = h, tail = t)

);

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.4 Generische offene Typen 115

$$ -> soll stärker binden als Konstantendeklaration,
$$ damit ls := 1 -> als ls := (1 ->) interpretiert wird.
excl (x := 1) -> end;

$$ Länge der Liste ls.
[(T:type)] "#" (ls:T*) -> (int =
p : T*?;
p =! ls;
while ?p do p =! ?p.tail end

)

Exemplarische Verwendung

$$ Listen mit unterschiedlichen Elementtypen erzeugen
$$ und ihre Länge ausgeben.

ls := 1 -> 2 -> 3 -> 4 -> 5 ->;
print #ls; $$ 5

ls2 := ’a’ -> ’b’ -> ’c’ ->;
print #ls2 $$ 3

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.4 Generische offene Typen 116

Erläuterung en

❐ Da der Typ der Attribute head und tail jeweils von ihrem Typparameter T abhängt,
können diese Attribute nicht als Konstanten definiert werden, sondern stattdessen als
statische Operatoren.

❐ Bei typischen Verwendungen von head und tail wird die Belegung von T und damit
der konkrete Typ des Attributs jeweils aus dem Verwendungskontext ermittelt (vgl.
§ 3.7.3).

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.4 Generische offene Typen 117

Ausgabe von Listen

$$ Elemente der Liste ls ausgeben,
$$ sofern es einen Ausgabeoperator für ihren Elementtyp T gibt.
[(T:type)] print <o>[only] (ls:T*)

[(+ print only (T) -> (bool))] -> (bool =
p : T*?;
p =! ls;
while ?p do
print only ?p.head;
print only ’-’; print only ’>’;
p =! ?p.tail

end;
<o>[true | print 1:0]

)

Exemplarische Verwendung

print ls2; $$ a->b->c->

ls3 := ls2 -> ls2 ->;
print ls3 $$ a->b->c->->a->b->c->

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.4 Generische offene Typen 118

4.3.5 Anmerkungen

❐ Da zu einem einmal definierten Typ jederzeit −− auch an anderen Stellen eines
Programms oder sogar in anderen Modulen −− weitere Attribute hinzugefügt werden
können, sind diese Typen offen für nachträgliche Erweiter ungen und werden deshalb
als offene Typen bezeichnet.

❐ Außerdem müssen nicht alle Objekte eines solchen Typs jeweils Wer te für alle
Attr ibute des Typs besitzen. Nicht vorhandene Attributwer te belegen dann auch
keinen Speicherplatz, und bei ihrer Abfrage erhält man jeweils nil.

❐ Damit eignen sich offene Typen auch sehr gut (insbesondere wesentlich besser als
union-Typen in C) zur flexiblen Speicherung var ianter Datenstr ukturen.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.3 Offene Typen
4.3.5 Anmerkungen 119

4.4 Reihenartig e Typen

Generische Definitionen

$$ Generischer Typ T []
$$ zur Repräsentation von Reihen (arrays) mit Elementtyp T.
(type) "[" "]" => (type);

$$ Zugriff auf das i-te Element der Reihe a.
[(T:type)] (a:T[]) "@" (i:int) => (T? = a /\ i /\ (v:T?));
[(T:type)] (a:T[]) "." (i:int) -> (T = ?a@i)

Konkrete Verwendung

letters : char [];
letters@1 =! ’a’;
letters@26 =! ’z’;

print letters.1; $$ a
print letters.2; $$ (nichts)
print letters.26 $$ z

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.4 Reihenartige Typen
120

4.5 Zeichenketten

❐ In MOSTflexiPL gibt es bewusst keinen vordefinier ten Typ für Zeichenketten, weil
man sich selbst leicht (typischerweise in einer Bibliothek) einen geeigneten Typ
definieren kann.
Konkret kann z. B. der Listentyp char* (vgl. § 4.3.4) oder ein reihenartiger Typ (vgl.
§ 4.4) verwendet werden.

❐ Trotzdem gibt es vordefinier te Zeichenkettenliterale, die aus beliebig vielen Unicode-
Zeichen innerhalb von (doppelten) Anführungszeichen bestehen.
Wie bei Namen von Konstanten (vgl. § 2.4) und Operatoren, muss ein solches
Anführ ungszeichen verdoppelt werden, um es in ein Zeichenkettenliteral zu
integrieren.
(Der einzige Unterschied zu solchen Namen ist, dass Zeichenkettenliterale auch
Zwischenraum enthalten und leer sein können.)

❐ Um ein solches Literal verwenden zu können, muss es im aktuellen Kontext einen
Operator des Typs

str { (c:char) } -> (S)

mit einem beliebigen Resultattyp S geben, der implizit an das Literal übergeben wird
(vgl. § 3.11) und von diesem mit allen Zeichen des Literals aufgerufen wird.

❐ Der Resultatwer t des Literals ist dann der von diesem Operator geliefer te Wert mit
Typ S (d. h. Zeichenkettenliterale besitzen dann den Typ S).

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.5 Zeichenketten
121

Beispiel

str { (c:char) } -> (char* =
h : char*?;
t : char*?;
{
t =! ?t@tail =! char*(head = c);
?h \/ h =! ?t

};
?h

)

❐ Der Operator str konstr uiert eine Liste mit den Zeichen c, indem er jedes Zeichen
am Ende der bereits konstr uierten Liste anfügt, und liefer t dann den Anfang der Liste
zurück.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.5 Zeichenketten
122

Exemplarische Verwendung

print "Hello!"; $$ H->e->l->l->o->!->

print [only] (s:char*) -> (bool =
s : char*?; s =! s;
while ?s do
print only ?s.head;
s =! (?s.tail)

end;
[true | print 1:0]

);

print "Hello!" $$ Hello!

❐ Da der implizit an Zeichenkettenliterale übergebene Operator str Resultattyp char*
besitzt, besitzen auch Zeichenkettenliterale wie "Hello!" diesen Typ.

❐ Dementsprechend bezeichnet der Operator print in der ersten Zeile des Beispiels
den am Ende von § 4.3.4 definierten Ausgabeoperator für Listen.

❐ Der anschließend definierte Operator print gibt nur die Zeichen der Liste s ohne
Pfeile aus. Weil er spezieller als der generische Ausgabeoperator für Listen ist, wird
er in der letzten Zeile des Beispiels bevorzugt.

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)
4 Statische Operatoren

4.5 Zeichenketten
123

