g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.1 Grundprinzip
4 Statische Operatoren 1 06

4 Statische Operatoren

4.1 Grundprinzip

[Wenn bei der Deklaration eines Operators ein Doppelpfeil => anstelle eines einfachen
Pfeils —> verwendet wird, handelt es sich um einen statischen Operator.
(Operatoren, die mit einem einfachen Pfeil definiert sind, heiBen zur Unterscheidung
auch dynamische Operatoren.)

[Ein statischer Operator hat ein ,Gedachtnis®, in dem er sich alle bisherigen Aufrufe
und die zugehorigen Resultatwerte ,merkt®.

[Wenn er erneut mit der gleichen Syntax und den gleichen Parameterwerten wie
friher aufgerufen wird, liefert er direkt den damaligen Resultatwert aus dem
Gedachtnis, d. h. in so einem Fall wird die Implementierung des Operators nicht
erneut ausgewertet.

[Das kann prinzipiell dazu verwendet werden, Operatoren automatisch tabellen-
gestutzt zu optimieren (dynamic programming). Allerdings sollte die Anzahl
verschiedenartiger Aufrufe dann nicht zu grof3 sein.

[Wesentlich wichtiger ist jedoch die Moglichkeit, damit benutzerdefinierte Daten-
strukturen zu implementieren.

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.2 Operatoren ohne explizite Implementierung
4 Statische Operatoren 1 07

4.2 Operatoren ohne explizite Implementierung

[Wenn bei der Deklaration eines (statischen oder dynamischen) Operators keine
explizite Implementierung angegeben wird, besitzt der Operator als Implementierung
implizit einen Ausdruck, der bei jeder Auswertung einen neuen (und damit
eindeutigen) synthetischen Wert liefert (so wie der Operator unigin §3.7.3).

[Da die Implementierung eines statischen Operators bei einem Aufruf mit gleicher
Syntax und gleichen Parameterwerten wie friher aber nicht ausgewertet wird, erhalt
man in diesem Fall denselben synthetischen Wert wie zuvor.

5 C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.1 Erste Idee 1 08

4.3 Offene Typen
4.3.1 Erste Idee
Point : type;

(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

pl : Point; pl@x =! 3; plRy =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

(p:Point) "." y —-> (int = 7?pQy);

print only pl.x; print only ’ ’; print pl.y; S 3 4
print only p2.x; print only ' ’; print p2.y $S 5 6

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.1 Erste Idee 1 09

Erlauterungen

A

A

Point ist eine Konstante des Metatyps type mit einem neuen synthetischen Wert
und stellt deshalb einen neuen eindeutigen Typ dar.

FUr einen Wert p dieses Typs Point liefert pex bzw. pRy jeweils einen synthetischen
Wert des Typs int 2, d. h. eine Variable mit Inhaltstyp int.

Weil es sich um statische Operatoren handelt, erhalt man beim ersten Aufruf flr
einen bestimmten Punkt p jeweils eine neue Variable, bei einem spateren Aufruf mit
dem gleichen Punkt p jedoch dieselbe Variable wie zuvor.

pl und p2 sind Konstanten des Typs Point mit einem jeweils neuen synthetischen
Wert und stellen deshalb eindeutige Objekte des Typs Point dar.

Deshalb liefert jeder der Ausdriicke pl1@x, p1Qy, p2@x und p2Qy eine andere, aber
bei jedem Aufruf die gleiche Variable, die dementsprechend zur Speicherung der
jeweiligen Koordinate des jeweiligen Punkis verwendet werden kann.

Der Ausdruck p.x bzw. p.y stellt lediglich eine Abklrzung flr ?pex bzw. ?2pRy dar.

Well sich der Inhalt der Variablen pe@x und p@y zwischen Aufrufenvon p.x und p.y
andern kann, mussen diese Operatoren dynamisch sein.

5 C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.2 Verallgemeinerung und Verbesserung 11 O

4.3.2 Verallgemeinerung und Verbesserung
Generische Definitionen
(U:type) "->" (V:type) => (type);

[(U:type) (V:itype)]
(u:U) "@" (a:U->V) => (V2?2 =u /\ a /\ v:V?);

[(U:type) (V:type)]
(W:U) "." (a:U->V) -> (V = ?uRa);

excl
U : type; ul : U; al : U -> U; u2 : U; a2 : U -=> U; v : 1int?;
(ul@al) <-> (2?2v); ul <> v; al <> v;
(u2.a2) <=> (?2v); u2 <> v; a2 <> v

end

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026)

4 Statische Operatoren

4.3 Offene Typen
4.3.2 Verallgemeinerung und Verbesserung

111

Konkrete Verwendung

Point type;
X : Point -> int;
y : Polnt —-> 1int;

pl : Point; pl@x
P2 : Point; p2@x

print only pl.x;
print only p2.Xx;

print only ' ’;
print only ' /;

=! 3; pl@y =! 4;
5; p2@y =! 6;

print pl.y; $$ 3 4
print p2.y

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.2 Verallgemeinerung und Verbesserung 112

Erlauterungen

A

A

FUr zwei beliebige Typen U und V liefert u—>V jeweils einen eindeutigen Typ, der zur
Reprasentation von Attributen des Typs U mit Zieltyp v dient.

FUr ein Objekt u eines beliebigen Typs U und ein Attribut a dieses Typs mit Zieltyp v
liefert u@a normalerweise (wenn u und a nicht nil sind) jeweils eine eindeutige
Variable v mit Inhaltstyp v, die zur Speicherung des Werts des Attributs a des
Objekts u dient.

Ausnahme: Wenn u oder a nil ist, liefert u@a ebenfalls nil (d. h. eine nil-Variable),
sodass Zuweisungen an ua dann wirkungslos sind und 2uRa wiederum nil liefert
(vgl. § 2.7; die Konjunktion ¢ /\ ¢, deren rechter Operand nur bei Bedarf ausgewertet
wird, wird auf einem Aufgabenblatt definiert).

u.a ist wiederum nur eine Abkurzung fur 2uQa.

Die Operatoren «@e und « . ¢ sollen die gleichen Bindungseigenschaften wie die
vordefinierte Variablenabfrage besitzen.

In der konkreten Verwendung sind x und y Konstanten des Typs Point->int mit
jeweils eindeutigen Werten, die somit zwei verschiedene Attribute des Typs Point mit
Zieltyp int darstellen.

[Damit haben Ausdriicke wie pl1@x, p2Qy, pl.y etc. dieselbe Bedeutung wie zuvor.

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.3 Generischer Konstruktor und ...

113

4.3.3 Generischer Konstruktor und Attributanderungsoperator

Generische Definitionen

$S Neues Objekt des offenen Typs U erzeugen

SS und vl1, v2 ... als Werte der Attribute al, a2 ... speichern.

(U:type) "(" [(Vl:type)] (al:U->V1) "=" (v1:V1)
{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ™M)" —> (U =
u : Uy
u@al =! vil;
{ uRaz2 =! v2 };
u

) ;

SS vl, v2 ... als neue Werte der Attribute al, a2

$S des Objekts u speichern.
[(U:type)] (u:U) "(" [(Vli:type)] (al:U->Vv1) "=" (v1:V1)
{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =

u@al =! vl;
{ u@Qaz2 =! v2 };
u

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.3 Generischer Konstruktor und ... 114

Konkrete Verwendung

$$ Punkt p mit Koordinaten 1 und 2 erzeugen.
p := Point(x =1, y = 2);

$S Koordinaten von p auf 5 und 6 setzen.
p(y=6,X=5)

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.4 Generische offene Typen

115

4.3.4 Generische offene Typen
Beispiel: Listen

$$ Generischer Typ T*
$S zur Reprdsentation von Listen mit Elementtyp T.
(T:type) "*" => (type);

SS * soll starker binden als —>,
$$ damit T -> T* als T -> (T*) interpretiert wird.
excl (int -> int)* end;

S$ Generische Attribute head und tail von T*.
[(T:type)] head => (T* -> T);
[(T:type)] tail => (T* -> T*);

$S Liste mit erstem Element h und optionaler Restliste t.
[(T:type)] (h:T) "->" [(t:T*)] -> (T* =

T* (head = h, tail = t)
) i

5 C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.4 Generische offene Typen 11 6

$$ —> soll stdrker binden als Konstantendeklaration,
S damit 1s := 1 -> als 1s := (1 ->) interpretiert wird.
excl (x := 1) -> end;

$$ Lange der Liste 1s.

[(T:type)] "#" (1ls:T*) -> (int =
p : T*?;
p =! 1s;
while ?p do p =! ?p.tail end

Exemplarische Verwendung

$S Listen mit unterschiedlichen Elementtypen erzeugen
$S und ihre Lange ausgeben.

ls (=1 > 2 > 3 =>4 -> 5 —=>;
print #ls; $$ 5
1s2 :=Ta’ —> 'b" —> 'c' —>;

print #1s2 $S 3

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.4 Generische offene Typen 117

Erlauterungen

[Da der Typ der Attribute head und tail jeweils von ihrem Typparameter T abhangt,
kdnnen diese Attribute nicht als Konstanten definiert werden, sondern stattdessen als

statische Operatoren.

[Bei typischen Verwendungen von head und tail wird die Belegung von T und damit
der konkrete Typ des Attributs jeweils aus dem Verwendungskontext ermittelt (vgl.

§3.7.3).

5 C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.4 Generische offene Typen 11 8

Ausgabe von Listen

$S Elemente der Liste 1ls ausgeben,
$S sofern es einen Ausgabeoperator filir ihren Elementtyp T gibt.
[(T:type)] print <o>[only] (ls:T*)
[(+ print only (T) -> (bool))] -> (bool =
p : T*?;
p =! 1s;
while ?p do
print only ?p.head;
print only ’'-'; print only ’'>’;
p =! ?p.tail
end;
<o>[true | print 1:0]

Exemplarische Verwendung
print 1s2; $$ a->b->c—>

183 := 182 —> 182 —>;
print 1s3 $$ a->b->c—->->a->b->c—>

5 C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.3 Offene Typen
4 Statische Operatoren 4.3.5 Anmerkungen 1 19

4.3.5 Anmerkungen

[Da zu einem einmal definierten Typ jederzeit — auch an anderen Stellen eines
Programms oder sogar in anderen Modulen — weitere Attribute hinzugefligt werden
konnen, sind diese Typen offen flr nachtragliche Erweiterungen und werden deshalb
als offene Typen bezeichnet.

[AuBerdem mussen nicht alle Objekte eines solchen Typs jeweils Werte fur alle
Attribute des Typs besitzen. Nicht vorhandene Attributwerte belegen dann auch
keinen Speicherplatz, und bei ihrer Abfrage erhalt man jeweils nil.

[Damit eignen sich offene Typen auch sehr gut (insbesondere wesentlich besser als
union-Typen in C) zur flexiblen Speicherung varianter Datenstrukturen.

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.4 Reihenartige Typen
4 Statische Operatoren

120

4.4 Reihenartige Typen
Generische Definitionen

$S Generischer Typ T []

$S zur Reprdsentation von Reihen (arrays) mit Elementtyp T.

(type) " [" "] " => (type) ;

$$ Zugriff auf das i-te Element der Reihe a.

[(T:type)] (a:T[]) "@" (i:int) => (T? = a /\ 1 /\ (v:T?));
[(T:type)] (a:T[]) "."™ (i:int) -> (T = 2a@i)

Konkrete Verwendung

letters : char [];

letters@l =! "a’;

letters@26 =! ’"z’;

print letters.l; $S a

print letters.2; SS (nichts)

print letters.26 $S z

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.5 Zeichenketten
4 Statische Operatoren 121

4.5 Zeichenketten

[In MOSTflexiPL gibt es bewusst keinen vordefinierten Typ flr Zeichenketten, weil
man sich selbst leicht (typischerweise in einer Bibliothek) einen geeigneten Typ
definieren kann.

Konkret kann z. B. der Listentyp char* (vgl. § 4.3.4) oder ein reihenartiger Typ (vgl.
§ 4.4) verwendet werden.

[Trotzdem gibt es vordefinierte Zeichenkettenliterale, die aus beliebig vielen Unicode-
Zeichen innerhalb von (doppelten) Anfihrungszeichen bestehen.
Wie bei Namen von Konstanten (vgl. § 2.4) und Operatoren, muss ein solches
AnfUhrungszeichen verdoppelt werden, um es in ein Zeichenkettenliteral zu
integrieren.
(Der einzige Unterschied zu solchen Namen ist, dass Zeichenkettenliterale auch
Zwischenraum enthalten und leer sein kbnnen.)

[Um ein solches Literal verwenden zu kdnnen, muss es im aktuellen Kontext einen
Operator des Typs

str { (c:char) } —-> (S)

mit einem beliebigen Resultattyp s geben, der implizit an das Literal Gbergeben wird
(vgl. §3.11) und von diesem mit allen Zeichen des Literals aufgerufen wird.

[Der Resultatwert des Literals ist dann der von diesem Operator gelieferte Wert mit
Typ s (d. h. Zeichenkettenliterale besitzen dann den Typ S).

C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.5 Zeichenketten
4 Statische Operatoren 122

Beispiel

str { (c:char) } -> (char* =
h : char*?;
t : char*?;

{
t =! ?2t@tail =! char* (head = c);
?h \/ h =! 2t

}i

?h

[Der Operator str konstruiert eine Liste mit den Zeichen c, indem er jedes Zeichen
am Ende der bereits konstruierten Liste anfugt, und liefert dann den Anfang der Liste

zuruck.

g C. Heinlein: Programmieren in MOSTflexiPL (WS 2025/2026) 4.5 Zeichenketten
4 Statische Operatoren 1 23

Exemplarische Verwendung

print "Hello!"; SS H->e-—>1->1->0-—>!-—>
print [only] (s:char*) -> (bool =
s : char*?; s =! s;

while ?s do
print only ?s.head;
s =! (?s.tail)

end;

[true | print 1:0]

) i
print "Hello!" $$ Hello!

[Da der implizit an Zeichenkettenliterale Gbergebene Operator st r Resultattyp char*
besitzt, besitzen auch Zeichenkettenliterale wie "Hello! " diesen Typ.

[Dementsprechend bezeichnet der Operator print in der ersten Zeile des Beispiels
den am Ende von § 4.3.4 definierten Ausgabeoperator fur Listen.

[Der anschlieBend definierte Operator print gibt nur die Zeichen der Liste s ohne
Pfeile aus. Well er spezieller als der generische Ausgabeoperator fur Listen ist, wird
er in der letzten Zeile des Beispiels bevorzugt.

