
Studienbereich Infor matik

Fakultät Elektronik und Infor matik

Programmieren in MOSTflexiPL

Vorlesung im Wintersemester 2025/2026
Prof. Dr. habil. Christian Heinlein

6. Aufgabenblatt (15. Dezember 2025)

Aufgabe 11: Weiterleitung von Operatoranwendungen

Teilaufgabe 11.a)

Definieren Sie einen Operator, der genau die Schnittmenge der Operatoren aus Aufgabe 7 und 8.b abdeckt, damit
Ausdrücke wie 1 = 2 /= 3 auch dann eindeutig sind, wenn diese Operatoren beide sichtbar sind.

Implementieren Sie diesen neuen Operator, indem sie seine Anwendungen an einen der beiden anderen Operatoren
weiterleiten.

Wie bei Aufgabe 9.a, soll auch hier jeder Operand nur ausgewertet werden, wenn sein Wert zur Ermittlung des Re-
sultatwerts des gesamten Vergleichs benötigt wird.

Auch dieser Operator soll die gleichen Bindungseigenschaften wie der vordefinierte Gleichheitstest •=• haben.

Hinweis: Bei der Weiterleitung von Operatoranwendungen darf ein Lambda-Parameter nur an einen anderen
Lambda-Parameter und ein gewöhnlicher Parameter nur an einen anderen gewöhnlichen Parameter weitergeleitet
werden, obwohl der Übersetzer fälschlicherweise auch andere Konstellationen erlaubt, die dann zur Laufzeit jedoch
nicht korrekt funktionieren.

Teilaufgabe 11.b)

Eliminieren Sie, sofern möglich, Codeverdopplungen in den Implementierungen Ihrer in den bisherigen Aufgaben
definierten Operatoren durch vollständige oder partielle Weiterleitungen an geeignete lokale Hilfsoperatoren.

Da partielle Weiterleitungen manchmal zu Laufzeitfehlern führen, verwenden Sie, wenn möglich, lieber vollständi-
ge Weiterleitungen. Zum Beispiel:

(while|until|do) [(X:type)] (\ x -> (X))
{ (while|until|do) [(Y:type)] (\ y -> (Y)) }
end -> (int =

......

(?* (
$$ Direkte Implementierung:
......; $$ Verarbeitung von x.
{ }; $$ Wiederholte Verarbeitung von y

$$ auf die gleiche Weise wie x.

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6 1

$$ Alternativ mit lokalem Hilfsoperator:
aux { (while|until|do) [(Z:type)] (\ z -> (Z)) } -> (int =

{ } $$ Wiederholte Verarbeitung von z.
);
<>(aux);

......
)) - 1

)

Aufgabe 12: Flexible Ausgabe von int-, char- und bool-Werten

Definieren Sie einen Operator print, der beliebig viele int-, char- und bool-Werte nacheinander ausgibt.

Wie beim vordefinierten Operator print, wird nach der Ausgabe aller Werte ein abschließender Zeilentrenner aus-
gegeben, sofern only nicht angegeben ist.

Nach print und optional only können beliebig viele Operanden der Typen int, char und bool sowie beliebig
viele der folgenden Wörter und Phrasen in beliebiger Reihenfolge angegeben werden:

• bin: Binäre Ausgabe von int-Werten.

• oct: Oktale Ausgabe von int-Werten.

• dec: Dezimale Ausgabe von int-Werten (Voreinstellung).

• hex: Hexadezimale Ausgabe von int-Werten.

• lower: Verwendung von Kleinbuchstaben bei der hexadezimalen Ausgabe von int-Werten und bei der Ausgabe
von bool-Werten mit Buchstaben (Voreinstellung).

• upper: Verwendung von Großbuchstaben bei der hexadezimalen Ausgabe von int-Werten und bei der Ausgabe
von bool-Werten mit Buchstaben.

• letter: Ausgabe der bool-Werte true und false mit den Buchstaben t und f bzw. T und F, abhängig von
lower oder upper.

• digit: Ausgabe der bool-Werte true und false mit den Ziffern 1 und 0 (Voreinstellung).

• sign: Ausgabe der bool-Werte true und false mit den Zeichen + und −.

• chars t f mit zwei beliebigen char-Werten t und f:
Ausgabe der bool-Werte true und false mit den Zeichen t und f.

• sep s: Zwischen je zwei Werten wird das Trennzeichen s ausgegeben (Voreinstellung ist ein Leerzeichen).

• tight: Zwischen je zwei Werten wird kein Trennzeichen ausgegeben.

• reset: Alle Einstellungen werden auf die o. g. Standardwerte zurückgesetzt.

Jede dieser Angaben gilt so lange für alle nachfolgenden Operanden der aktuellen und aller nachfolgenden Anwen-
dungen von print, bis sie durch eine andere Angabe aus derselben Kategorie (bin/oct/dec/hex, lower/upper,
letter/digit/sign/chars, sep/tight) überschrieben oder mittels reset auf die Standardeinstellung dieser
Kategorie zurückgesetzt wird.

Nach jedem Wert kann optional mit width ein int-Wert als Mindestbreite für die Ausgabe dieses Werts angege-
ben werden. Wenn die Breite des Werts (d. h. die Anzahl der Zeichen für seine Ausgabe) dann kleiner als die Min-
destbreite ist, werden vor dem Wert entsprechend viele Leerzeichen ausgegeben. (Das heißt umgekehrt: Wenn die
Breite des Werts größer oder gleich der Mindestbreite ist oder wenn die Mindestbreite ein unnatürlicher Wert ist,
werden keine zusätzlichen Leerzeichen ausgegeben.)

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6 2

Wie beim vordefinierten Operator print, soll die Ausgabe unnatürlicher int- und char-Werte an sich leer sein.
Jeder bool-Wert außer false soll wie true ausgegeben werden.

Zum Beispiel:

$$ Anwendung von print: $$ Zugehörige Ausgabe:

print 10 20 30; $$ 10 20 30
print 10 hex 20 30; $$ 10 14 1e
print true false; $$ 1 0
print sep ’|’ letter upper true false; $$ T|F
print 0 tight chars ’W’ ’F’ true; $$ 0W
print dec sep ’|’ 0 1:0 width 2 -123 width 5 456 width 1:0;

$$ 0| | -123|456
print; $$ (Nur eine Leerzeile)
print only reset $$ (Zurücksetzen aller Einstellungen

$$ ohne irgendeine Ausgabe)

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6 3

