L ®Q®
®
®e Hochschule Aalen
Fakultat Elektronik und Informatik

Studienbereich Informatik

Programmieren in MOSTflexiPL

Vorlesung im Wintersemester 2025/2026
Prof. Dr. habil. Christian Heinlein

6. Aufgabenblatt (15. Dezember 2025)

Aufgabe 11: Weiterleitung von Operatoranwendungen

Teilaufgabe 11.a)

Definieren Sie einen Operator, der genau die Schnittmenge der Operatoren aus Aufgabe 7 und 8.b abdeckt, damit
Ausdriicke wie 1 = 2 /= 3 auch dann eindeutig sind, wenn diese Operatoren beide sichtbar sind.

Implementieren Sie diesen neuen Operator, indem sie seine Anwendungen an einen der beiden anderen Operatoren
weiterleiten.

Wie bei Aufgabe 9.a, soll auch hier jeder Operand nur ausgewertet werden, wenn sein Wert zur Ermittlung des Re-
sultatwerts des gesamten Vergleichs bendtigt wird.

Auch dieser Operator soll die gleichen Bindungseigenschaften wie der vordefinierte Gleichheitstest e=¢ haben.

Hinweis: Bei der Weiterleitung von Operatoranwendungen darf ein Lambda-Parameter nur an einen anderen
Lambda-Parameter und ein gewohnlicher Parameter nur an einen anderen gewdhnlichen Parameter weitergeleitet
werden, obwohl der Ubersetzer filschlicherweise auch andere Konstellationen erlaubt, die dann zur Laufzeit jedoch
nicht korrekt funktionieren.

Teilaufgabe 11.b)

Eliminieren Sie, sofern moglich, Codeverdopplungen in den Implementierungen Ihrer in den bisherigen Aufgaben
definierten Operatoren durch vollstindige oder partielle Weiterleitungen an geeignete lokale Hilfsoperatoren.

Da partielle Weiterleitungen manchmal zu Laufzeitfehlern fithren, verwenden Sie, wenn mdglich, lieber vollstindi-
ge Weiterleitungen. Zum Beispiel:

(while|until|do) [(X:type)]l (\ x -> (X))
{ (while|until|do) [(Y:type)]l (\ y —> (Y)) }
end -> (int =

......

$$ Direkte Implementierung:

...... ; $$ Verarbeitung von x.

}; $$ Wiederholte Verarbeitung von y
$$ auf die gleiche Weise wie x.

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6 1

$$ Alternativ mit lokalem Hilfsoperator:
aux { (while|until|do) [(Z:type)]l (\ z -> (Z)) } -> (int =
} $$ Wiederholte Verarbeitung von z.

Aufgabe 12: Flexible Ausgabe von int-, char- und bool-Werten
Definieren Sie einen Operator print, der beliebig viele int-, char- und bool-Werte nacheinander ausgibt.

Wie beim vordefinierten Operator print, wird nach der Ausgabe aller Werte ein abschlieender Zeilentrenner aus-
gegeben, sofern only nicht angegeben ist.

Nach print und optional only kdnnen beliebig viele Operanden der Typen int, char und bool sowie beliebig
viele der folgenden Worter und Phrasen in beliebiger Reihenfolge angegeben werden:

* bin: Bindre Ausgabe von int-Werten.

* oct: Oktale Ausgabe von int-Werten.

* dec: Dezimale Ausgabe von int-Werten (Voreinstellung).
* hex: Hexadezimale Ausgabe von int-Werten.

* lower: Verwendung von Kleinbuchstaben bei der hexadezimalen Ausgabe von int-Werten und bei der Ausgabe
von bool-Werten mit Buchstaben (Voreinstellung).

* upper: Verwendung von GroBbuchstaben bei der hexadezimalen Ausgabe von int-Werten und bei der Ausgabe
von bool-Werten mit Buchstaben.

* letter: Ausgabe der bool-Werte true und false mit den Buchstaben t und £ bzw. T und F, abhingig von
lower oder upper.

* digit: Ausgabe der bool-Werte true und false mit den Ziffern 1 und 0 (Voreinstellung).
* sign: Ausgabe der bool-Werte true und false mit den Zeichen + und -.

* chars t f mit zwei beliebigen char-Werten t und £:
Ausgabe der bool-Werte true und false mit den Zeichen t und £.

* sep s: Zwischen je zwei Werten wird das Trennzeichen s ausgegeben (Voreinstellung ist ein Leerzeichen).
* tight: Zwischen je zwei Werten wird kein Trennzeichen ausgegeben.
* reset: Alle Einstellungen werden auf die o. g. Standardwerte zuriickgesetzt.

Jede dieser Angaben gilt so lange fiir alle nachfolgenden Operanden der aktuellen und aller nachfolgenden Anwen-
dungen von print, bis sie durch eine andere Angabe aus derselben Kategorie (bin/oct/dec/hex, lower/upper,
letter/digit/sign/chars, sep/tight) iiberschrieben oder mittels reset auf die Standardeinstellung dieser
Kategorie zuriickgesetzt wird.

Nach jedem Wert kann optional mit width ein int-Wert als Mindestbreite fiir die Ausgabe dieses Werts angege-
ben werden. Wenn die Breite des Werts (d. h. die Anzahl der Zeichen fiir seine Ausgabe) dann kleiner als die Min-
destbreite ist, werden vor dem Wert entsprechend viele Leerzeichen ausgegeben. (Das hei3t umgekehrt: Wenn die
Breite des Werts grofer oder gleich der Mindestbreite ist oder wenn die Mindestbreite ein unnatiirlicher Wert ist,
werden keine zusitzlichen Leerzeichen ausgegeben.)

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6 2

Wie beim vordefinierten Operator print, soll die Ausgabe unnatiirlicher int- und char-Werte an sich leer sein.
Jeder bool-Wert auller false soll wie t rue ausgegeben werden.

Zum Beispiel:

$$ Anwendung von print:

print 10 20 30;

print 10 hex 20 30;

print true false;

print sep ' |’ letter upper true false;
print 0 tight chars 'W’ ’'F’ true;

$$

$$
$$
$$
$$
$$

print dec sep |’ 0 1:0 width 2 -123 width

print;
print only reset

HTW Aalen, Programmieren in MOSTflexiPL, WS 2025/2026, Blatt 6

$$
$$
$$
$$

Zugeho6rige Ausgabe:

10 20 30

10 14 1le

10

T|F

ow

5 456 width 1:0;
0] | -123|45¢6

(Nur eine Leerzeile)
(Zurlicksetzen aller Einstellungen
ohne irgendeine Ausgabe)

