
Studienbereich Infor matik

Fakultät Elektronik und Infor matik

Algorithmen und Datenstrukturen 2

Vorlesung im Wintersemester 2025/2026

Prof. Dr. habil. Christian Heinlein

4. Praktikumsaufgabe (18. Dezember 2025 −− 15. Januar 2026)

Aufgabe 4: Elementare Graphalgorithmen

Implementieren Sie folgende Graphalgorithmen in C++, indem Sie den Code, der in der Datei graph.h auf der

Vorlesungswebseite vorgegeben ist, entsprechend ergänzen:

• Breitensuche

• Tiefensuche einschließlich topologischer Sortierung

• Bestimmung starker Zusammenhangskomponenten

Ein Graph kann hierbei ein Objekt g eines prinzipiell beliebigen Typs G sein, der mindestens folgende Element-

funktionen besitzen muss:

• g.vertices() liefert ein Objekt eines prinzipiell beliebigen Containertyps (z. B. std::list), das die Knoten

des Graphen g (in irgendeiner Reihenfolge) enthält.

Ein solcher Containertyp muss zumindest eine parameterlose Elementfunktion size besitzen, die die Anzahl der

Elemente des Containers liefert (sodass g.vertices().size() die Anzahl der Knoten des Graphen g liefert).

Außerdem muss es möglich sein, die Elemente eines Containers mittels „range-based for loops“ zu durchlaufen

(sodass die Variable v in der Anweisung for (V v : g.vertices()) alle Knoten des Graphen g

durchläuft, wenn diese Typ V besitzen).

Alle Containertypen der C++-Standardbibliothek erfüllen diese Anforderungen.

• Für einen Knoten u des Graphen g liefert g.successors(u) wiederum ein Objekt eines derartigen Container-

typs, das die Nachfolger des Knotens u (in irgendeiner Reihenfolge) enthält. (Wenn u kein Knoten des Graphen g

ist, darf das Verhalten von g.successors(u) undefiniert sein.)

• g.transpose() liefert den transponierten Graphen von g als neues, von g unabhängiges Objekt (d. h. der

Graph g wird dabei nicht verändert).

Der Typ des transponierten Graphen kann sich vom Typ G des Graphen g unterscheiden, muss aber ebenfalls die

gerade beschriebenen Elementfunktionen besitzen.

Die vorgegebene Klasse Graph erfüllt die oben genannten Anforderungen und kann wie folgt zur Erzeugung von

Testgraphen verwendet werden: Für einen prinzipiell beliebigen Knotentyp V kann ein Objekt des Typs Graph<V>

mit der Adjazenzlistendarstellung eines Graphen als sogenannte Initialisiererliste in geschweiften Klammern initia-

lisiert werden: Jedes Element dieser Initialisiererliste ist dabei ein Paar (ebenfalls in geschweiften Klammern), das

aus einem Knoten des Typs V und einer weiteren Initialisiererliste mit den Nachfolgern dieses Knotens besteht, zum

Beispiel:

Graph<string> g({ // Graph g mit Knoten des Typs string.

{ "A", { "B", "C" } }, // Knoten A hat Nachfolger B und C.

{ "B", { } }, // Knoten B hat keine Nachfolger.

{ "C", { "C" } } // Knoten C hat sich selbst als Nachfolger.

});

HTW Aalen, Algorithmen und Datenstrukturen 2, WS 2025/2026, Blatt 4 1

Für diesen Graphen g liefert g.vertices() einen Container mit den Elementen "A", "B" und "C",

g.successors("A") einen Container mit den Elementen "B" und "C", g.successors("B") einen leeren Con-

tainer und g.successors("C") einen Container mit dem Element "C".

Alle Algorithmen müssen aber auch für andere Typen G funktionieren, sofern sie die oben genannten Anforderun-

gen erfüllen.

Jeder Algorithmus wird durch eine Funktionsschablone (function template) mit Typparametern V (Typ der Knoten)

und G (Typ des Graphen) implementiert, die als ersten Parameter einen Graphen g mit Typ G und als zweiten Para-

meter eventuell einen Startknoten s mit Typ V oder eine Liste vs von Knoten erhält. Der letzte Parameter, der per

Referenz übergeben wird, ist immer eine geeignete Datenstruktur, in der die Ergebnisse des Algorithmus −− meist in

einer oder mehreren Tabellen (maps) −− gespeichert werden.

Eine typische Verwendung sieht zum Beispiel wie folgt aus:

// Testgraph mit Knoten des Typs string.

Graph<string> g({

{ "A", { "B", "C" } }, // Knoten A hat Nachfolger B und C.

{ "B", { } }, // Knoten B hat keine Nachfolger.

{ "C", { "C" } } // Knoten C hat sich selbst als Nachfolger.

});

// Tiefensuche auf g ausführen und das Ergebnis in res speichern.

DFS<string> res;

dfs(g, res);

// Die Knoten v des Graphen nach aufsteigenden Abschlusszeiten

// durchlaufen und für jeden Knoten seine Entdeckungs- und

// Abschlusszeit ausgeben.

for (string v : res.seq) {

cout << v << " " << res.det[v] << " " << res.fin[v] << endl;

}

Testen Sie Ihre Implementierung mit unterschiedlichen Graphen und ggf. unterschiedlichen Startknoten sorgfältig

und ausführlich!

Auf der Vorlesungswebseite steht hierfür ein Testprogramm graphtest.cxx zur Verfügung, das, abhängig von

den übergebenen Kommandozeilenargumenten, einen bestimmten Algorithmus auf einem bestimmten Graphen,

ggf. mit einem bestimmten Startknoten, ausführt und die vom Algorithmus ermittelte Information auf der Standard-

ausgabe ausgibt. Die Liste der Testgraphen kann nach Belieben erweitert werden.

Die Datei container.cxx auf der Vorlesungswebseite enthält Beispiele zur Verwendung der Containertypen

std::list und std::map der C++-Standardbibliothek.

Um automatisierte Tests der Implementierungen zu ermöglichen, dürfen die vorgegebenen Klassennamen und die

Signaturen von Funktionen nicht verändert werden, und es dürfen keine Diagnoseausgaben produziert werden.

Abgesehen von den in graph.h bereits verwendeten Bibliotheksklassen (numeric_limits, list, map und

pair) dürfen keine Bestandteile der C++-Standardbibliothek oder anderer Bibliotheken verwendet werden.

Abzugeben ist die durch Ihren Code erweiterte Datei graph.h.

Die E-Mail mit der Abgabe muss als Betreff Algo2 Gruppe NN mit zweistelliger Gruppennummer NN (z. B. 05

oder 12) und als Anhang die abzugebende Datei haben. Der Nachrichtentext muss für jedes Gruppenmitglied aus

einer Zeile der Art Vorname,Nachname,Matrikelnummer bestehen.

HTW Aalen, Algorithmen und Datenstrukturen 2, WS 2025/2026, Blatt 4 2

