e
o® ® ®g Hochschule Aalen

) Fakultat Elektronik und Informatik
Studienbereich Informatik

Algorithmen und Datenstrukturen 2

Vorlesung im Wintersemester 2025/2026
Prof. Dr. habil. Christian Heinlein

4. Praktikumsaufgabe (18. Dezember 2025 — 15. Januar 2026)

Aufgabe 4: Elementare Graphalgorithmen

Implementieren Sie folgende Graphalgorithmen in C++, indem Sie den Code, der in der Datei graph.h auf der
Vorlesungswebseite vorgegeben ist, entsprechend ergénzen:

* Breitensuche
* Tiefensuche einschlieBlich topologischer Sortierung

* Bestimmung starker Zusammenhangskomponenten

Ein Graph kann hierbei ein Objekt g eines prinzipiell beliebigen Typs G sein, der mindestens folgende Element-
funktionen besitzen muss:

* g.vertices () liefert ein Objekt eines prinzipiell beliebigen Containertyps (z. B. std: :1ist), das die Knoten
des Graphen g (in irgendeiner Reihenfolge) enthiilt.
Ein solcher Containertyp muss zumindest eine parameterlose Elementfunktion size besitzen, die die Anzahl der
Elemente des Containers liefert (sodass g.vertices () .size () die Anzahl der Knoten des Graphen g liefert).
AuBerdem muss es moglich sein, die Elemente eines Containers mittels ,,range-based for loops* zu durchlaufen
(sodass die Variable v in der Anweisung for (V v : g.vertices()) alle Knoten des Graphen g
durchliuft, wenn diese Typ V besitzen).
Alle Containertypen der C++-Standardbibliothek erfiillen diese Anforderungen.

* Fiir einen Knoten u des Graphen g liefert g. successors (u) wiederum ein Objekt eines derartigen Container-
typs, das die Nachfolger des Knotens u (in irgendeiner Reihenfolge) enthilt. (Wenn u kein Knoten des Graphen g
ist, darf das Verhalten von g. successors (u) undefiniert sein.)

* g.transpose () liefert den transponierten Graphen von g als neues, von g unabhingiges Objekt (d.h. der
Graph g wird dabei nicht veridndert).
Der Typ des transponierten Graphen kann sich vom Typ G des Graphen g unterscheiden, muss aber ebenfalls die
gerade beschriebenen Elementfunktionen besitzen.

Die vorgegebene Klasse Graph erfiillt die oben genannten Anforderungen und kann wie folgt zur Erzeugung von
Testgraphen verwendet werden: Fiir einen prinzipiell beliebigen Knotentyp V kann ein Objekt des Typs Graph<v>
mit der Adjazenzlistendarstellung eines Graphen als sogenannte Initialisiererliste in geschweiften Klammern initia-
lisiert werden: Jedes Element dieser Initialisiererliste ist dabei ein Paar (ebenfalls in geschweiften Klammern), das
aus einem Knoten des Typs V und einer weiteren Initialisiererliste mit den Nachfolgern dieses Knotens besteht, zum
Beispiel:

Graph<string> g ({ // Graph g mit Knoten des Typs string.
{ "a", { "B", "Cc" } }, // Knoten A hat Nachfolger B und C.
{ "B", {1} 1}, // Knoten B hat keine Nachfolger.
{re", {"e")} // Knoten C hat sich selbst als Nachfolger.

1)

HTW Aalen, Algorithmen und Datenstrukturen 2, WS 2025/2026, Blatt 4 1

Fir diesen Graphen g liefert g.vertices() einen Container mit den Elementen "A", "B" und "C",
g.successors ("A") einen Container mit den Elementen "B" und "C", g.successors ("B") einen leeren Con-
tainer und g. successors ("C") einen Container mit dem Element "C".

Alle Algorithmen miissen aber auch fiir andere Typen G funktionieren, sofern sie die oben genannten Anforderun-
gen erfiillen.

Jeder Algorithmus wird durch eine Funktionsschablone (function template) mit Typparametern V (Typ der Knoten)
und G (Typ des Graphen) implementiert, die als ersten Parameter einen Graphen g mit Typ G und als zweiten Para-
meter eventuell einen Startknoten s mit Typ V oder eine Liste vs von Knoten erhilt. Der letzte Parameter, der per
Referenz iibergeben wird, ist immer eine geeignete Datenstruktur, in der die Ergebnisse des Algorithmus — meist in
einer oder mehreren Tabellen (maps) — gespeichert werden.

Eine typische Verwendung sieht zum Beispiel wie folgt aus:

// Testgraph mit Knoten des Typs string.
Graph<string> g ({

{ "a", { """, "c" } 1}, // Knoten A hat Nachfolger B und C.
{ "B", {1} }, // Knoten B hat keine Nachfolger.
{re", {"e")} // Knoten C hat sich selbst als Nachfolger.

1)

// Tiefensuche auf g ausfiihren und das Ergebnis in res speichern.
DFS<string> res;
dfs (g, res);

// Die Knoten v des Graphen nach aufsteigenden Abschlusszeiten
// durchlaufen und fiir jeden Knoten seine Entdeckungs- und
// Abschlusszeit ausgeben.
for (string v : res.seq) {
cout << v << " " << res.det[v] << " " << res.fin[v] << endl;

}

Testen Sie Ihre Implementierung mit unterschiedlichen Graphen und ggf. unterschiedlichen Startknoten sorgfiltig
und ausfiihrlich!

Auf der Vorlesungswebseite steht hierfiir ein Testprogramm graphtest.cxx zur Verfiigung, das, abhingig von
den iibergebenen Kommandozeilenargumenten, einen bestimmten Algorithmus auf einem bestimmten Graphen,
gef. mit einem bestimmten Startknoten, ausfiihrt und die vom Algorithmus ermittelte Information auf der Standard-
ausgabe ausgibt. Die Liste der Testgraphen kann nach Belieben erweitert werden.

Die Datei container.cxx auf der Vorlesungswebseite enthilt Beispiele zur Verwendung der Containertypen
std::1list und std: :map der C++-Standardbibliothek.

Um automatisierte Tests der Implementierungen zu ermoglichen, diirfen die vorgegebenen Klassennamen und die
Signaturen von Funktionen nicht veriandert werden, und es diirfen keine Diagnoseausgaben produziert werden.

Abgesehen von den in graph.h bereits verwendeten Bibliotheksklassen (numeric_limits, list, map und
pair) diirfen keine Bestandteile der C++-Standardbibliothek oder anderer Bibliotheken verwendet werden.

Abzugeben ist die durch Thren Code erweiterte Datei graph. h.

Die E-Mail mit der Abgabe muss als Betreff Algo2 Gruppe NN mit zweistelliger Gruppennummer NN (z.B. 05
oder 12) und als Anhang die abzugebende Datei haben. Der Nachrichtentext muss fiir jedes Gruppenmitglied aus
einer Zeile der Art Vorname, Nachname, Matrikelnummer bestehen.

HTW Aalen, Algorithmen und Datenstrukturen 2, WS 2025/2026, Blatt 4 2

