
6 Tabelleng estützte Programmierung
(dynamic programming)

6.1 Einführende Beispiele

6.1.1 Fibonacci-Zahlen

❐ Rekursive Definition für n ∈ IN0: fn = { n

fn−2 + fn−1

für n ≤ 1
für n ≥ 2

fn

fn−2

fn−4

.

fn−3

.

fn−1

fn−3

.

fn−2

.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.1 Einführende Beispiele
6.1.1 Fibonacci-Zahlen 226

6.1.2 Binomialkoeffizienten

❐ Rekursive Berechnung für n ∈ IN0 und k = 0, . . ., n (vgl. Pascalsches Dreieck):

(n

k) =







1

(n − 1
k − 1) + (n − 1

k)

für k = 0 oder k = n

sonst

(n

k)

(n − 1
k − 1)

(n − 2
k − 2)

.

(n − 2
k − 1)

.

(n − 1
k)

(n − 2
k − 1)

.

(n − 2
k)

.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.1 Einführende Beispiele
6.1.2 Binomialkoeffizienten 227

6.1.3 Allgemeines Prinzip

Problem

❐ Bei der rekursiven Berechnung werden Teilergebnisse immer wieder −− mit sehr
hohem Aufwand −− neu berechnet.

Lösungsidee

❐ Einmal berechnete Teilergebnisse werden in einer Tabelle (beispielsweise in einer
Streuwer ttabelle) gespeicher t.

❐ Vor der Berechnung eines Teilergebnisses wird anhand der Tabelle überprüft, ob es
bereits vorhanden ist.

Effekt

❐ Berechnungen, die ohne diese Optimierung extrem hohe (oft exponentielle) Laufzeit
besitzen, können wesentlich effizienter (normalerweise mit polynomieller Laufzeit)
durchgeführ t werden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.1 Einführende Beispiele
6.1.3 Allgemeines Pr inzip 228

6.2 Editierdistanz

6.2.1 Definition

❐ Die Editierdistanz (oder Levenshtein-Distanz) D(s, t) zweier Zeichenketten s und t ist
die minimale Anzahl elementarer Editieroperationen, mit denen s in t überführ t
werden kann.

❐ Elementare Editieroperationen sind:

❍ Entfer ne das Zeichen . . . an Position . . .

❍ Füge das Zeichen . . . nach Position . . . ein

❍ Ersetze das Zeichen . . . an Position . . . durch das Zeichen . . .

6.2.2 Beispiele

OTTO

AUTOS

ABCD

ABDC

ABCD

ABDC

ABCD

ABDCE

ABCD

ABDCE

TISCHLAMPE

SCHULAUFGABE

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.2 Beispiele 229

6.2.3 Beobachtung en

❐ Die Editierdistanz ist offenbar symmetrisch, d. h. es gilt D(s, t) = D(t , s) für alle
Zeichenketten s und t .

❐ Folgende Operationen sind offensichtlich unnötig:

❍ Löschen eines zuvor eingefügten Zeichens
→ Zeichen gar nicht einfügen

❍ Löschen eines zuvor ersetzten Zeichens
→ Gleich das ursprüngliche Zeichen löschen

❍ Ersetzen eines zuvor eingefügten Zeichens
→ Gleich das endgültige Zeichen einfügen

❍ Mehr maliges Ersetzen eines Zeichens
→ Zeichen einmalig durch das endgültige Zeichen ersetzen

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.3 Beobachtungen 230

❐ Ohne offensichtlich unnötige Operationen gibt es für jedes Zeichen aus s genau drei
Möglichkeiten:

❍ Es bleibt unveränder t.

❍ Es wird durch ein anderes Zeichen ersetzt, das anschließend unveränder t bleibt.

❍ Es wird entfer nt.

❐ Umgekehr t gibt es für jedes Zeichen aus t genau drei Möglichkeiten:

❍ Es wurde unveränder t aus s über nommen.

❍ Es ist durch Ersetzung eines Zeichens aus s entstanden.

❍ Es wurde neu eingefügt.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.3 Beobachtungen 231

6.2.4 Rekursionsgleichung

Satz 1

❐ Für eine beliebige Zeichenkette s und die leere Zeichenkette ε gilt:
D(s, ε) = D(ε , s) = s = Länge von s.

Beweis

❐ Um s in die leere Zeichenkette zu überführen, sind offenbar genau s Lösch-
operationen nötig.

❐ Um die leere Zeichenkette in s zu überführen, sind offenbar genau s Einfüge-
operationen nötig.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 232

Satz 2

❐ Für nichtleere Zeichenketten s und t gilt: D(s, t) = min







D(s ′, t) + 1
D(s, t ′) + 1
D(s ′, t ′) + δ







.

❐ Dabei bezeichne s ′ bzw. t ′ die Zeichenkette s bzw. t ohne ihr letztes Zeichen.

❐ δ ist 0, wenn die letzten Zeichen von s und t gleich sind, sonst 1.

Beweis

❐ Zu zeigen:
Die minimale Anzahl elementarer Editieroperationen, um s in t zu überführen, ist
gleich dem durch das Minimum definierten Wer t M .

❐ Das heißt:

a) Es gibt eine Folge von M Editieroperationen, mit denen s in t überführ t werden
kann.

b) Es gibt keine kürzere Folge, d. h. für jede Folge E , die s in t überführ t, gilt
M ≤ E .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 233

Teil a:

❐ Nach Definition von D gibt es eine Folge mit D(s ′, t) Editieroperationen, die s ′ in t

überführ t.
Wenn man diese Operationen auf s statt auf s ′ anwendet und anschließend noch das
letzte Zeichen der resultierenden Zeichenkette entfer nt, hat man s mit D(s ′, t) + 1
Operationen in t überführ t.

❐ Ebenso gibt es eine Folge mit D(s, t ′) Editieroperationen, die s in t ′ überführ t.
Wenn man diese Operationen auf s anwendet und anschließend noch das letzte
Zeichen von t am Ende der resultierenden Zeichenkette anfügt, hat man s mit
D(s, t ′) + 1 Operationen in t überführ t.

❐ Ebenso gibt es eine Folge mit D(s ′, t ′) Editieroperationen, die s ′ in t ′ überführ t.
Wenn man diese Operationen auf s statt auf s ′ anwendet und anschließend, wenn
nötig, noch das letzte Zeichen der resultierenden Zeichenkette durch das letzte
Zeichen von t ersetzt, hat man s mit D(s ′, t ′) + δ Operationen in t überführ t.

❐ Somit gibt es Folgen zur Überführung von s in t mit D(s ′, t) + 1, D(s, t ′) + 1 und
D(s ′, t ′) + δ Operationen.
Da M einer dieser drei Wer te ist, gibt es somit auch eine Folge mit M Operationen.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 234

Teil b:

❐ Sei E eine beliebige Folge von Editieroperationen, die s in t überführ t.

❐ O. B. d. A. enthält E keine offensichtlich unnötigen Operationen.
(Ander nfalls werden diese entfer nt. Wenn dann für die ver kürzte Folge M ≤ E  gilt,
gilt dies auch für die ursprüngliche Folge.)

❐ Fallunterscheidung nach der Herkunft des letzten Zeichens von t :

❐ Fall 1: Das letzte Zeichen von t ist das letzte Zeichen von s (wie im 6. Beispiel):

❍ Dann kann man mit derselben Folge von Editieroperationen s ′ in t ′ überführen.

❍ Daher gilt: M
(i)
≤ D(s ′, t ′) + δ

(ii)
= D(s ′, t ′)

(iii)
≤ E .

(i) D(s ′, t ′) + δ ist einer der drei Wer te, deren Minimum M bezeichnet.
(ii) δ = 0, da das letzte Zeichen von t gleich dem letzten Zeichen von s ist.
(iii) D(s ′, t ′) ist gemäß Definition von D die minimale Anzahl von Editier-

operationen, mit denen s ′ in t ′ überführ t werden kann.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 235

❐ Fall 2:
Das letzte Zeichen von t ist durch Ersetzung des letzten Zeichens von s entstanden
(wie im 5. Beispiel):

❍ Wenn man in der Folge E die entsprechende Ersetzungsoperation weglässt,
erhält man eine Folge zur Überführung von s ′ in t ′ mit E  − 1 Operationen.

❍ Daher gilt (mit ähnlichen Begründungen wie in Fall 1):
M ≤ D(s ′, t ′) + δ = D(s ′, t ′) + 1 ≤ (E  − 1) + 1 = E .

❐ Fall 3: Das letzte Zeichen von t wurde während der Überführung hinzugefügt
(wie im 1. Beispiel):

❍ Wenn man in der Folge E die entsprechende Einfügeoperation weglässt, erhält
man eine Folge zur Überführung von s in t ′ mit E  − 1 Operationen.

❍ Daher gilt: M ≤ D(s, t ′) + 1 ≤ (E  − 1) + 1 = E .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 236

❐ Fall 4: Keiner der obigen Fälle ist zutreffend, das heißt:
Das letzte Zeichen von t ist entweder ein Zeichen aus s, oder es ist durch eine
Ersetzung eines Zeichens aus s entstanden, aber dieses Zeichen ist nicht das letzte
Zeichen von s (wie im 3. Beispiel):

❍ Dann müssen während der Überführung alle Zeichen von s hinter diesem Zeichen
entfer nt worden sein.
Insbesondere muss das letzte Zeichen von s irgendwann entfer nt worden sein.

❍ Wenn man in der Folge E die entsprechende Löschoperation weglässt, erhält man
eine Folge zur Überführung von s ′ in t mit E  − 1 Operationen.

❍ Daher gilt: M ≤ D(s ′, t) + 1 ≤ (E  − 1) + 1 = E .

❐ Somit gilt in allen Fällen: M ≤ E .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.4 Rekursionsgleichung 237

6.2.5 Praktische Berechnung

❐ Für zwei Zeichenketten s und t sei Di , j = Di , j (s, t) die Editierdistanz zwischen dem
Präfix der Länge i von s und dem Präfix der Länge j von t .

❐ Aufgrund der obigen Sätze können die Wer te Di , j wie folgt berechnet werden:

❍ D0, 0 = 0

❍ Di , 0 = i für i = 1, . . ., s

❍ D0, j = j für j = 1, . . ., t 

❍ Di , j = min







Di −1, j + 1
Di , j −1 + 1
Di −1, j −1 + δ







für i = 1, . . ., s und j = 1, . . ., t  mit δ = { 0 für si = tj
1 sonst

❐ D(s, t) ist gleich Ds, t (s, t).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.5 Praktische Berechnung 238

6.2.6 Ermittlung der tatsächlichen Editieroperationen

❐ Bei der Berechnung eines Wer ts Di , j kann man notieren, aus welchem seiner drei
„Nachbar n“ Di −1, j , Di , j −1 oder Di −1, j −1 er „entstanden“ ist bzw. entstanden sein kann.
Diese Infor mation kann aber auch nachträglich durch Vergleich eines Wer ts mit
seinen drei Nachbarn ermittelt werden.

❐ Wenn Di , j aus Di −1, j entstanden ist (oben), dann muss an dieser Stelle die Operation

❍ Entfer ne das Zeichen si an Position i (bei Überführung von s in t)

❍ Füge das Zeichen si nach Position j ein (bei Überführung von t in s)

ausgeführ t werden.

❐ Wenn Di , j aus Di , j −1 entstanden ist (links), dann muss an dieser Stelle die Operation

❍ Füge das Zeichen tj nach Position i ein (bei Überführung von s in t)

❍ Entfer ne das Zeichen tj an Position j (bei Überführung von t in s)

ausgeführ t werden.

❐ Wenn Di , j aus Di −1, j −1 entstanden ist (diagonal), dann muss an dieser Stelle
entweder nichts gemacht werden (wenn si = tj) oder die Operation

❍ Ersetze das Zeichen si an Position i durch das Zeichen tj (bei Überf. von s in t)

❍ Ersetze das Zeichen tj an Position j durch das Zeichen si (bei Überf. von t in s)

ausgeführ t werden (wenn si ≠ tj).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.6 Ermittlung der tatsächlichen . . . 239

❐ Um die Folge aller Editieroperationen auszugeben, beginnt man mit Ds, t , ermittelt
den passenden Nachbarn, gibt die zugehörige Operation aus und wiederholt den
Vorgang mit diesem Nachbarn, bis man bei D0, 0 angekommen ist.

❐ Auf diese Weise entsteht die Folge der Editieroperationen automatisch von hinten
nach vor n.
Will man die Operationen in umgekehr ter Reihenfolge ausführen, muss man
beachten, dass Einfügungen und Entfer nungen die Positionen der nachfolgenden
Zeichen bzw. Operationen veränder n.

6.2.7 Laufzeit

❐ O(s ⋅ t )

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.7 Laufzeit 240

6.2.8 Beispiel

❐ s = ABCD, t = ABDCE

j 0 1 2 3 4 5
i t A B D C E
0 s 0 1 2 3 4 5
1 A 1 0 1 2 3 4
2 B 2 1 0 1 2 3
3 C 3 2 1 1 1 2
4 D 4 3 2 1 2 2

❐ Ergebnis: D(s, t) = D4, 5 = 2

❐ Die fettgedr uckten Zahlen zeigen den „Weg“ von D4, 5 zurück zu D0, 0.

❐ Die Editieroperationen zur Überführung von s in t lauten demnach:

❍ Ersetze das Zeichen D an Position 4 durch das Zeichen E.

❍ Füge das Zeichen D nach Position 2 ein.

❐ Die Editieroperationen zur Überführung von t in s lauten:

❍ Ersetze das Zeichen E an Position 5 durch das Zeichen D.

❍ Entfer ne das Zeichen D an Position 3.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.2 Editierdistanz
6.2.8 Beispiel 241

6.3 Blocksatz

6.3.1 Problemstellung

❐ Gegeben sei eine Folge von Wörter n w1, . . ., wn mit Breiten λ1, . . ., λn , die in dieser
Reihenfolge auf Zeilen der Breite λ verteilt werden sollen, sodass der zum Auffüllen
der Zeilen zusätzlich benötigte Zwischenraum möglichst gleichmäßig ver teilt ist (vgl.
§ 4.1 und § 4.2).

❐ Fr age: Was bedeutet „möglichst gleichmäßig ver teilt“, d. h. wie lautet eine sinnvolle
Bewertungsfunktion für das Optimierungsproblem?

❐ Mögliche Antwor t: Um einen großen Zwischenraum härter zu „bestrafen“ als mehrere
kleine, soll die Summe der Quadrate aller Zwischenraumbreiten möglichst klein sein.

6.3.2 Malus einer einzelnen Zeile

❐ Wenn eine Zeile der Breite λ die Wörter wi , . . ., wj enthält und zwischen je zwei
Wör tern ein Mindestabstand σ0 ist, ist die Gesamtbreite des zusätzlich vorhandenen

Zwischenraums in dieser Zeile: σ = λ −
j

k =i
Σ λk − m σ0 mit m = j − i = Anzahl der Wor t-

zwischenräume in dieser Zeile (d. h. 1 weniger als die Anzahl der Wörter).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.2 Malus einer einzelnen Zeile 242

❐ Wenn dieser Zwischenraum gleichmäßig ver teilt wird, ergibt sich als Summe der

Quadrate der Einzelzwischenräume: µ(i , j) =







m (σ
m)

2
=

σ 2

m

σ 2

für m > 0 (*)

für m = 0 (**)

(*) Bei ganzzahliger Rechnung: (m − r) ⋅ q2 + r ⋅ (q + 1)2 mit q = 


σ
m




und r = σ mod m

(**) Wenn die Zeile nur ein Wor t enthält (i = j ⇔ m = 0), befindet sich der gesamte
Zwischenraum σ am Ende der Zeile.

❐ Sonderfall: Übervolle Zeile

❍ Wenn σ < 0 ist, ist die Zeile über voll .

❍ Im Fall i = j lässt sich dies nicht ver meiden, weil die Breite λi des einzigen Wor ts
auf der Zeile dann größer als die Zeilenbreite λ ist. In diesem Fall sei µ(i , j) = 0.

❍ Im Fall i < j ist die Zeile unnötig übervoll , d. h. die Anzahl ihrer Wörter sollte
reduzier t werden. In diesem Fall sei µ(i , j) = ∞.

❐ Sonderfall: Letzte Zeile
Da Zwischenraum in der letzten Zeile (normalerweise) nicht bestraft werden soll,
sei µ(i , j) = 0 für j = n, sofer n σ ≥ 0 ist.

❐ µ(i , j) heißt Malus der Zeile mit den Wörter n wi , . . ., wj .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.2 Malus einer einzelnen Zeile 243

6.3.3 Malus eines gesamten Absatzes

❐ Für 0 < i1 < . . . < ik = j ≤ n ist µ({ i1, . . ., ik }) = µ(1, i1) + µ(i1 + 1, i2) + . . . + µ(ik −1 + 1, ik)
der Gesamtmalus aller Zeilen, der sich ergibt, wenn man die Wörter w1, . . ., wj so auf
Zeilen ver teilt, dass nach den Wörter n i1, . . ., ik jeweils ein Zeilenumbr uch erfolgt.

❐ Für j = 1, . . ., n sei µ(j) = min { µ({ i1, . . ., ik })  0 < i1 < . . . < ik = j },
d. h. µ(j) ist der kleinste Malus, den man erreichen kann, wenn man die Wörter
w1, . . ., wj irgendwie auf Zeilen ver teilt.

❐ Zusätzlich sei µ(0) = 0.

❐ Gesucht ist somit µ(n) sowie die Indizes 0 < i1 < . . . < ik = n der Wörter, nach denen
jeweils ein Zeilenumbr uch erfolgen soll, um diesen minimalen Malus zu erreichen.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.3 Malus eines gesamten Absatzes 244

6.3.4 Rekursionsgleichung

❐ Um die ersten j Wör ter w1, . . ., wj beliebig auf Zeilen zu ver teilen,

❍ wählt man eine beliebige Stelle i ∈ { 0, . . ., j − 1 } für den letzten Zeilenumbr uch
(d. h. dieser soll nach Wor t i erfolgen),

❍ verteilt die ersten i Wör ter beliebig auf Zeilen

❍ und setzt die restlichen Wörter i + 1, . . ., j auf die letzte Zeile.

❐ Um die ersten j Wör ter optimal (d. h. mit minimalem Malus) auf Zeilen zu ver teilen,

❍ wählt man für die Ver teilung der ersten i Wör ter jeweils eine Ver teilung mit
minimalem Malus µ(i),

❍ addier t dazu den Malus µ(i + 1, j) der resultierenden letzten Zeile

❍ und wählt von diesen Möglichkeiten mit Gesamtmalus µ(i) + µ(i + 1, j) für
i = 0, . . ., j − 1 das Minimum.

❐ Somit gilt für j = 1, . . ., n:
µ(j) = min { µ(i) + µ(i + 1, j)  i = 0, . . ., j − 1 }.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.4 Rekursionsgleichung 245

6.3.5 Praktische Berechnung

❐ Für die praktische Berechnung des Minimums µ(j) lässt man i rückwär ts von j − 1
bis 0 laufen und beendet die Schleife, sobald µ(i + 1, j) = ∞ ist, d. h. wenn die letzte
Zeile unnötig übervoll wäre, weil µ(i + 1, j) dann für alle weiteren Wer te von i

ebenfalls ∞ wäre und sich somit kein kleinerer Gesamtwer t mehr ergeben würde.

❐ Damit kann µ(j) nacheinander für j = 0, . . ., n wie folgt berechnet und in einer Tabelle
gespeicher t werden:

1 Setze µ(0) = 0.

2 Für j = 1, . . ., n:

1 Setze µ(j) = ∞.

2 Für i = j − 1, . . ., 0:

1 Berechne µ = µ(i + 1, j).

2 Wenn µ = ∞ ist, beende die Schleife.

3 Setze µ = µ(i) + µ.

4 Wenn µ < µ(j) ist: Setze µ(j) = µ und π(j) = i .

❐ Die optimalen Umbruchstellen ik , . . ., i1 erhält man „rückwär ts“ als n, π(n), π(π(n)), . . .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.5 Praktische Berechnung 246

6.3.6 Beispiel

❐ Wenn man den Text a b c d e f ghij in „Schreibmaschinenschrift“ (alle Zeichen
einschließlich Leerzeichen besitzen Breite 1) bei Zeilenbreite 7 mit dem in § 4.2
beschr iebenen Nächstbest-Algor ithmus for matiert, ergibt sich:

a b c d
e f
ghij

❐ Die Anwendung des zuvor beschriebenen Algorithmus ergibt:

i Letzte Zeile µ(i) + µ(i + 1, j)
π(j) (Wor t i + 1 bis j) µ(j)

j µ(i + 1, j) µ(i)

0 0
1 0 a++++++ 62 = 36 0 36

1 b++++++ 62 = 36 36 72
0 a−++++b 42 = 16 0 16

2

2 c++++++ 62 = 36 16 52
1 b−++++c 42 = 16 36 52
0 a−+b−+c 12 + 12 = 2 0 2

3

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.6 Beispiel 247

i Letzte Zeile µ(i) + µ(i + 1, j)
π(j) (Wor t i + 1 bis j) µ(j)

j µ(i + 1, j) µ(i)

3 d++++++ 62 = 36 2 38
2 c−++++d 42 = 16 16 32
1 b−+c−+d 12 + 12 = 2 36 38
0 a−b−c−d 0 0 0

4

4 e++++++ 62 = 36 0 36
3 d−++++e 42 = 16 2 18
2 c−+d−+e 12 + 12 = 2 16 18
1 b−c−d−e 0 36 36
0 a−b−c−d−e ∞

5

5 f++++++ 62 = 36 18 54
4 e−++++f 42 = 16 0 16
3 d−+e−+f 12 + 12 = 2 2 4
2 c−d−e−f 0 16 16
1 b−c−d−e−f ∞

6

6 ghij 0 4 4
5 f−ghij 0 18 18
4 e−f−ghij ∞

7

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.6 Beispiel 248

❐ Er läuter ung zu den Tabellen:

❍ Für jeden Wer t von j läuft i rückwär ts von j − 1 bis 0, solange µ(i + 1, j) < ∞ ist.

❍ Die fettgedr uckten Wer te in der zweiten bzw. letzten Spalte entsprechen π(j)
bzw. µ(j).

❍ In der dritten Spalte symbolisieren Minuszeichen den Mindestabstand zwischen
zwei Wörter n und Pluszeichen den zusätzlich benötigten Zwischenraum, der für
die Berechnung von µ(i + 1, j) verwendet wird.

❐ Die optimalen Umbruchstellen sind: n = 7, π(7) = 6, π(6) = 3, π(3) = 0

❐ Damit ergibt sich folgende optimale For matierung:

a b c
d e f
ghij

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.6 Beispiel 249

6.3.7 Laufzeit

❐ Da zwischen je zwei Wörter n ein Mindestabstand der Breite σ0 sein soll, haben auf

einer Zeile der Breite λ maximal m =




λ
σ0





+ 1 Wör ter Platz.

❐ Deshalb wird die innere Schleife zur Berechnung von µ(j) nach höchstens m = O(1)
Durchläufen beendet.

❐ Somit ist die Gesamtlaufzeit zur Berechnung von µ(0), . . ., µ(n) gleich O(n)
(und nicht O(n2), wie in https://en.wikipedia.org/wiki/Line_wrap_and_word_wrap
behauptet wird).

❐ Zum Vergleich: Die Gesamtzahl der Möglichkeiten, n Wör ter auf Zeilen zu ver teilen,
ist 2n−1: Nach jedem Wor t außer dem letzten kann entweder ein Zeilenumbr uch
erfolgen oder nicht.

❐ Also führt die tabellengestützte Programmier ung zu einer immensen Laufzeit-
verbesser ung.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.7 Laufzeit 250

6.3.8 Erweiterungsmöglichkeiten

❐ Trennung langer Wörter

❍ Silbentrennung (mit unterschiedlich „guten“ Trennstellen)

❍ Trennung vor oder nach bestimmten Zeichen (z. B. nach Schrägstrichen in URLs)

❍ Trennung mathematischer For meln

❐ Zusätzliche Strafpunkte für einzelne Trennungen
oder mehrere aufeinanderfolgende Zeilen mit Trennungen

❐ Zeilen mit einem einzigen Wor t noch „härter bestrafen“

❐ Verbotene und bevorzugte Zeilenumbrüche

❐ Einen Absatz künstlich um eine oder mehrere Zeilen ver längern, um

❍ „Schusterjungen“ und „Hurenkinder“ zu ver meiden

❍ alle Spalten auf der letzten Seite eines mehrspaltigen Texts gleich lang zu machen

❐ Aber : Auch der beste Algorithmus kann nicht „zaubern“.
Manchmal muss man einen Text einfach umfor mulieren,
um einen störenden Umbruch zu ver meiden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.8 Erweiter ungsmöglichkeiten 251

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestützte Programmier ung

6.3 Blocksatz
6.3.8 Erweiter ungsmöglichkeiten 252

