C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.1 Einflhrende Beispiele
6 Tabellengestlitzte Programmierung 6.1.1 Fibonacci-Zahlen

226

6 Tabellengestutzte Programmierung
(dynamic programming)

6.1 Einfuhrende Beispiele

6.1.1 Fibonacci-Zahlen

n furn <1

O Rekursive Definition fir n € Ng: £, = fo+f, firn>2

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.1 Einflhrende Beispiele
6 Tabellengestlitzte Programmierung 6.1.2 Binomialkoeffizienten 227

6.1.2 Binomialkoeffizienten

[Rekursive Berechnung fir n € INj und k =0, ..., n (vgl. Pascalsches Dreieck):
E fr k =0 oder k = n
(k) =
: (n—1 + n—1) sonst
(\k — 1 k

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.1 Einflhrende Beispiele
6 Tabellengestlitzte Programmierung 6.1.3 Allgemeines Prinzip 228

6.1.3 Allgemeines Prinzip
Problem

1 Bei der rekursiven Berechnung werden Teilergebnisse immer wieder — mit sehr
hohem Aufwand — neu berechnet.

Losungsidee

[Einmal berechnete Teilergebnisse werden in einer Tabelle (beispielsweise in einer
Streuwerttabelle) gespeichert.

[Vor der Berechnung eines Teilergebnisses wird anhand der Tabelle Gberprift, ob es
bereits vorhanden ist.

Effekt

[Berechnungen, die ohne diese Optimierung extrem hohe (oft exponentielle) Laufzeit
besitzen, kdonnen wesentlich effizienter (normalerweise mit polynomieller Laufzeit)
durchgefihrt werden.

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.2 Beispiele 229

6.2 Editierdistanz

6.2.1 Definition

[Die Editierdistanz (oder Levenshtein-Distanz) D(s, t) zweier Zeichenketten s und t ist
die minimale Anzahl elementarer Editieroperationen, mit denen s in t Uberflhrt
werden kann.

[Elementare Editieroperationen sind:

O Entferne das Zeichen ... an Position ...
O Flge das Zeichen ... nach Position ... ein

O Ersetze das Zeichen ... an Position ... durch das Zeichen ...

6.2.2 Beispiele

OTTO ABCD ABCD ABCD ABCD TISCHLAMPE

L A A T TRV 77778

AUTOS ABDC ABDC ABDCE ABDCE SCHULAUFGABE

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.3 Beobachtungen 230

6.2.3 Beobachtungen

[Die Editierdistanz ist offenbar symmetrisch, d. h. es gilt D(s, t) = D(t, s) fur alle
Zeichenketten s und t.
[Folgende Operationen sind offensichtlich unnétig:

O Loschen eines zuvor eingefligten Zeichens
— Zeichen gar nicht einfligen

O Loschen eines zuvor ersetzten Zeichens
— Gleich das urspringliche Zeichen 16schen

O Ersetzen eines zuvor eingefugten Zeichens
— Gleich das endgultige Zeichen einfigen

O Mehrmaliges Ersetzen eines Zeichens
— Zeichen einmalig durch das endgultige Zeichen ersetzen

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.3 Beobachtungen 231

[Ohne offensichtlich unndtige Operationen gibt es fur jedes Zeichen aus s genau drei
Moglichkeiten:

O Es bleibt unverandert.
O Es wird durch ein anderes Zeichen ersetzt, das anschlieBend unverandert bleibt.

O Es wird entfernt.

[Umgekehrt gibt es flr jedes Zeichen aus t genau drei Moglichkeiten:
O Es wurde unverandert aus s tbernommen.
O Es ist durch Ersetzung eines Zeichens aus s entstanden.

O Es wurde neu eingeflugt.

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.4 Rekursionsgleichung

232

6.2.4 Rekursionsgleichung
Satz 1

[Fdr eine beliebige Zeichenkette s und die leere Zeichenkette ¢ gilt:
D(s, €) = D(¢, s) = | s| = Lange von s.

Beweis

[Um s in die leere Zeichenkette zu Uberfihren, sind offenbar genau | s| Lésch-
operationen notig.

[Um die leere Zeichenkette in s zu Uberflhren, sind offenbar genau |s| Einflige-
operationen notig.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.4 Rekursionsgleichung 233

Satz 2

D(s’, t) + 1
[FOr nichtleere Zeichenketten s und t gilt: D(s, t) = miny D(s, t’) + 1
D(s’,t')+ 6

'
.

[Dabei bezeichne s’ bzw. t’ die Zeichenkette s bzw. t ohne ihr letztes Zeichen.
A dist 0, wenn die letzten Zeichen von s und t gleich sind, sonst 1.
Beweis

[Zu zeigen:
Die minimale Anzahl elementarer Editieroperationen, um s in t zu Uberflhren, ist
gleich dem durch das Minimum definierten Wert M.

[Das heil3t:

a) Es gibt eine Folge von M Editieroperationen, mit denen s in t Gberflhrt werden
kann.

b) Es gibt keine kirzere Folge, d. h. fur jede Folge E, die s in t Gberfuhrt, gilt
M< | E|.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestitzte Programmierung 6.2.4 Rekursionsgleichung 234

Tell a:

[Nach Definition von D gibt es eine Folge mit D(s’, t) Editieroperationen, die s”in t
tberfuhrt.
Wenn man diese Operationen auf s statt auf s” anwendet und anschlie3end noch das
letzte Zeichen der resultierenden Zeichenkette entfernt, hat man s mit D(s’, t) + 1
Operationen in t Uberflhrt.

[Ebenso gibt es eine Folge mit D(s, t’) Editieroperationen, die s in t* Gberflhrt.
Wenn man diese Operationen auf s anwendet und anschlieBend noch das letzte
Zeichen von t am Ende der resultierenden Zeichenkette anfugt, hat man s mit
D(s, t’) + 1 Operationen in t Uberfuhrt.

[Ebenso gibt es eine Folge mit D(s’, t’) Editieroperationen, die s” in t” Gberflhrt.
Wenn man diese Operationen auf s statt auf s” anwendet und anschlieBend, wenn
notig, noch das letzte Zeichen der resultierenden Zeichenkette durch das letzte
Zeichen von t ersetzt, hat man s mit D(s’, t’) + 6 Operationen in t Gberflhrt.

3 Somit gibt es Folgen zur Uberfiihrung von s in t mit D(s’, t) + 1, D(s, t’) + 1 und
D(s’, t') + 6 Operationen.
Da M einer dieser drei Werte ist, gibt es somit auch eine Folge mit M Operationen.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestitzte Programmierung 6.2.4 Rekursionsgleichung 235

Teil b:
[Sei E eine beliebige Folge von Editieroperationen, die s in t Gberflhrt.

[O.B.d.A. enthalt E keine offensichtlich unnotigen Operationen.
(Andernfalls werden diese entfernt. Wenn dann fir die verkirzte Folge M < | E| qilt,
gilt dies auch far die urspringliche Folge.)

[Fallunterscheidung nach der Herkunft des letzten Zeichens von t:

[Fall 1: Das letzte Zeichen von t ist das letzte Zeichen von s (wie im 6. Beispiel):
O Dann kann man mit derselben Folge von Editieroperationen s” in t* Gberflhren.
O Dabher qilt: M (s) D(s’, t') + 6(?) D(s’, t') (g) |E|.
I Il "

(i) D(s’, t’) + dist einer der drei Werte, deren Minimum M bezeichnet.

(i) 6=0, da das letzte Zeichen von t gleich dem letzten Zeichen von s ist.

(i) D(s’, t’) ist gemal Definition von D die minimale Anzahl von Editier-

operationen, mit denen s’ in t’ Gberfuhrt werden kann.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestitzte Programmierung 6.2.4 Rekursionsgleichung 236

A Fall 2:
Das letzte Zeichen von t ist durch Ersetzung des letzten Zeichens von s entstanden
(wie im 5. Beispiel):

O Wenn man in der Folge E die entsprechende Ersetzungsoperation weglasst,
erhalt man eine Folge zur Uberflihrung von s’ in t’ mit | E| — 1 Operationen.

O Dabher gilt (mit ahnlichen Begrindungen wie in Fall 1):
M<D(s', t)+6=D(s",t')+1<(|E| -1)+1=|E].
A Fall 3: Das letzte Zeichen von t wurde wahrend der Uberfiihrung hinzugefiigt
(wie im 1. Beispiel):

O Wenn man in der Folge E die entsprechende Einfigeoperation weglasst, erhalt
man eine Folge zur Uberflhrung von s in t’ mit | E| — 1 Operationen.

O Dahergilt: M<D(s,)+ 1< (|E| -1)+1=|E].

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.4 Rekursionsgleichung 237

[Fall 4: Keiner der obigen Falle ist zutreffend, das heif3t:
Das letzte Zeichen von t ist entweder ein Zeichen aus s, oder es ist durch eine
Ersetzung eines Zeichens aus s entstanden, aber dieses Zeichen ist nicht das letzte

Zeichen von s (wie im 3. Beispiel):

O Dann miissen wahrend der Uberfiihrung alle Zeichen von s hinter diesem Zeichen

entfernt worden sein.
Insbesondere muss das letzte Zeichen von s irgendwann entfernt worden sein.

O Wenn man in der Folge E die entsprechende Loschoperation weglasst, erhalt man
eine Folge zur Uberflihrung von s’ int mit | E| — 1 Operationen.

O Daher gil: M <D(s’,) +1<(|E| =1)+1 = |E]|.

[Somit gilt in allen Fallen: M < | E||.

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.5 Praktische Berechnung 238

6.2.5 Praktische Berechnung

 Fdr zwei Zeichenketten s und t sei D, ; = D; (s, t) die Editierdistanz zwischen dem
Prafix der Lange / von s und dem Prafix der Lange j von t.

 Aufgrund der obigen Satze konnen die Werte D), ; wie folgt berechnet werden:
O Dyo=0
O D g=ifari=1,..., |s|

ODo,j=jfUrj=1,...,|l‘
D4 ;+1 .
! : . Oflrs; =t
O D ;=min{ D, 4+1 (firi=1,..,|slundj=1,...|t|mts={, =3
-/ | 1 sonst
Dy j4+0

O D(s, t) ist gleich Dig |1(S, t).

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.6 Ermittlung der tatsachlichen ... 239

6.2.6 Ermittlung der tatsachlichen Editieroperationen

[Bei der Berechnung eines Werts), ; kann man notieren, aus welchem seiner drei
.Nachbarn“ D,y ;, D, ; oder D_; ;4 er ,entstanden” ist bzw. entstanden sein kann.
Diese Information kann aber auch nachtraglich durch Vergleich eines Werts mit
seinen drei Nachbarn ermittelt werden.

 Wenn D, ; aus D4 ; entstanden ist (oben), dann muss an dieser Stelle die Operation
O Entferne das Zeichen s; an Position i (bei Uberfiihrung von s in t)

O Flge das Zeichen s; nach Position j ein (bei Uberfiihrung von t in s)
ausgefuhrt werden.

a Wenn D, ; aus D, ;_4 entstanden ist (links), dann muss an dieser Stelle die Operation
O Flge das Zeichen t nach Position 7 ein (bei Uberfiihrung von s in t)
O Entferne das Zeichen { an Position j (bei Uberflihrung von t in s)
ausgefuhrt werden.

a Wenn D, ; aus D_4 ;_{ entstanden ist (diagonal), dann muss an dieser Stelle
entweder nichts gemacht werden (wenn s; = t)) oder die Operation
O Ersetze das Zeichen s; an Position i durch das Zeichen ¢ (bei Uberf. von s in t)
O Ersetze das Zeichen {; an Position j durch das Zeichen s; (bei Uberf. von t in s)
ausgeflhrt werden (wenn s; =).

g C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.7 Laufzeit 240

3 Um die Folge aller Editieroperationen auszugeben, beginnt man mit D4 ;/, ermittelt
den passenden Nachbarn, gibt die zugehorige Operation aus und wiederholt den
Vorgang mit diesem Nachbarn, bis man bei D, o angekommen ist.

[Auf diese Weise entsteht die Folge der Editieroperationen automatisch von hinten

nach vorn.

Will man die Operationen in umgekehrter Reihenfolge ausfiihren, muss man
beachten, dass Einfligungen und Entfernungen die Positionen der nachfolgenden
Zeichen bzw. Operationen verandern.

6.2.7 Laufzeit

3 O(fs] - [t])

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.2 Editierdistanz
6 Tabellengestlitzte Programmierung 6.2.8 Beispiel

241

6.2.8 Beispiel

O s =ABCD,t = ABDCE

AWN=O|~
OO WX oun

AlWN=|O~|O
W= o= =
N == TN
== W O w
N[=N WO
NN W A|o1m|o

O Ergebnis: D(s, t) =D, 5 =2

O Die fettgedruckten Zahlen zeigen den ,Weg" von D, 5 zurlck zu 0, .

7 Die Editieroperationen zur Uberfiihrung von s in t lauten demnach:
O Ersetze das Zeichen D an Position 4 durch das Zeichen E.
O Fuge das Zeichen D nach Position 2 ein.

3 Die Editieroperationen zur Uberfiihrung von t in s lauten:
O Ersetze das Zeichen E an Position 5 durch das Zeichen D.
O Entferne das Zeichen D an Position 3.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.2 Malus einer einzelnen Zeile 242

6.3 Blocksatz

6.3.1 Problemstellung

[Gegeben sei eine Folge von Wortern wg, ..., w, mit Breiten 44, ..., 4, die in dieser
Reihenfolge auf Zeilen der Breite A verteilt werden sollen, sodass der zum Aufflllen
der Zeilen zusatzlich bendétigte Zwischenraum maoglichst gleichmafig verteilt ist (vgl.
§4.1 und §4.2).

[Frage: Was bedeutet ,moglichst gleichmalig verteilt®, d. h. wie lautet eine sinnvolle
Bewertungsfunktion far das Optimierungsproblem?

[Mogliche Antwort: Um einen grof3en Zwischenraum harter zu ,bestrafen” als mehrere
kleine, soll die Summe der Quadrate aller Zwischenraumbreiten moglichst klein sein.

6.3.2 Malus einer einzelnen Zeile

[Wenn eine Zeile der Breite 4 die Worter w, .. ., w enthalt und zwischen je zwei
Wortern ein Mindestabstand o ist, ist die Gesamtbreite des zusatzlich vorhandenen

J

Zwischenraums in dieser Zeile: 6= 41—) 4, — m oy mit m = j — i = Anzahl der Wort-
K=i

zwischenrdume in dieser Zeile (d. h. 1 weniger als die Anzahl der Worter).

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.2 Malus einer einzelnen Zeile 243

[Wenn dieser Zwischenraum gleichmafig verteilt wird, ergibt sich als Summe der

m
o fuarm=0 (™)

2
o o m(2) =2 qrmso ()
Quadrate der Einzelzwischenrdume: u(i, j) =

(*) Bei ganzzahliger Rechnung: (m=r)-q® +r-(g + 1) mitq = {%J und r = omod m

(**) Wenn die Zeile nur ein Wort enthalt (/ = j & m = 0), befindet sich der gesamte
Zwischenraum o am Ende der Zeile.

A Sonderfall: Ubervolle Zeile
O Wenn o< 0 ist, ist die Zeile ubervoll.

O Im Fall i = j Iasst sich dies nicht vermeiden, weil die Breite 4; des einzigen Worts
auf der Zeile dann gro3er als die Zeilenbreite A ist. In diesem Fall sei u(/, j) = 0.

O Im Fall i < j ist die Zeile unndtig dbervoll, d. h. die Anzahl inrer Worter sollte
reduziert werden. In diesem Fall sei u(/, j) = .

[Sonderfall: Letzte Zeile
Da Zwischenraum in der letzten Zeile (normalerweise) nicht bestraft werden soll,
sei u(i,) =0 far j = n, sofern o> 0 ist.

O (i, f) heil3t Malus der Zeile mit den Wortern w;, .. ., w.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.3 Malus eines gesamten Absatzes 244

6.3.3 Malus eines gesamten Absatzes

A

F[]I’O<i1 <...<ik =anIS’[,u({I1, ...,ik})=/,l(1,i1)+,u(i1 +1,i2)+...+,u(ik_1 +15ik)
der Gesamtmalus aller Zeilen, der sich ergibt, wenn man die Worter w4, ..., w; so auf
Zeilen verteilt, dass nach den Wértern iy, .. ., i, jeweils ein Zeilenumbruch erfolgt.

Fur j=1,....nseiu(j) =min{u{i,...i})|0<i<...<i =]},
d. h. u(j) ist der kleinste Malus, den man erreichen kann, wenn man die Worter
W, ..., W irgendwie auf Zeilen verteilt.

Zusatzlich sei 4(0) = 0.

Gesucht ist somit x(n) sowie die Indizes 0 < f; < ... < j, = n der Woérter, nach denen
jeweils ein Zeilenumbruch erfolgen soll, um diesen minimalen Malus zu erreichen.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.4 Rekursionsgleichung 245

6.3.4 Rekursionsgleichung

3 Um die ersten j Worter w, ..., w; beliebig auf Zeilen zu verteilen,

O wahlt man eine beliebige Stelle j € {0, ..., j — 1} fir den letzten Zeilenumbruch
(d. h. dieser soll nach Wort i/ erfolgen),

O verteilt die ersten i Worter beliebig auf Zeilen

O und setzt die restlichen Worter 1 + 1, ..., j auf die letzte Zeile.

[Um die ersten j Worter optimal (d. h. mit minimalem Malus) auf Zeilen zu verteilen,

O wahlt man far die Verteilung der ersten i Worter jeweils eine Verteilung mit
minimalem Malus u(/),

O addiert dazu den Malus u(i + 1, j) der resultierenden letzten Zeile
O und wahlt von diesen Moglichkeiten mit Gesamtmalus u(i) + u(i + 1, j) far
i=0,... j—1das Minimum.

A Somit gilt far j =1, ..., n:
u(f) = min{u(i) +p(i+1, j) | i=0,..., =1}

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.5 Praktische Berechnung 246

6.3.5 Praktische Berechnung

[Fur die praktische Berechnung des Minimums x(j) lasst man / rGckwarts von j — 1
bis 0 laufen und beendet die Schleife, sobald u(i + 1, j) = « ist, d. h. wenn die letzte
Zeile unnotig dbervoll ware, weil u(i + 1, j) dann fir alle weiteren Werte von i
ebenfalls « ware und sich somit kein kleinerer Gesamtwert mehr ergeben wirde.

[Damit kann u(j) nacheinander far j = 0, ..., n wie folgt berechnet und in einer Tabelle
gespeichert werden:
1 Setze u(0) = 0.
2 Farj=1,..., n:
1 Setze u(f) = .
2 Fori=j-1,...,0:
1 Berechne u=u(i +1, j).
Wenn u = « ist, beende die Schleife.

Setze u= u(i) + pu.

A~ W D

Wenn u < u(f) ist: Setze u(j) = pund #(j) = i.

[Die optimalen Umbruchstellen j, ..., i; erhalt man ,rickwarts® als n, o(n), o(#(n)), ...

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.6 Beispiel 247

6.3.6 Beispiel

[WennmandenTexta b ¢ d e £ ghijin ,Schreibmaschinenschrift’ (alle Zeichen
einschlieB3lich Leerzeichen besitzen Breite 1) bei Zeilenbreite 7 mit dem in §4.2
beschriebenen Nachstbest-Algorithmus formatiert, ergibt sich:

a b c d
e f
ghij

[Die Anwendung des zuvor beschriebenen Algorithmus ergibt:

i Letzte Zeile . . | o) i+ 1,)
7)) | Worti+1bisjy | A +11) | #) u(j)
0 0
1 0 at+++++ 6° = 36 0 36
5 1 b++++++ 6° = 36 36 72
0 a—++++b 42 = 16 0 16
2 CcH+++++ 6° = 36 16 52
3| 1 b—++++C 42 = 16 36 52
0 a—+b-+c 12 +12 =2 0 2

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
6 Tabellengestlitzte Programmierung

6.3 Blocksatz

6.3.6 Beispiel

248

—

Letzte Zeile

i) + (i + 1,)

| Worti+1bisj) | AT | M) u(j)
3 dt+++++ 6° = 36 2 38
2 c—++++d 42 = 16 16 32
1 b—+c—+d 12+12=2 | 36 38
0 a-b-c-d 0 0 0
4 e++++++ 6° = 36 0 36
3 d—++++e 4° = 16 2 18
2 c—+d—+e 12+12=2 | 16 18
1 b-c-d-e 0 36 36
0 a-b-c-d-e 00

5 Fttttt+ 6° = 36 18 54
4 e—++++f 4% =16 0 16
3 d—+e—+f 12412=2 | 2 4
2 c—d-e-f 0 16 16
1 b-c—-d-e-f oo

6 ghi 0 4 4
5 f-ghi j 0 18 18
4 e—f-ghi oo

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.6 Beispiel 249

[Erlauterung zu den Tabellen:
O FuOr jeden Wert von j lauft i rGckwarts von j — 1 bis 0, solange u(i + 1, j) < oo ist.

O Die fettgedruckten Werte in der zweiten bzw. letzten Spalte entsprechen ()
bzw. u(J)).

O In der dritten Spalte symbolisieren Minuszeichen den Mindestabstand zwischen
zwei Wortern und Pluszeichen den zusatzlich benotigten Zwischenraum, der far
die Berechnung von u(i + 1, j) verwendet wird.

[Die optimalen Umbruchstellen sind: n =7, 2(7) =6, n(6) =3, (3) =0

[Damit ergibt sich folgende optimale Formatierung:

a b c
d e £
ghij

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.7 Laufzeit 250

6.3.7 Laufzeit

[Da zwischen je zwei Wortern ein Mindestabstand der Breite o, sein soll, haben auf

einer Zeile der Breite 4 maximal m = VJ +1 Woérter Platz.
0o

[Deshalb wird die innere Schleife zur Berechnung von u(j) nach héchstens m = O(1)
Durchlaufen beendet.

[Somit ist die Gesamtlaufzeit zur Berechnung von x(0), ..., u(n) gleich O(n)
(und nicht O(nz), wie in https://en.wikipedia.org/wiki/Line_wrap_and_word_wrap
behauptet wird).

[Zum Vergleich: Die Gesamtzahl der Moglichkeiten, n Worter auf Zeilen zu verteilen,
ist 2"1: Nach jedem Wort auBer dem letzten kann entweder ein Zeilenumbruch
erfolgen oder nicht.

[Also fuhrt die tabellengestltzte Programmierung zu einer immensen Laufzeit-
verbesserung.

5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz
6 Tabellengestlitzte Programmierung 6.3.8 Erweiterungsmdglichkeiten 251

6.3.8 Erweiterungsmoglichkeiten

[Trennung langer Worter
O Silbentrennung (mit unterschiedlich ,guten“ Trennstellen)
O Trennung vor oder nach bestimmten Zeichen (z. B. nach Schragstrichen in URLS)
O Trennung mathematischer Formeln

O Zusatzliche Strafpunkte flr einzelne Trennungen
oder mehrere aufeinanderfolgende Zeilen mit Trennungen

[Zeilen mit einem einzigen Wort noch ,harter bestrafen”
[Verbotene und bevorzugte Zeilenumbriiche

[Einen Absatz klnstlich um eine oder mehrere Zeilen verlangern, um

O ,Schusterjungen® und ,Hurenkinder* zu vermeiden

O alle Spalten auf der letzten Seite eines mehrspaltigen Texts gleich lang zu machen
[Aber: Auch der beste Algorithmus kann nicht ,zaubern®.

Manchmal muss man einen Text einfach umformulieren,
um einen storenden Umbruch zu vermeiden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 6.3 Blocksatz

6 Tabellengestlitzte Programmierung

6.3.8 Erweiterungsmdglichkeiten

252

derit in voluptate velit esse cillum dolore eu fugiat nulla pa-
riatur. Exceptenr sint occaccat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, comsectetur adipisicing elit,
sed do elusmod tempor incididunt ut labone et dolore magna
aliqua. Utenim ad minim veniam, quis nostrud exencitation
ullamen laboris nisi ut aliquip ex ca commodo consequat.
Dris ante irure dolor in reprehenderit in voluptate velit esse
cillum dolore en fugiat nulla pariatur

Excepteur sint oocaccat cupidatat non proident, sunt in
culpaqui officia deserunt maollitanim id est laborom. Lorem
ipsum dolor sit amet, consectetur adi pisicing elit, sed do ei-
usmod tempor incididunt ot labore et dolore magna aliqua.
Ut enim ad minim ventam, quis nostrod exercitation ullameo
laboris nisi utaliquip ex ea commodo consequat. Dais ante
irtire dolor in mprehenderit in voloptate velit esse allum do-
lore e fugiat nulla pariatur. Exceprenr sint occascat cupi-
datat non proident, sunt inculpa qui officia deserunt mollit
animidest laborum. Lorem ipsum dolor sitamet, consocte-
tur adipisicing elit, sed do ciusmod tempor inadidunt ot la-
bore et dolore magna aliqua.

Lt enim ad minim veniam, quis nostrod exencitation ul-
lameo laboris nisi utaliquip ex cacommodo consequat. Dhais
aute irure dolor in reprehenderit in voluptate velit esse cil-
lum dolore eu fuglat nolla pariatur. Excepteur sint occaocat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id estlaborom. Lorem ipsum dolor sitamet, con-
sectetur adipisicing elit, sed do eiusmod term por meididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullameo laboris. Dois aute irore
dolor in reprehenderit in voluptate velit esse cillum dolore
cu fugiat nulla pariatur. Excepteur sint oocaccat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

[Miese Leile ist ein Schusterjunge, aber es kommt noech

schlimmer: Diese ist ein Hurenkind.

Ut enim ad minim veniam, quis nostrod exercitation ul-
lamen laboris nisi utaliquip ex ca commodo consequat. Duais
aute irure dolor in reprehenderit in voluptate velit esse cil-
lum dolore eu fugiat nuolla pafawr. Excepteor sint occaccat
cupidatat non proident, sunt i colpa qui officia deserunt
maollit animid estlaborum. Lorem ipsum dolorsitamet, con
soctetur adipisicing clit, sed do ciusmod tempor imcididont
ut labore et dolore magna aliqua. Ut enim ad minim veniam,
qquis nostrud exencitation ullameo laboris mist ot aliquip ex
ca commodo consequat. Dois ante irure dolor in neprehen-
derit in voluptate velit esse cillum dolore eu fugiat nulla pa-
riatur

Excepteur sint oocaecat cupidatat non proident, sunt i
culpa qui officia deserunt mallit anim id est laborum.

Lorem ipsum dolor sit amet, comsectetur adipisicing elit,
sed dio eiusmod rempor incididunt ut labome et dolore magna
aliqua. Utenim ad minim veniam, quis nostrud exencitation
ullameo laboris nisi ut aliquip ex ea commodo consequat.
[Druis ante irure dolor in eprehenderit in voluptate velit esse
cillum dolore eu fugiat nolla pariatur. Excepteur sint occac-
cat cupidatat non proident, sunt in culpaqui officia deserumnt
maollit arim id est laborum.

Lorem ipsum dolor sit amet, comsectetur adipisicing elit,
seid do einsmod tempor incididunt ut labom et dolore magna
aliqua. Utenim ad minim veniam, quis nostrud exercitation
wllamen laboris nisi ur aliquip ex ea commodo comsequat.
[ruis ante irure dolor in eprehenderit in voluptate velit esse
cillum dolore eu fugiat nolla pariatur. Excepteur sint occac-
cat cupidatat non proident, sunt in culpa qui officia deserunt
muallit anim id est laborum. Lonem ipsum dolor sit amet, comn
soctetur adipisiang clit, sed do eiusmod tempor imcididunt
ut labore et dolore magna algua. Ut enim ad minim veniam,
quis nostrud exencitation ullameo laboris nisi ot aliquip ex
ea commodo consequat. Dois aute irure dolor in reprehen-

43

