5 C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.6 Kirzeste Wege (shortest paths)
5 Graphalgorithmen 5.6.1 Definitionen 188

5.6 Kurzeste Wege (shortest paths)
5.6.1 Definitionen

[ Gegeben sei ein (gerichteter oder ungerichteter) gewichteter Graph G = (V, E, p).

n
A Das Gewicht eines Wegs w = w, .. ., w, ist die Summe p(w) = ) p(w_¢, w) der
=1
Gewichte aller Kanten auf dem Weg.

[ Wenn es einen Weg von einem Knoten u zu einem Knoten v gibt, ist ein kdrzester
Weg von u nach v ein Weg von u nach v mit minimalem Gewicht.
(Weil ein Weg keinen Knoten mehrfach enthalten kann, kann es nur endlich viele
verschiedene Wege von u nach v geben, sodass das Minimum wohldefiniert ist.
Wenn es unendlich viele verschiedene Wege geben kdnnte, gabe es u. U. keinen mit
minimalem Gewicht.)

[ In diesem Fall ist der Abstand &u, v) von u nach v das Gewicht eines klrzesten
Wegs von u nach v. Andernfalls ist Ju, v) = .

[ Anmerkung: Da Kanten und Wege ein ,Gewicht” besitzen, misste man eigentlich von
Jeichtesten® statt von ,klrzesten® Wegen sprechen. Auch der Begriff des ,,Abstands*
passt eigentlich nicht zu dem des ,,Gewichts®. Trotzdem werden die Bezeichnungen
tblicherweise so verwendet.
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Beispiel

[ In diesem Graphen gilt zum Beispiel:

SA, B)=7
SC, A) =5
SA, E)=8E, A) = oo
SE,F)=8E,G)=0
JF,G)=8G, F)=-1
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5.6.2 Problemstellungen

[ Ein Knotenpaar:
Finde einen kirzesten Weg von einem bestimmten Startknoten s zu einem
bestimmten Zielknoten t.

O Fester Startknoten:
Finde jeweils einen kurzesten Weg von einem bestimmten Startknoten s zu allen

Knoten des Graphen.

[ Fester Zielknoten:
Finde jeweils einen kirzesten Weg von allen Knoten des Graphen zu einem
bestimmten Zielknoten t.

[ Alle Knotenpaare:
Finde jeweils einen klrzesten Weg von jedem Knoten des Graphen zu jedem
anderen.
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Anmerkungen

[ Das Problem mit festem Zielknoten lasst sich auf das Problem mit festem Startknoten
zurtckfuhren, indem man den transponierten Graphen betrachtet.

[ Es sind keine Algorithmen bekannt, die das Problem flr ein einzelnes Knotenpaar
effizienter 16sen als das Problem mit festem Startknoten.

[ Das Problem fir alle Knotenpaare lasst sich prinzipiell auf das Problem mit festem
Startknoten zurlckfihren, indem man jeden Knoten des Graphen einmal als Start-
knoten wahlt.

Hier gibt es jedoch spezielle Algorithmen, die das Problem flr alle Knotenpaare
effizienter l0sen.

[ Aufgrund dieser Beobachtungen werden im folgenden nur Algorithmen flr das
Problem mit festem Startknoten sowie solche fur alle Knotenpaare betrachtet.
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5.6.3 Hilfsmittel fuir das Problem mit festem Startknoten

[ Fur jeden Knoten v € V wird das Gewicht &Vv) des klrzesten bis jetzt gefundenen
Wegs vom Startknoten s zu v sowie der Vorganger =(v) von v auf diesem Weg
gespeichert.

[ Solange noch kein Weg von s nach v gefunden wurde, ist §v) = e und z(v) = L.

3 Initialisierung:
O Fur alle Knotenv € V: Setze §v) = o und #(v) = L.
O Setze dann &s) = 0.

1 Verwerten einer Kante von u nach v:

Wenn &u) + p(u, v) < &v) ist,
d. h. wenn der Weg von s nach v tber u kirzer als der klirzeste bis jetzt gefundene
Weg von s nach v ist:

Setze &v) = &u) + p(u, v) und #(v) = u,
d. h. speichere den Weg tber u als neuen kirzesten Weg nach v.
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5.6.4 Algorithmus von Bellman und Ford
Gegeben

[ Gewichteter Graph G = (V, E, p), Startknoten s € V
(Das heif3t, der Algorithmus 16st das Problem mit festem Startknoten.)

[ Einschrankung:
Der Graph darf keine negativen Zyklen enthalten (d. h. Zyklen w, ..., w, mit wy = w,,
n

deren Gewicht Y p(w_;, w;) negativ ist), die vom Startknoten s aus erreichbar sind.
=1

[ Die Einhaltung dieser Einschrankung wird vom Algorithmus selbst Gberpruft.
Wenn sie verletzt ist, bricht der Algorithmus ab.

[ Abgesehen davon, sind Kanten mit negativem Gewicht erlaubt.
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Algorithmus
1 Fur alle Knotenv € V: Setze §v) = o und #(v) = L.
Setze dann 4(s) = 0.

2 Wiederhole (|V| — 1)-mal:
FUr jede Kante (u, v) € E:
Verwerte die Kante (vgl. § 5.6.3).

3 Furjede Kante (u, v) € E:
Wenn &u) + p(u, v) < v):
Abbruch, weil der Graph einen von s aus erreichbaren negativen Zyklus enthalt.

Ergebnis

[ Wenn der Graph einen von s aus erreichbaren negativen Zyklus enthalt, bricht der
Algorithmus in Schritt 3 ab.

[ Andernfalls gilt nach Ausfihrung des Algorithmus fir jeden Knoten v € V'
O §v)=4&s, V)

O Wenn z{v) = L ist, ist zZ{v) der Vorganger von v auf einem kurzesten Weg von s
nach v.
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Laufzeit

3 Initialisierung (Schritt 1): O(|V|)

3 Eigentlicher Algorithmus (Schritt 2): O(| V| - |E]|)
3 Uberpriifung auf negative Zyklen (Schritt 3): O(| E |)
A Gesamtlaufzeit also: O(|V| - | E|)

Beispiel
[ Siehe §5.6.1.
Korrektheit

Definition

[ Ein Multiweg mit n Kanten von einem Knoten u zu einem Knoten v ist eine Folge von
Knoten w, ..., w, mit u = wy, Kanten von w,_; nach w; fir/ =1, ..., nund w, = v.
(Im Gegensatz zu einem Weg, darf ein Knoten in einem Multiweg auch mehrmals
vorkommen, d. h. ein Multiweg darf auch Zyklen enthalten.)

n
A Das Gewicht eines solchen Multiwegs w = w, ..., w, ist p(w) = Y p(w_q, W).
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Aussagen

1. Fdr jeden Knoten v € V gilt zu jedem Zeitpunkt entweder §v) =
oder &v) = p(w) fur einen Multiweg w vom Startknoten s zum Knoten v.

2. Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthalt,
gilt fir jeden Knoten v € V zu jedem Zeitpunkt: §v) = &s, v).

3. Nach dem n-ten Durchlauf der Schleife in Schritt 2 gilt fir jeden Knoten v € V':
Av) < p(w) fur jeden Multiweg w von s nach v mit n Kanten.
4. Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthalt, gilt:

a) Nach der Ausfuhrung von Schritt 2 des Algorithmus gilt fur jeden Knoten v € V'
aqv) = 4s, v)
b) Der Algorithmus bricht in Schritt 3 nicht ab.

5. Wenn G einen von s aus erreichbaren negativen Zyklus w = w, ..., w, enthal,
bricht der Algorithmus in Schritt 3 ab.
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Aussagen mit Beweisen
Aussage 1

O Fdr jeden Knoten v € V gilt zu jedem Zeitpunkt entweder §v) = o
oder &v) = p(w) far einen Multiweg w vom Startknoten s zum Knoten v.

Beweis durch vollstandige Induktion nach der Anzahl der bis jetzt verwerteten Kanten

[ Vor der ersten Kantenverwertung gilt:
O FOrv =s:dv) =0 = p(w) far den leeren Multiweg w von s nach s.
O F0r alle anderen Knoten v # s: §Vv) = co.

[ Wenn §v) bei der Verwertung einer Kante (u, v) in Schritt 2 verandert wird,
gilt anschlieBend: &v) = su) + p(u, v) = p(w) + p(u, v) = p(w’)

fir einen Multiweg w = s, ..., u, den es nach Induktionsvoraussetzung gibt,
und den Multiweg w’ = s, ..., u, v, der zusatzlich den Knoten v enthalt.

[ Far alle anderen Knoten v bleibt §v) unverandert.
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Aussage 2

[ Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthalt,
gilt fir jeden Knoten v € V' zu jedem Zeitpunkt: §v) = &s, v).

Beweis
[ Far §v) = « gilt trivialerweise &v) > §s, v), unabhangig vom Wert von §(s, v).
[ Fdr §v) < « gilt nach Aussage 1: §v) = p(w) flr einen Multiweg w von s nach v.

[ Far den Weg w’ von s nach v, der entsteht, wenn man aus dem Multiweg w eventuell
vorhandene Zyklen entfernt, gilt nach Definition von &(s, v): p(w’) > &S, V).

[ Da das Gewicht dieser Zyklen nach Voraussetzung nicht negativ ist, gilt insgesamt:
Av) = p(w) 2 p(w’) 2 &s, v).
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Aussage 3

[ Nach dem n-ten Durchlauf der Schleife in Schritt 2 gilt fir jeden Knotenv € V:
Av) < p(w) flr jeden Multiweg w von s nach v mit n Kanten.

Beweis durch vollstandige Induktion nach n

[ Induktionsanfang n =0

O Der einzige Multiweg mit 0 Kanten von s zu irgendeinem Knoten v
ist der leere Multiweg w von s nach s, flr den qilt: p(w) = 0.

O Also gilt fir v = s: &v) = 0 < p(w), wahrend flr Knoten v # s nichts zu zeigen ist.

[ Induktionsschrittn — n + 1

O Seiw =s, ..., u, Vv ein Multiweg von s nach v mit n + 1 Kanten
und w’ = s, ..., u dementsprechend ein Multiweg von s nach u mit n Kanten.

O Nach dem n-ten Durchlauf der Schleife gilt nach Induktionsvoraussetzung:
aqu) < p(w’).

O Im (n + 1)-ten Durchlauf der Schleife wird u. a. die Kante (u, v) verwertet,
sodass anschlieBend &v) < su) + p(u, v) < p(w’) + p(u, v) = p(w) qilt.

O Durch die Verwertung weiterer Kanten im selben oder spateren Durchlaufen wird
der Wert von §(v) eventuell noch kleiner, aber niemals groBer.
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Aussage 4

[ Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthalt, gilt:
a) Nach der Ausfuhrung von Schritt 2 des Algorithmus gilt fr jeden Knoten v € V':

aqv) = s, v)
b) Der Algorithmus bricht in Schritt 3 nicht ab.

Beweis

a) Wegen Aussage 2 genugt es zu zeigen,
dass §v) < &, v) fur jeden Knoten v € V gilt:

O Wenn §(s, v) = o ist, gilt dies trivialerweise fur jeden Wert §v).

O Wenn 4(s, v) < = ist, gibt es einen kurzesten Weg w von s nach v mit Gewicht
p(w) = &, v), der auch ein Multiweg mit maximal |V | — 1 Kanten ist
(weil ein Weg maximal |V | Knoten enthalten kann).

O Weil die Schleife nach Ausfihrung von Schritt 2 (|V | — 1)-mal durchlaufen wurde,
gilt deshalb nach Aussage 3: V) < p(w) = &S, V).

b) Wenn es eine Kante (u, v) € E gabe, fur die in Schritt 3 die Abbruchbedingung
au) + p(u, v) < §v) ertillt ist, dann wirde &v), das zu diesem Zeitpunkt nach Teil a
gleich &(s, v) ist, bel einer erneuten Verwertung dieser Kante weiter verkleinert
werden, was im Widerspruch zu Aussage 2 steht.
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Aussage 5

[ Wenn G einen von s aus erreichbaren negativen Zyklus w = wy, ..., w, enthalt,
bricht der Algorithmus in Schritt 3 ab.

Beweis

n
A Daw, ..., w, ein Zyklus ist, gilt wy = w, und deshalb S =) sw) = Y s(w_4).

n
=1 =1

[ Da der Zyklus von s aus erreichbar ist, gibt es flr jeden seiner Knoten w; einen
Weg w von s nach w mit maximal |V | — 1 Kanten.
Deshalb gilt nach Aussage 3: §w) < p(w) < « flr jeden Knoten w; des Zyklus,

n
und somit auch S = )’ §w) < .
=1
[ Annahme: In Schritt 3 gilt fur keine Kante (u, v) € E die Abbruchbedingung
au) + p(u, v) < §v), d. h. fur jede Kante (u, v) € E qilt: &v) < &u) + p(u, v).

[ Insbesondere gilt sw;) < &w_¢) + p(w_y, w) flr jede Kante (w_;, w) des Zyklus,
)

und somit: S = 3 8w;) < 3 (Aw_q) + pW_y, w)) = 3 dwi_4) +
i=1 i=1 i=1 1

pW_1, W) = S + p(w).

/

[ Daraus folgt wegen S < «: 0 < p(w). Widerspruch, da w ein negativer Zyklus ist.
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5.6.5 Algorithmus von Dijkstra
Gegeben

[ Gewichteter Graph G = (V, E, p), Startknoten s € V
(Das heif3t, der Algorithmus 16st das Problem mit festem Startknoten.)

[ Einschrankung:
Der Graph darf keine Kanten mit negativem Gewicht enthalten.

[ Die Einhaltung dieser Einschrankung wird vom Algorithmus nicht Gberpruft.
Wenn sie verletzt ist, ist das Ergebnis des Algorithmus undefiniert.
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Algorithmus
1 Fur alle Knotenv € V: Setze §v) = o und #(v) = L.
Setze dann 4(s) = 0.

2 FOr alle Knotenv € V:
FUge v mit Prioritat &v) in eine Minimum-Vorrangwarteschlange ein.

3 Solange die Warteschlange nicht leer ist:
1 Entnimm einen Knoten u mit minimaler Prioritat.
2 Fur jeden Nachfolger v von u, der sich noch in der Warteschlange befindet:
1 Verwerte die Kante (u, v) (vgl. §5.6.3).
2 Wenn §(v) dadurch erniedrigt wurde:

Erniedrige die Prioritat von v in der Warteschlange entsprechend.
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Ergebnis

[ Wenn der Graph keine Kanten mit negativem Gewicht enthalt, gilt nach Ausfihrung
des Algorithmus flr alle Knoten v € V:

O &v) = &s, v)

O Wenn #{v) = L ist, ist zZ{v) der Vorganger von v auf einem kurzesten Weg von s
nach v.

[ Andernfalls ist das Ergebnis des Algorithmus undefiniert.
Beispiel

7 Siehe §5.6.1.
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Laufzeit
3 Initialisierung (Schritt 1): O(|V|)

[ Operationen auf der Vorrangwarteschlange:
O |V |-mal Einflgen eines Knotens
O [V |-mal Test, ob die Warteschlange leer ist

O |V |-mal Entnehmen eines Knotens mit minimaler Prioritat

O | E|-mal Test, ob ein Knoten enthalten ist

O Maximal | E |-mal Erniedrigen der Prioritat eines Knotens
(Der Rumpf der inneren Schleife wird h6chstens | E |-mal ausgefihrt.)

Insgesamt O(| V| + | E|)

[ Laufzeit jeder solchen Operation: O(log |V |),
da die Warteschlange maximal |V | Eintrage enthalt.

A Gesamtlaufzeit somit: O((|V'| + |E|)log |V )
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Korrektheit

1.

Sei QQ die Menge der Knoten, die sich zu einem bestimmten Zeitpunkt noch in der
Warteschlange befinden, und P =V \ Q.

Am Ende jedes Durchlaufs durch die Schleife in Schritt 3 gilt: &v) < &u) + p(u, v) far
jeden Nachfolger v von u, der sich noch in der Warteschlange befindet.
(Dies folgt unmittelbar aus der Definition der Operation ,Verwerten*.)

Zum Zeitpunkt der Entnahme eines Knotens u aus der Warteschlange gilt:
Au) = &s, u). (Beweis siehe unten.)

Da &(u) fur Knoten u € P nicht mehr verandert wird und &(v) fir Knoten v € Q spater
hochstens noch verkleinert wird, gelten die Aussagen 2 und 3 auch zu jedem
spateren Zeitpunk.

Damit gilt insbesondere nach Ausfuhrung des Algorithmus:
Au) = &, u) far jeden Knotenu € V.

Beweis von Aussage 3 durch Induktion nach der Anzahl der Schleifendurchlaufe:

[ Zum Zeitpunkt der Entnahme von u = s qilt: §(s) =0 = &S, S)

[ Zum Zeitpunkt der Entnahme eines anderen Knotens u qilt:
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[ Da es keine negativen Kantengewichte und somit auch keine negativen Zyklen gibt,
gilt nach Aussage 2 in §5.6.4: &u) > &S, u).

[ Wenn u von s aus nicht erreichbar ist, gilt somit: s(u) > &S, U) = = = §u) = &S, U).

[ Wenn u von s aus erreichbar ist, gibt es einen kiirzesten Wegw =s,...,uvon s
nach u mit Gewicht p(w) = &s, u).

[ Sei p der letzte Knoten auf diesem Weg, fur den p € P gilt (eventuell ist p = s),
und g der nachste Knoten auf diesem Weg (eventuell ist g = u),
d. h. g ist ein Nachfolger von p, und es gilt g € Q.

3 Somit gilt: &s, u) = p(w) =p(S,...,p,q,...,Uu)=p(S, ..., p)+p(p,q)+p(q, ..., U) (f)

p(s, ..., p)+ p(p, q) (g) as, p) + p(p, q) 5 aAp) + p(p, q)

> &Qq) = &u), denn:
S 5 (o) (6)5( )

QO

o(q, ..., u) 20, da es keine negativen Kantengewichte gibt

O

)
) p(s, ..., p)=&s, p)far jeden Weg von s nach p

) Induktionsvoraussetzung flr den Knoten p zusammen mit Aussage 4
)

o O

Aussage 2 und 4
e) u ist der Knoten mit minimaler Prioritat, d. h. Ju) < &q) fur alle g € Q

[ Damit gilt einerseits s(u) > &s, u) und andererseits Ju) < &S, u) und somit

su) = &s, u).
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5.6.6 Algorithmus von Floyd und Warshall
Gegeben

[ Gewichteter Graph G = (V, E, p)
(Das heif3t, der Algorithmus I6st das Problem fir alle Knotenpaare.)

[ Einschrankung: Der Graph darf keine negativen Zyklen enthalten.

[ Die Einhaltung dieser Einschrankung wird vom Algorithmus nicht Uberpruft.
Wenn sie verletzt ist, ist das Ergebnis des Algorithmus undefiniert.

[ Abgesehen davon, sind Kanten mit negativem Gewicht erlaubt.

Definitionen

3 Zur Vereinfachung der Notation sei die Knotenmenge des Graphen V = {1, ..., m}.

A Fark =0,..., mseiein Wegvonu nachvviak einWegw, ...,w, mtwy=u,w,=Vv
und ws, ..., w,_1 < k, d.h. alle Zwischenknoten (sofern es welche gibt) gehGren zur

Menge {1, ..., k} (die fUr k = 0 leer ist).
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A Fiork =0, ..., mundu, v €V sei

O A(u, v) entweder das Gewicht eines kirzesten Wegs von u nach v via k
oder « (falls es keinen solchen Weg gibt)

O Il (u, v) entweder der Vorganger von v auf diesem Weg oder L.

Rekursionsgleichungen

3 Fir k =0 qilt:
Ag(u, v) = | Ty(u, v) = wenn
0 1 u=v
plu, v) u uzvund(u,v) e Ebzw. {u,v} e E
oo 1 sonst

A (U, V) = I, (u, v) = wenn
Ap_1(U, V) S A4 (U, K)+A_(k, V)
Ak—1 (U, V) > Ak—'l (U, k) + Ak—1 (k, V)
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Begrundung

Mit den Bezeichnungen d = A, (u, v), d; = A,_1(u, v)und &b = A, _1(U, k) + A,_¢(k, V)
gelten folgende Aussagen:

1. d=d, oderd =d,
Beweis:

O Wenn es keinen Weg von u nach v via k gibt, ist d = .
In diesem Fall gibt es auch keinen Weg von u nach v via k — 1, d. h. es ist auch
d, = .o und somit d = d,.

O Wenn es einen kurzesten Weg von u nach v via k (mit Gewicht d) gibt und dieser
den Knoten k nicht enthalt, stimmt er mit einem kirzesten Weg von u nach v
via k — 1 (mit Gewicht d;) Gberein, d. h. es gilt wiederum d = d,.

O Andernfalls besteht dieser Weg (mit Gewicht d) aus einem (eventuell leeren)
kUrzesten Teilweg von u nach k via k — 1 (mit Gewicht A,_;(u, k)) und einem
(eventuell leeren) klrzesten Teilweg von k nach v via k — 1 (mit Gewicht
A,_1(k,Vv)),d.h.esqiltd = d.

(Beachte: Jeder Teilweg eines kurzesten Wegs ist ebenfalls ein kirzester Weg,
sofern es keine negativen Zyklen gibt.)
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2. d =min(d,, &)
Anmerkung:
O Diese Aussage folgt nicht unmittelbar aus der vorigen Aussage 1!

O Wenn ein Graph einen negativen Zyklus enthalt, kann d = d; gelten, obwohl
d1 > dz |St

O Deshalb verwendet der folgende Beweis an einer entscheidenden Stelle die
Voraussetzung, dass der Graph keinen negativen Zyklus enthalt.

Beweis:

O Wenn d, = &, ist (insbesondere auch, wenn d, = d, = « ist), folgt die Behauptung
unmittelbar aus der vorigen Aussage 1.

O Wenn d; < @ ist (woraus insbesondere d, < « folgt), dann gibt es einen klrzesten
Weg von u nach v via k — 1 mit Gewicht d,, der auch ein Weg von u nach v via k
Ist.

Daraus folgt d < d;, und zusammen mit d; < & und Aussage 1:
d =d; =min(d;, &).
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Wenn d, < d; ist (woraus insbesondere o, < « folgt), dann gibt es einen kilrzesten
Weg von u nach k via k — 1 mit Gewicht A, _4(u, k) sowie einen kirzesten Weg
von k nach v via k — 1 mit Gewicht A,_4(k, v).

Wenn man diese Wege zusammensetzt, entsteht eine Route von u nach v
via k mit Gewicht d.

Annahme: Diese Route u, .. ., k, ..., v ist kein Weg, d. h. sie enthalt
(mindestens) einen Zyklus w, ..., w.

Da die Teilrouten u, ..., k und k, ..., v Wege sind, d. h. keinen Knoten
mehrfach enthalten, muss der Zyklus den Knoten k enthalten, d. h. die Route
mussu,...,. w,..., k,...,w,... vlauten.

Wenn man den Zyklus (bzw. die Zyklen) entfernt, entsteht somit ein Weg von u
nach v via k — 1 mit Gewicht < d,, da das Gewicht der Zyklen nicht negativ ist.

Zusammen mit & < d, ist dies ein Widerspruch dazu, dass d; das Gewicht
eines kurzesten Wegs von u nach v via k — 1 ist.

Also muss die 0. g. Route immer ein Weg von u nach v via k mit Gewicht @,
sein.

Daraus folgt d < &, und zusammen mit & < d; und Aussage 1:

d =ad, = min(d;, &).
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Praktische Berechnung

[ Zur Berechnung des Werts A, (u, v) in Zeile u und Spalte v der Matrix A, werden
neben dem korrespondierenden Wert A, _4(u, v) der ,vorigen® Matrix A,_; noch die
Werte A,_¢(u, k) und A,_4(k, v) benotigt, die sich in Spalte bzw. Zeile k dieser Matrix
befinden.

3 Diese Werte in Spalte und Zeile k bleiben beim Ubergang von A, _; zu A,
unverandert, denn es gilt:

O Firv = k (d. h. Spalte k):
Ar(u, v) =min(A,_1(U, v), A1 (U, K) + Ap_q(k, V)) =
= min(A,_; (U, K), Ax_ 1(u, K) + Ap_4(K, k)) =
= min(Ay_1 (U, K), Ax_1(u, k) +0) = Ay_4(u, k) = A4 (U, V)

O FOru =k (d.h. Zeile k):
Ag(u, v) =min(A,_¢ (U, v), A1 (U, K) + Ay_1(K, V)) =
= min(Ae_y (K, V), A1 (K, K) + Ay (K, V)) =
= min(A,_(k, v), 0+ Ay (K, V) = A4 (K, V) = A4 (U, V)

(Beachte: A,_4(k, k) = 0, weil ein kirzester Weg von k nach k immer Gewicht 0
besitzt.)

[ Somit kbnnen die Werte der Matrix A,_; (und analog IT,_4) jeweils gefahrlos durch die
korrespondierenden Werte der Matrix A, (und analog I1,) Uberschrieben werden.
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Algorithmus

1 Firu=1,...,m:
1 FOrv=1,..., m: Setze A(u, v) = o und I1(u, v) = L.
2 Fur jeden Nachfolger v von u: Setze A(u, v) = p(u, v) und Il(u, v) = u.
3 Setze A(u, u) =0 und IT(u, u) = L.
2 Furk=1,..., m:
Faru=1,..., mundv =1,..., m:
Wenn A(u, v) > A(u, k) + A(k, V):
Setze A(u, v) = AU, k) + A(k, v) und I1(u, v) = II(k, v).

Ergebnis

[ Nach Ausflhrung des Algorithmus gilt far alle Knoten u, v € V:

O A(u,Vv)=A,(u, v) =Gewicht eines kirzesten Wegs von u nach v via m =
Au, v) = Gewicht eines beliebigen kirzesten Wegs von u nach v,
falls ein solcher Weg existiert, andernfalls o

O Il(u,v)=1I1,(u, v) = Vorganger von v auf diesem Weg bzw. L
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Laufzeit
3 Offensichtlich O(m®°) = O(|V|3)
Beispiel

3 Siehe §5.6.1.
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5.6.7 Laufzeitvergleich

Fester Startknoten

[ Das Problem mit festem Startknoten kann mit folgenden Algorithmen gelost werden,
sofern die jeweilige Voraussetzung erfullt ist:

O Dijkstra, wenn es keine negativen Kantengewichte gibt

O Bellman-Ford,
wenn es keinen vom Startknoten aus erreichbaren negativen Zyklus gibt

O Floyd-Warshall, wenn es Uberhaupt keinen negativen Zyklus gibt

[ Die nachfolgende Tabelle zeigt die jeweiligen Laufzeiten im Vergleich

Algorithmus ; Laufzel 2
allgemein wenn |E| = |V| | wenn |E| = |V|
Dijkstra O((|V| +|E|)log |V]) | O(V[log|V]) | O[|V|®log|V])
Bellman-Ford | O(|V|-|E]) o(|V?) o(|V°)
Floyd-Warshall O(|V|3) O( V 3) O( "4 3)
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Alle Knotenpaare
[ Das Problem fir alle Knotenpaare kann mit folgenden Algorithmen gelost werden,
sofern die jeweilige Voraussetzung erfullt ist:
O |V|-mal Dijkstra, wenn es keine negativen Kantengewichte gibt
O |V|-mal Bellman-Ford, wenn es keinen negativen Zyklus gibt
O 1-mal Floyd-Warshall, wenn es keinen negativen Zyklus gibt
[ Die nachfolgende Tabelle zeigt die jeweiligen Gesamtlaufzeiten im Vergleich
Lautzeit
Algorith
gorithmus allgemein wenn |E| ~ |V| | wenn |E| ~ V|2
Dijkstra O(IV| (IV| +|E|)log [V]) | OIVIZlog|V]) | O(IV|®log|V|)
Bellman-Ford | O(|V|®-|E]) o(|V ) of|V %)
Floyd-Warshall O( V 3) O( V 3) O( 4 3)
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5.7 Das Problem des Handlungsreisenden

(Traveling Salesman Problem) oy
5 ) o
5.7.1 Problemstellung ; eSS~ P

Anschauliche Formulierung

[ Ein Vertreter einer Aalener Firma betreut -
Kunden in vielen Stadten Deutschlands. Berlin
_/ tsdarﬁ
3 Um ihnen ein neues Produkt vorzustellen, ‘\ \
muss er alle Kunden besuchen. ( “\
L Dresden

[ Die Distanz zwischen je zwei Stadten ist C
bekannt (z. B. Entfernungstabelle). r

[ Wie findet der Vertreter die kirzeste Tour,
um von Aalen aus jede Stadt genau einmal
zu besuchen und am Schluss wieder in
Aalen zu sein (d. h. eine Rundtour)?

/ Minchen
(‘\
:

\H/ASL]@\\%\«_ N ’mv’ )
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Mathematische Formulierung
Gegeben
[ Ungerichteter, gewichteter Graph G = (V, E, p)

A mit |V | = N Knoten,

A QY

M ZA L]

[ vollstandiger Kantenmenge
E={{u,v}|luveV}

[ und Gewichtsfunktion p: E — IR"

Gesucht

 Zyklus v, ..., w, Y4, der jeden Knoten des
Graphen genau einmal enthalt,

[ mit minimalem Gewicht,

N—1
A d.h. Y o(v, vq) + p(w, ¥) ist minimal

=1
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Anwendungsmaoglichkeiten

[ Routenplanung

[ Schaltungsentwurf/-verdrahtung

[ Umristen von Produktionsmaschinen

3 Usw.

[ Musteranwendung und Benchmark flr Approximationsverfahren

5.7.2 Exakte Losungsverfahren

[ Naiv: Alle Kombinationen ausprobieren: O(N!)

[ Verbesserung durch sog. dynamisches Programmieren: O(N2 : 2N)

[ Weitere Verbesserungen z. B. durch Ausnutzen geometrischer Eigenschaften

[ Trotzdem: Problem ist NP-schwierig,
d. h. nach heutigem Wissensstand nicht effizient I6sbar
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5.7.3 Approximationsverfahren
Grundprinzip

[ Finde effiziente Algorithmen,
die eine moglichst gute Ndherungslésung des Problems liefern

[ Betrachte zwei Parameter zum Vergleich von Verfahren:

O Laufzeit in Abhangigkeit von der Knotenzahl N

max. Gewicht der gefundenen Tour

O Qualitatsfaktor q = —z optimalen Tour

(g = 1 bei exakten Verfahren)

[ In der Regel wird die Dreiecksungleichung ausgenutzt:

plu,w)<p(u,v)+pv,w) fliralleu,v,w eV
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Das Nearest-Neighbour-Verfahren
[ Beginne mit dem Startknoten .

[ Wabhle als zweiten Knoten w den nachstgelegenen
Nachbarn von v (N — 1 Kandidaten).

[ Wahle als dritten Knoten y den nachstgelegenen
Nachbarn von » aus der Menge der
verbleibenden Knoten (N — 2 Kandidaten).

3 Usw.

[ Wahle als vorletzten Knoten v,_; den nachst-
gelegenen Nachbarn von v,_, aus der Menge der
verbleibenden Knoten (2 Kandidaten).

O Flge den letzten verbleibenden Knoten v, hinzu
(1 Kandidat).

[ Typisches Beispiel eines Nachstbest-Algorithmus
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Laufzeit
AN-D+(N=-2)+.. +2+1= (N‘Z”N - O(N?)
Qualitatsfaktor
_[logo N +1]

[ Allgemein: g(N) 5

7 Konkretz.B.: q(10)=2.5 q(100)=4 q(1000)=5.5 q(10°)=10.5
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Das Spannbaum-Verfahren

[ Konstruiere einen minimalen Spannbaum des
Graphen (schwarze Pfeile).

[ Konstruiere eine Tour, die jede Kante des
Spannbaums genau zweimal durchlauft,
einmal ,abwarts“ und einmal ,aufwarts”.

3 Uberspringe alle Knoten, die bereits besucht
wurden.
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Laufzeit

[ Konstruktion des minimalen Spannbaums mit dem Algorithmus von Prim:
O(|E|log|V]) = O(N?log N)

[ Durchlaufen des Spannbaums: O(N)

3 Insgesamt also: O(N®log N)

Qualitatsfaktor

O Loy < 2 Lyst (Dreiecksungleichung)

A Lyst < Lgt < Loy (jede Tour impliziert einen Spannbaum)
3 Somit: Lyoyr <2 Loy

A Also:q =2



