
5.6 Kürzeste Weg e (shor test paths)

5.6.1 Definitionen

❐ Gegeben sei ein (gerichteter oder ungerichteter) gewichteter Graph G = (V , E , ρ).

❐ Das Gewicht eines Wegs w = w0, . . ., wn ist die Summe ρ(w ) =
n

i=1
Σ ρ(wi −1, wi ) der

Gewichte aller Kanten auf dem Weg.

❐ Wenn es einen Weg von einem Knoten u zu einem Knoten v gibt, ist ein kürzester

Weg von u nach v ein Weg von u nach v mit minimalem Gewicht.
(Weil ein Weg keinen Knoten mehrfach enthalten kann, kann es nur endlich viele
verschiedene Wege von u nach v geben, sodass das Minimum wohldefinier t ist.
Wenn es unendlich viele verschiedene Wege geben könnte, gäbe es u. U. keinen mit
minimalem Gewicht.)

❐ In diesem Fall ist der Abstand δ(u , v ) von u nach v das Gewicht eines kürzesten
Wegs von u nach v . Ander nfalls ist δ(u , v ) = ∞.

❐ Anmer kung: Da Kanten und Wege ein „Gewicht“ besitzen, müsste man eigentlich von
„leichtesten“ statt von „kürzesten“ Wegen sprechen. Auch der Begriff des „Abstands“
passt eigentlich nicht zu dem des „Gewichts“. Trotzdem werden die Bezeichnungen
üblicherweise so verwendet.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.1 Definitionen 188



Beispiel

A B

CD

4

3

6
2

5

1

E

F

G

1

1

−1−1

❐ In diesem Graphen gilt zum Beispiel:

δ(A, B) = 7

δ(C , A) = 5

δ(A, E ) = δ(E , A) = ∞

δ(E , F ) = δ(E , G) = 0

δ(F , G) = δ(G, F ) = − 1

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.1 Definitionen 189



5.6.2 Problemstellung en

❐ Ein Knotenpaar:
Finde einen kürzesten Weg von einem bestimmten Startknoten s zu einem
bestimmten Zielknoten t .

❐ Fester Startknoten:
Finde jeweils einen kürzesten Weg von einem bestimmten Startknoten s zu allen
Knoten des Graphen.

❐ Fester Zielknoten:
Finde jeweils einen kürzesten Weg von allen Knoten des Graphen zu einem
bestimmten Zielknoten t .

❐ Alle Knotenpaare:
Finde jeweils einen kürzesten Weg von jedem Knoten des Graphen zu jedem
anderen.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.2 Problemstellungen 190



Anmerkung en

❐ Das Problem mit festem Zielknoten lässt sich auf das Problem mit festem Startknoten
zurückführen, indem man den transponier ten Graphen betrachtet.

❐ Es sind keine Algorithmen bekannt, die das Problem für ein einzelnes Knotenpaar
effizienter lösen als das Problem mit festem Startknoten.

❐ Das Problem für alle Knotenpaare lässt sich prinzipiell auf das Problem mit festem
Star tknoten zurückführen, indem man jeden Knoten des Graphen einmal als Start-
knoten wählt.
Hier gibt es jedoch spezielle Algorithmen, die das Problem für alle Knotenpaare
effizienter lösen.

❐ Aufgrund dieser Beobachtungen werden im folgenden nur Algorithmen für das
Problem mit festem Startknoten sowie solche für alle Knotenpaare betrachtet.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.2 Problemstellungen 191



5.6.3 Hilfsmittel für das Problem mit festem Startknoten

❐ Für jeden Knoten v ∈V wird das Gewicht δ(v ) des kürzesten bis jetzt gefundenen
Wegs vom Startknoten s zu v sowie der Vorgänger π(v ) von v auf diesem Weg
gespeicher t.

❐ Solange noch kein Weg von s nach v gefunden wurde, ist δ(v ) = ∞ und π(v ) = ⊥.

❐ Initialisier ung:

❍ Für alle Knoten v ∈V : Setze δ(v ) = ∞ und π(v ) = ⊥.

❍ Setze dann δ(s) = 0.

❐ Verwer ten einer Kante von u nach v :

Wenn δ(u) + ρ(u , v ) < δ(v ) ist,
d. h. wenn der Weg von s nach v über u kürzer als der kürzeste bis jetzt gefundene
Weg von s nach v ist:

Setze δ(v ) = δ(u) + ρ(u , v ) und π(v ) = u ,
d. h. speichere den Weg über u als neuen kürzesten Weg nach v .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.3 Hilfsmittel 192



5.6.4 Algorithmus von Bellman und Ford

Geg eben

❐ Gewichteter Graph G = (V , E , ρ), Star tknoten s ∈V

(Das heißt, der Algorithmus löst das Problem mit festem Startknoten.)

❐ Einschränkung:

Der Graph darf keine negativen Zyklen enthalten (d. h. Zyklen w0, . . ., wn mit w0 = wn ,

deren Gewicht
n

i=1
Σ ρ(wi −1, wi ) negativ ist), die vom Startknoten s aus erreichbar sind.

❐ Die Einhaltung dieser Einschränkung wird vom Algorithmus selbst überprüft.
Wenn sie ver letzt ist, bricht der Algorithmus ab.

❐ Abgesehen davon, sind Kanten mit negativem Gewicht erlaubt.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 193



Algorithmus

1 Für alle Knoten v ∈V : Setze δ(v ) = ∞ und π(v ) = ⊥.
Setze dann δ(s) = 0.

2 Wiederhole (V  − 1)-mal:
Für jede Kante (u , v ) ∈ E :
Verwer te die Kante (vgl. § 5.6.3).

3 Für jede Kante (u , v ) ∈ E :
Wenn δ(u) + ρ(u , v ) < δ(v ):
Abbr uch, weil der Graph einen von s aus erreichbaren negativen Zyklus enthält.

Ergebnis

❐ Wenn der Graph einen von s aus erreichbaren negativen Zyklus enthält, bricht der
Algor ithmus in Schritt 3 ab.

❐ Ander nfalls gilt nach Ausführ ung des Algorithmus für jeden Knoten v ∈V :

❍ δ(v ) = δ(s, v )

❍ Wenn π(v ) ≠ ⊥ ist, ist π(v ) der Vorgänger von v auf einem kürzesten Weg von s

nach v .

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 194



Laufz eit

❐ Initialisier ung (Schr itt 1): O(V )

❐ Eigentlicher Algorithmus (Schritt 2): O(V  ⋅ E )

❐ Über prüfung auf negative Zyklen (Schritt 3): O(E )

❐ Gesamtlaufzeit also: O(V  ⋅ E )

Beispiel

❐ Siehe § 5.6.1.

Korrektheit

Definition

❐ Ein Multiweg mit n Kanten von einem Knoten u zu einem Knoten v ist eine Folge von
Knoten w0, . . ., wn mit u = w0, Kanten von wi −1 nach wi für i = 1, . . ., n und wn = v .
(Im Gegensatz zu einem Weg, darf ein Knoten in einem Multiweg auch mehrmals
vorkommen, d. h. ein Multiweg darf auch Zyklen enthalten.)

❐ Das Gewicht eines solchen Multiwegs w = w0, . . ., wn ist ρ(w ) =
n

i=1
Σ ρ(wi −1, wi ).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 195



Aussagen

1. Für jeden Knoten v ∈V gilt zu jedem Zeitpunkt entweder δ(v ) = ∞
oder δ(v ) = ρ(w ) für einen Multiweg w vom Star tknoten s zum Knoten v .

2. Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthält,
gilt für jeden Knoten v ∈V zu jedem Zeitpunkt: δ(v ) ≥ δ(s, v ).

3. Nach dem n-ten Durchlauf der Schleife in Schr itt 2 gilt für jeden Knoten v ∈V :
δ(v ) ≤ ρ(w ) für jeden Multiweg w von s nach v mit n Kanten.

4. Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthält, gilt:

a) Nach der Ausführ ung von Schr itt 2 des Algorithmus gilt für jeden Knoten v ∈V :
δ(v ) = δ(s, v )

b) Der Algor ithmus bricht in Schritt 3 nicht ab.

5. Wenn G einen von s aus erreichbaren negativen Zyklus w = w0, . . ., wn enthält,
br icht der Algorithmus in Schritt 3 ab.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 196



Aussagen mit Beweisen

Aussage 1

❐ Für jeden Knoten v ∈V gilt zu jedem Zeitpunkt entweder δ(v ) = ∞
oder δ(v ) = ρ(w ) für einen Multiweg w vom Star tknoten s zum Knoten v .

Beweis durch vollständige Induktion nach der Anzahl der bis jetzt verwer teten Kanten

❐ Vor der ersten Kantenverwer tung gilt:

❍ Für v = s: δ(v ) = 0 = ρ(w ) für den leeren Multiweg w von s nach s.

❍ Für alle anderen Knoten v ≠ s: δ(v ) = ∞.

❐ Wenn δ(v ) bei der Verwer tung einer Kante (u , v ) in Schritt 2 veränder t wird,
gilt anschließend: δ(v ) = δ(u) + ρ(u , v ) = ρ(w ) + ρ(u , v ) = ρ(w ′)
für einen Multiweg w = s, . . ., u , den es nach Induktionsvoraussetzung gibt,
und den Multiweg w ′ = s, . . ., u , v , der zusätzlich den Knoten v enthält.

❐ Für alle anderen Knoten v bleibt δ(v ) unveränder t.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 197



Aussage 2

❐ Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthält,
gilt für jeden Knoten v ∈V zu jedem Zeitpunkt: δ(v ) ≥ δ(s, v ).

Beweis

❐ Für δ(v ) = ∞ gilt trivialerweise δ(v ) ≥ δ(s, v ), unabhängig vom Wer t von δ(s, v ).

❐ Für δ(v ) < ∞ gilt nach Aussage 1: δ(v ) = ρ(w ) für einen Multiweg w von s nach v .

❐ Für den Weg w ′ von s nach v , der entsteht, wenn man aus dem Multiweg w ev entuell
vorhandene Zyklen entfer nt, gilt nach Definition von δ(s, v ): ρ(w ′) ≥ δ(s, v ).

❐ Da das Gewicht dieser Zyklen nach Voraussetzung nicht negativ ist, gilt insgesamt:
δ(v ) = ρ(w ) ≥ ρ(w ′) ≥ δ(s, v ).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 198



Aussage 3

❐ Nach dem n-ten Durchlauf der Schleife in Schr itt 2 gilt für jeden Knoten v ∈V :
δ(v ) ≤ ρ(w ) für jeden Multiweg w von s nach v mit n Kanten.

Beweis durch vollständige Induktion nach n

❐ Induktionsanfang n = 0

❍ Der einzige Multiweg mit 0 Kanten von s zu irgendeinem Knoten v

ist der leere Multiweg w von s nach s, für den gilt: ρ(w ) = 0.

❍ Also gilt für v = s: δ(v ) = 0 ≤ ρ(w ), während für Knoten v ≠ s nichts zu zeigen ist.

❐ Induktionsschr itt n → n + 1

❍ Sei w = s, . . ., u , v ein Multiweg von s nach v mit n + 1 Kanten
und w ′ = s, . . ., u dementsprechend ein Multiweg von s nach u mit n Kanten.

❍ Nach dem n-ten Durchlauf der Schleife gilt nach Induktionsvoraussetzung:
δ(u) ≤ ρ(w ′).

❍ Im (n + 1)-ten Durchlauf der Schleife wird u. a. die Kante (u , v ) verwer tet,
sodass anschließend δ(v ) ≤ δ(u) + ρ(u , v ) ≤ ρ(w ′) + ρ(u , v ) = ρ(w ) gilt.

❍ Durch die Verwer tung weiterer Kanten im selben oder späteren Durchläufen wird
der Wer t von δ(v ) ev entuell noch kleiner, aber niemals größer.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 199



Aussage 4

❐ Wenn G keinen vom Startknoten s aus erreichbaren negativen Zyklus enthält, gilt:

a) Nach der Ausführ ung von Schr itt 2 des Algorithmus gilt für jeden Knoten v ∈V :
δ(v ) = δ(s, v )

b) Der Algor ithmus bricht in Schritt 3 nicht ab.

Beweis

a) Wegen Aussage 2 genügt es zu zeigen,
dass δ(v ) ≤ δ(s, v ) für jeden Knoten v ∈V gilt:

❍ Wenn δ(s, v ) = ∞ ist, gilt dies trivialerweise für jeden Wer t δ(v ).

❍ Wenn δ(s, v ) < ∞ ist, gibt es einen kürzesten Weg w von s nach v mit Gewicht
ρ(w ) = δ(s, v ), der auch ein Multiweg mit maximal V  − 1 Kanten ist
(weil ein Weg maximal V  Knoten enthalten kann).

❍ Weil die Schleife nach Ausführ ung von Schr itt 2 (V  − 1)-mal durchlaufen wurde,
gilt deshalb nach Aussage 3: δ(v ) ≤ ρ(w ) = δ(s, v ).

b) Wenn es eine Kante (u , v ) ∈ E gäbe, für die in Schritt 3 die Abbr uchbedingung
δ(u) + ρ(u , v ) < δ(v ) erfüllt ist, dann würde δ(v ), das zu diesem Zeitpunkt nach Teil a
gleich δ(s, v ) ist, bei einer erneuten Verwer tung dieser Kante weiter ver kleinert
werden, was im Widerspruch zu Aussage 2 steht.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 200



Aussage 5

❐ Wenn G einen von s aus erreichbaren negativen Zyklus w = w0, . . ., wn enthält,
br icht der Algorithmus in Schritt 3 ab.

Beweis

❐ Da w0, . . ., wn ein Zyklus ist, gilt w0 = wn und deshalb S =
n

i=1
Σ δ(wi ) =

n

i=1
Σ δ(wi −1).

❐ Da der Zyklus von s aus erreichbar ist, gibt es für jeden seiner Knoten wi einen
Weg w von s nach wi mit maximal V  − 1 Kanten.
Deshalb gilt nach Aussage 3: δ(wi ) ≤ ρ(w ) < ∞ für jeden Knoten wi des Zyklus,

und somit auch S =
n

i=1
Σ δ(wi ) < ∞.

❐ Annahme: In Schritt 3 gilt für keine Kante (u , v ) ∈ E die Abbr uchbedingung
δ(u) + ρ(u , v ) < δ(v ), d. h. für jede Kante (u , v ) ∈ E gilt: δ(v ) ≤ δ(u) + ρ(u , v ).

❐ Insbesondere gilt δ(wi ) ≤ δ(wi −1) + ρ(wi −1, wi ) für jede Kante (wi −1, wi ) des Zyklus,

und somit: S =
n

i=1
Σ δ(wi ) ≤

n

i=1
Σ (δ(wi −1) + ρ(wi −1, wi )) =

n

i=1
Σ δ(wi −1) +

n

i=1
Σ ρ(wi −1, wi ) = S + ρ(w ).

❐ Daraus folgt wegen S < ∞: 0 ≤ ρ(w ). Widerspr uch, da w ein negativer Zyklus ist.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.4 Algorithmus von Bellman und Ford 201



5.6.5 Algorithmus von Dijkstra

Geg eben

❐ Gewichteter Graph G = (V , E , ρ), Star tknoten s ∈V

(Das heißt, der Algorithmus löst das Problem mit festem Startknoten.)

❐ Einschränkung:
Der Graph darf keine Kanten mit negativem Gewicht enthalten.

❐ Die Einhaltung dieser Einschränkung wird vom Algorithmus nicht über prüft.
Wenn sie ver letzt ist, ist das Ergebnis des Algorithmus undefiniert.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 202



Algorithmus

1 Für alle Knoten v ∈V : Setze δ(v ) = ∞ und π(v ) = ⊥.
Setze dann δ(s) = 0.

2 Für alle Knoten v ∈V :
Füge v mit Prior ität δ(v ) in eine Minimum-Vorrangwar teschlange ein.

3 Solange die War teschlange nicht leer ist:

1 Entnimm einen Knoten u mit minimaler Prior ität.

2 Für jeden Nachfolger v von u , der sich noch in der War teschlange befindet:

1 Verwer te die Kante (u , v ) (vgl. § 5.6.3).

2 Wenn δ(v ) dadurch erniedr igt wurde:

Er niedrige die Prior ität von v in der War teschlange entsprechend.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 203



Ergebnis

❐ Wenn der Graph keine Kanten mit negativem Gewicht enthält, gilt nach Ausführ ung
des Algorithmus für alle Knoten v ∈V :

❍ δ(v ) = δ(s, v )

❍ Wenn π(v ) ≠ ⊥ ist, ist π(v ) der Vorgänger von v auf einem kürzesten Weg von s

nach v .

❐ Ander nfalls ist das Ergebnis des Algorithmus undefiniert.

Beispiel

❐ Siehe § 5.6.1.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 204



Laufz eit

❐ Initialisier ung (Schr itt 1): O(V )

❐ Operationen auf der Vorrangwar teschlange:

❍ V -mal Einfügen eines Knotens

❍ V -mal Test, ob die War teschlange leer ist

❍ V -mal Entnehmen eines Knotens mit minimaler Prior ität

❍ E -mal Test, ob ein Knoten enthalten ist

❍ Maximal E -mal Erniedr igen der Prior ität eines Knotens
(Der Rumpf der inneren Schleife wird höchstens E -mal ausgeführt.)

Insgesamt O(V  + E )

❐ Laufzeit jeder solchen Operation: O(log V ),
da die War teschlange maximal V  Einträge enthält.

❐ Gesamtlaufzeit somit: O((V  + E ) log V )

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 205



Korrektheit

1. Sei Q die Menge der Knoten, die sich zu einem bestimmten Zeitpunkt noch in der
Warteschlange befinden, und P = V \ Q .

2. Am Ende jedes Durchlaufs durch die Schleife in Schr itt 3 gilt: δ(v ) ≤ δ(u) + ρ(u , v ) für
jeden Nachfolger v von u , der sich noch in der War teschlange befindet.
(Dies folgt unmittelbar aus der Definition der Operation „Verwer ten“.)

3. Zum Zeitpunkt der Entnahme eines Knotens u aus der War teschlange gilt:
δ(u) = δ(s, u). (Beweis siehe unten.)

4. Da δ(u) für Knoten u ∈ P nicht mehr veränder t wird und δ(v ) für Knoten v ∈ Q später
höchstens noch ver kleinert wird, gelten die Aussagen 2 und 3 auch zu jedem
späteren Zeitpunkt.

5. Damit gilt insbesondere nach Ausführ ung des Algorithmus:
δ(u) = δ(s, u) für jeden Knoten u ∈V .

Beweis von Aussage 3 durch Induktion nach der Anzahl der Schleifendurchläufe:

❐ Zum Zeitpunkt der Entnahme von u = s gilt: δ(s) = 0 = δ(s, s)

❐ Zum Zeitpunkt der Entnahme eines anderen Knotens u gilt:

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 206



❐ Da es keine negativen Kantengewichte und somit auch keine negativen Zyklen gibt,
gilt nach Aussage 2 in § 5.6.4: δ(u) ≥ δ(s, u).

❐ Wenn u von s aus nicht erreichbar ist, gilt somit: δ(u) ≥ δ(s, u) = ∞ ⇒ δ(u) = δ(s, u).

❐ Wenn u von s aus erreichbar ist, gibt es einen kürzesten Weg w = s, . . ., u von s

nach u mit Gewicht ρ(w ) = δ(s, u).

❐ Sei p der letzte Knoten auf diesem Weg, für den p ∈ P gilt (eventuell ist p = s),
und q der nächste Knoten auf diesem Weg (eventuell ist q = u),
d. h. q ist ein Nachfolger von p, und es gilt q ∈ Q .

❐ Somit gilt: δ(s, u) = ρ(w ) = ρ(s, . . ., p, q , . . ., u) = ρ(s, . . ., p) + ρ(p, q) + ρ(q , . . ., u)
(a)
≥

ρ(s, . . ., p) + ρ(p, q)
(b)
≥ δ(s, p) + ρ(p, q)

(c)
= δ(p) + ρ(p, q)

(d)
≥ δ(q)

(e)
≥ δ(u), denn:

a) ρ(q , . . ., u) ≥ 0, da es keine negativen Kantengewichte gibt

b) ρ(s, . . ., p) ≥ δ(s, p) für jeden Weg von s nach p

c) Induktionsvoraussetzung für den Knoten p zusammen mit Aussage 4

d) Aussage 2 und 4

e) u ist der Knoten mit minimaler Prior ität, d. h. δ(u) ≤ δ(q) für alle q ∈ Q

❐ Damit gilt einerseits δ(u) ≥ δ(s, u) und andererseits δ(u) ≤ δ(s, u) und somit
δ(u) = δ(s, u).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.5 Algorithmus von Dijkstra 207



5.6.6 Algorithmus von Floyd und Warshall

Geg eben

❐ Gewichteter Graph G = (V , E , ρ)
(Das heißt, der Algorithmus löst das Problem für alle Knotenpaare.)

❐ Einschränkung: Der Graph darf keine negativen Zyklen enthalten.

❐ Die Einhaltung dieser Einschränkung wird vom Algorithmus nicht über prüft.
Wenn sie ver letzt ist, ist das Ergebnis des Algorithmus undefiniert.

❐ Abgesehen davon, sind Kanten mit negativem Gewicht erlaubt.

Definitionen

❐ Zur Vereinfachung der Notation sei die Knotenmenge des Graphen V = { 1, . . ., m }.

❐ Für k = 0, . . ., m sei ein Weg von u nach v via k ein Weg w0, . . ., wn mit w0 = u , wn = v

und w1, . . ., wn−1 ≤ k , d. h. alle Zwischenknoten (sofer n es welche gibt) gehören zur
Menge { 1, . . ., k } (die für k = 0 leer ist).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 208



❐ Für k = 0, . . ., m und u , v ∈V sei

❍ ∆k (u , v ) entweder das Gewicht eines kürzesten Wegs von u nach v via k

oder ∞ (falls es keinen solchen Weg gibt)

❍ Πk (u , v ) entweder der Vorgänger von v auf diesem Weg oder ⊥.

Rekursionsgleichung en

❐ Für k = 0 gilt:

∆0(u , v ) = Π0(u , v ) = wenn
0 ⊥ u = v

ρ(u , v ) u u ≠ v und (u , v ) ∈ E bzw. {u , v } ∈ E

∞ ⊥ sonst

❐ Für k = 1, . . ., m gilt:

∆k (u , v ) = Πk (u , v ) = wenn
∆k −1(u , v ) Πk −1(u , v ) ∆k −1(u , v ) ≤ ∆k −1(u , k ) + ∆k −1(k , v )
∆k −1(u , k ) + ∆k −1(k , v ) Πk −1(k , v ) ∆k −1(u , v ) > ∆k −1(u , k ) + ∆k −1(k , v )

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 209



Begründung

Mit den Bezeichnungen d = ∆k (u , v ), d1 = ∆k −1(u , v ) und d2 = ∆k −1(u , k ) + ∆k −1(k , v )
gelten folgende Aussagen:

1. d = d1 oder d = d2

Beweis:

❍ Wenn es keinen Weg von u nach v via k gibt, ist d = ∞.
In diesem Fall gibt es auch keinen Weg von u nach v via k − 1, d. h. es ist auch
d1 = ∞ und somit d = d1.

❍ Wenn es einen kürzesten Weg von u nach v via k (mit Gewicht d ) gibt und dieser
den Knoten k nicht enthält, stimmt er mit einem kürzesten Weg von u nach v

via k − 1 (mit Gewicht d1) überein, d. h. es gilt wiederum d = d1.

❍ Ander nfalls besteht dieser Weg (mit Gewicht d ) aus einem (eventuell leeren)
kürzesten Teilweg von u nach k via k − 1 (mit Gewicht ∆k −1(u , k )) und einem
(eventuell leeren) kürzesten Teilweg von k nach v via k − 1 (mit Gewicht
∆k −1(k , v )), d. h. es gilt d = d2.
(Beachte: Jeder Teilweg eines kürzesten Wegs ist ebenfalls ein kürzester Weg,
sofer n es keine negativen Zyklen gibt.)

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 210



2. d = min(d1, d2)

Anmer kung:

❍ Diese Aussage folgt nicht unmittelbar aus der vor igen Aussage 1!

❍ Wenn ein Graph einen negativen Zyklus enthält, kann d = d1 gelten, obwohl
d1 > d2 ist.

❍ Deshalb verwendet der folgende Beweis an einer entscheidenden Stelle die
Voraussetzung, dass der Graph keinen negativen Zyklus enthält.

Beweis:

❍ Wenn d1 = d2 ist (insbesondere auch, wenn d1 = d2 = ∞ ist), folgt die Behauptung
unmittelbar aus der vor igen Aussage 1.

❍ Wenn d1 < d2 ist (woraus insbesondere d1 < ∞ folgt), dann gibt es einen kürzesten
Weg von u nach v via k − 1 mit Gewicht d1, der auch ein Weg von u nach v via k

ist.
Daraus folgt d ≤ d1, und zusammen mit d1 < d2 und Aussage 1:
d = d1 = min(d1, d2).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 211



❍ Wenn d2 < d1 ist (woraus insbesondere d2 < ∞ folgt), dann gibt es einen kürzesten
Weg von u nach k via k − 1 mit Gewicht ∆k −1(u , k ) sowie einen kürzesten Weg
von k nach v via k − 1 mit Gewicht ∆k −1(k , v ).

-- Wenn man diese Wege zusammensetzt, entsteht eine Route von u nach v

via k mit Gewicht d2.

-- Annahme: Diese Route u , . . ., k , . . ., v ist kein Weg, d. h. sie enthält
(mindestens) einen Zyklus w , . . ., w .

-- Da die Teilrouten u , . . ., k und k , . . ., v Wege sind, d. h. keinen Knoten
mehrfach enthalten, muss der Zyklus den Knoten k enthalten, d. h. die Route
muss u , . . ., w , . . ., k , . . ., w , . . ., v lauten.

-- Wenn man den Zyklus (bzw. die Zyklen) entfer nt, entsteht somit ein Weg von u

nach v via k − 1 mit Gewicht ≤ d2, da das Gewicht der Zyklen nicht negativ ist.

-- Zusammen mit d2 < d1 ist dies ein Widerspruch dazu, dass d1 das Gewicht
eines kürzesten Wegs von u nach v via k − 1 ist.

-- Also muss die o. g. Route immer ein Weg von u nach v via k mit Gewicht d2
sein.

-- Daraus folgt d ≤ d2, und zusammen mit d2 < d1 und Aussage 1:
d = d2 = min(d1, d2).

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 212



Praktische Berechnung

❐ Zur Berechnung des Wer ts ∆k (u , v ) in Zeile u und Spalte v der Matrix ∆k werden
neben dem korrespondierenden Wer t ∆k −1(u , v ) der „vor igen“ Matr ix ∆k −1 noch die
Werte ∆k −1(u , k ) und ∆k −1(k , v ) benötigt, die sich in Spalte bzw. Zeile k dieser Matrix
befinden.

❐ Diese Wer te in Spalte und Zeile k bleiben beim Übergang von ∆k −1 zu ∆k

unveränder t, denn es gilt:

❍ Für v = k (d. h. Spalte k ):
∆k (u , v ) = min(∆k −1(u , v ), ∆k −1(u , k ) + ∆k −1(k , v )) =
= min(∆k −1(u , k ), ∆k −1(u , k ) + ∆k −1(k , k )) =
= min(∆k −1(u , k ), ∆k −1(u , k ) + 0) = ∆k −1(u , k ) = ∆k −1(u , v )

❍ Für u = k (d. h. Zeile k ):
∆k (u , v ) = min(∆k −1(u , v ), ∆k −1(u , k ) + ∆k −1(k , v )) =
= min(∆k −1(k , v ), ∆k −1(k , k ) + ∆k −1(k , v )) =
= min(∆k −1(k , v ), 0 + ∆k −1(k , v )) = ∆k −1(k , v ) = ∆k −1(u , v )

(Beachte: ∆k −1(k , k ) = 0, weil ein kürzester Weg von k nach k immer Gewicht 0
besitzt.)

❐ Somit können die Wer te der Matrix ∆k −1 (und analog Πk −1) jew eils gefahr los durch die
korrespondierenden Wer te der Matrix ∆k (und analog Πk ) überschr ieben werden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 213



Algorithmus

1 Für u = 1, . . ., m:

1 Für v = 1, . . ., m: Setze ∆(u , v ) = ∞ und Π(u , v ) = ⊥.

2 Für jeden Nachfolger v von u : Setze ∆(u , v ) = ρ(u , v ) und Π(u , v ) = u .

3 Setze ∆(u , u) = 0 und Π(u , u) = ⊥.

2 Für k = 1, . . ., m:

Für u = 1, . . ., m und v = 1, . . ., m:

Wenn ∆(u , v ) > ∆(u , k ) + ∆(k , v ):

Setze ∆(u , v ) = ∆(u , k ) + ∆(k , v ) und Π(u , v ) = Π(k , v ).

Ergebnis

❐ Nach Ausführ ung des Algorithmus gilt für alle Knoten u , v ∈V :

❍ ∆(u , v ) = ∆m(u , v ) = Gewicht eines kürzesten Wegs von u nach v via m =
δ(u , v ) = Gewicht eines beliebigen kürzesten Wegs von u nach v ,
falls ein solcher Weg existier t, ander nfalls ∞

❍ Π(u , v ) = Πm(u , v ) = Vorgänger von v auf diesem Weg bzw. ⊥

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 214



Laufz eit

❐ Offensichtlich O(m3) = O(V 
3)

Beispiel

❐ Siehe § 5.6.1.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.6 Algorithmus von Floyd und Warshall 215



5.6.7 Laufzeitvergleich

Fester Startknoten

❐ Das Problem mit festem Startknoten kann mit folgenden Algorithmen gelöst werden,
sofer n die jeweilige Voraussetzung erfüllt ist:

❍ Dijkstra, wenn es keine negativen Kantengewichte gibt

❍ Bellman-Ford,
wenn es keinen vom Startknoten aus erreichbaren negativen Zyklus gibt

❍ Floyd-Warshall, wenn es überhaupt keinen negativen Zyklus gibt

❐ Die nachfolgende Tabelle zeigt die jeweiligen Laufzeiten im Vergleich

Laufzeit

allgemein wenn E  ≈ V  wenn E  ≈ V 
2Algor ithmus

Dijkstra O((V  + E ) log V ) O(V  log V ) O(V 
2 log V )

Bellman-Ford O(V  ⋅ E ) O(V 
2) O(V 

3)
Floyd-Warshall O(V 

3) O(V 
3) O(V 

3)

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.7 Laufzeitvergleich 216



Alle Knotenpaare

❐ Das Problem für alle Knotenpaare kann mit folgenden Algorithmen gelöst werden,
sofer n die jeweilige Voraussetzung erfüllt ist:

❍ V -mal Dijkstra, wenn es keine negativen Kantengewichte gibt

❍ V -mal Bellman-Ford, wenn es keinen negativen Zyklus gibt

❍ 1-mal Floyd-Warshall, wenn es keinen negativen Zyklus gibt

❐ Die nachfolgende Tabelle zeigt die jeweiligen Gesamtlaufzeiten im Vergleich

Laufzeit

allgemein wenn E  ≈ V  wenn E  ≈ V 
2Algor ithmus

Dijkstra O(V  (V  + E ) log V ) O(V 
2 log V ) O(V 

3 log V )
Bellman-Ford O(V 

2 ⋅ E ) O(V 
3) O(V 

4)
Floyd-Warshall O(V 

3) O(V 
3) O(V 

3)

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.6 Kürzeste Wege (shortest paths)
5.6.7 Laufzeitvergleich 217



5.7 Das Problem des Handlungsreisenden
(Traveling Salesman Problem)

5.7.1 Problemstellung

Anschauliche Formulierung

Stuttgar t

München

Ber lin

Potsdam

Bremen
Hamburg

Wiesbaden

Schwer in

Hannover

Düsseldorf

Mainz

Saarbrücken

Dresden

Magdeburg

Kiel

Erfur t

Aalen

❐ Ein Ver treter einer Aalener Firma betreut
Kunden in vielen Städten Deutschlands.

❐ Um ihnen ein neues Produkt vorzustellen,
muss er alle Kunden besuchen.

❐ Die Distanz zwischen je zwei Städten ist
bekannt (z. B. Entfer nungstabelle).

❐ Wie findet der Ver treter die kürzeste Tour,
um von Aalen aus jede Stadt genau einmal
zu besuchen und am Schluss wieder in
Aalen zu sein (d. h. eine Rundtour)?

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.1 Problemstellung 218



Mathematische Formulierung

Geg eben

❐ Unger ichteter, gewichteter Graph G = (V , E , ρ)

❐ mit V  = N Knoten,

❐ vollständiger Kantenmenge
E = { {u , v } u , v ∈V }

❐ und Gewichtsfunktion ρ:E → IR+

Gesucht

❐ Zyklus v1, . . ., vN , v1, der jeden Knoten des
Graphen genau einmal enthält,

❐ mit minimalem Gewicht,

❐ d. h.
N−1

i=1
Σ ρ(vi , vi +1) + ρ(vN , v1) ist minimal

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.1 Problemstellung 219



Anwendungsmöglichkeiten

❐ Routenplanung

❐ Schaltungsentwurf/-verdrahtung

❐ Umrüsten von Produktionsmaschinen

❐ Usw.

❐ Musteranwendung und Benchmark für Approximationsverfahren

5.7.2 Exakte Lösungsverfahren

❐ Naiv: Alle Kombinationen ausprobieren: O(N !)

❐ Verbesser ung durch sog. dynamisches Programmieren: O(N 2 ⋅ 2N )

❐ Weitere Verbesser ungen z. B. durch Ausnutzen geometrischer Eigenschaften

❐ Trotzdem: Problem ist NP-schwier ig ,
d. h. nach heutigem Wissensstand nicht effizient lösbar

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.2 Exakte Lösungsverfahren 220



5.7.3 Approximationsverfahren

Grundprinzip

❐ Finde effiziente Algorithmen,
die eine möglichst gute Näher ungslösung des Problems liefer n

❐ Betrachte zwei Parameter zum Vergleich von Verfahren:

❍ Laufzeit in Abhängigkeit von der Knotenzahl N

❍ Qualitätsfaktor q =
max. Gewicht der gefundenen Tour

Gewicht einer optimalen Tour

(q = 1 bei exakten Verfahren)

❐ In der Regel wird die Dreiecksungleichung ausgenutzt:

ρ(u , w ) ≤ ρ(u , v ) + ρ(v , w ) für alle u , v , w ∈V

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.3 Approximationsverfahren 221



Das Nearest-Neighbour-Verfahren

❐ Beginne mit dem Startknoten v1.

❐ Wähle als zweiten Knoten v2 den nächstgelegenen
Nachbar n von v1 (N − 1 Kandidaten).

❐ Wähle als dritten Knoten v3 den nächstgelegenen
Nachbar n von v2 aus der Menge der
verbleibenden Knoten (N − 2 Kandidaten).

❐ Usw.

❐ Wähle als vor letzten Knoten vN−1 den nächst-
gelegenen Nachbarn von vN−2 aus der Menge der
verbleibenden Knoten (2 Kandidaten).

❐ Füge den letzten verbleibenden Knoten vN hinzu
(1 Kandidat).

❐ Typisches Beispiel eines Nächstbest-Algorithmus

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.3 Approximationsverfahren 222



Laufzeit

❐ (N − 1) + (N − 2) + . . . + 2 + 1 =
(N − 1) N

2
= O(N 2)

Qualitätsfaktor

❐ Allgemein: q(N ) = log2 N + 1
2

❐ Konkret z. B.: q(10) = 2. 5 q(100) = 4 q(1000) = 5. 5 q(106) = 10. 5

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.3 Approximationsverfahren 223



Das Spannbaum-Verfahren

❐ Konstr uiere einen minimalen Spannbaum des
Graphen (schwarze Pfeile).

❐ Konstr uiere eine Tour, die jede Kante des
Spannbaums genau zweimal durchläuft,
einmal „abwärts“ und einmal „aufwärts“.

❐ Überspr inge alle Knoten, die bereits besucht
wurden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.3 Approximationsverfahren 224



Laufzeit

❐ Konstr uktion des minimalen Spannbaums mit dem Algorithmus von Prim:
O(E  log V ) = O(N 2 log N )

❐ Durchlaufen des Spannbaums: O(N )

❐ Insgesamt also: O(N 2 log N )

Qualitätsfaktor

❐ LTour ≤ 2 LMST (Dreiecksungleichung)

❐ LMST ≤ LST ≤ LOpt (jede Tour impliziert einen Spannbaum)

❐ Somit: LTour ≤ 2 LOpt

❐ Also: q = 2

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026)
5 Graphalgor ithmen

5.7 Das Problem des Handlungsreisenden
5.7.3 Approximationsverfahren 225


