T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.1 Baume und Walder 1 60

5.5 Minimale Spannbaume und Geriiste
5.5.1 Baume und Walder

[Ein zusammenhangender Graph G = (V, E) heil3t Baum, wenn |E| = |V| — 1 qilt.
(Zu jedem Knoten auf3er der Wurzel gibt es genau eine Kante, die ihn mit seinem
Ubergeordneten Knoten verbindet. Je nach Art des Baums, konnen diese Kanten
ungerichtet, ,von oben nach unten® gerichtet oder ,von unten nach oben® gerichtet
sein. Bei einem ungerichteten Baum kann jeder Knoten die Rolle des Wurzelknotens
spielen.)

[Eine Menge von Baumen heifl3t Wald.

O Anmerkung: Fir jeden zusammenhangenden Graphen gilt: |E| > |V]| — 1.
Damit ist ein Baum ein zusammenhangender Graph mit moglichst wenig Kanten.

Alternative Definition

[Ein Graph ohne Schlingen heil3t Baum, wenn es zwischen je zwei Knoten genau eine
Verbindung gibt.

[Ein Graph ohne Schlingen heil3t Wald, wenn es zwischen je zwei Knoten hdchstens
eine Verbindung gibt.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.1 Baume und Walder 1 61

Anmerkung

3 Da ein ungerichteter Graph mit mindestens einer Kante {u, v} ={v, u} geman
§5.1.3 immer Zyklen u, v, u und v, u, v enthalt, ist die Charakterisierung eines
Baums als zusammenhangender, azyklischer Graph (vgl. Wikipedia) fur ungerichtete
Graphen falsch.

[Um solche ,unerwtnschten® Zyklen zu vermeiden, konnte man zusatzlich verlangen,
dass die Kanten auf einem Zyklus paarweise verschieden sind.

[Dann bestlinde jedoch ein feiner Unterschied zwischen einem ungerichteten Graphen
und dem entsprechenden gerichteten Graphen, in dem es zu jeder Kante auch die
entgegengesetzte Kante gibt: Der ungerichtete Graph konnte dann azyklisch sein,
der gerichtete Graph ware jedoch immer zyklisch (sofern es mindestens eine Kante

gibt).

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.1 Baume und Walder 1 62

Lemma

1. Wenn man aus einem Baum eine Kante entfernt, zerfallt er in zwei Baume.

2. Wenn man zwei Baume durch eine Kante verbindet, entsteht ein einziger Baum.

3. Wenn man zu einem Baum eine Kante von einem Knoten u zu einem Knoten v
hinzuflgt und gleichzeitig eine Kante auf der Verbindung von u nach v entfernt,
entsteht wieder ein Baum.

4. Wenn man zu einem Wald eine Kante von einem Knoten u zu einem Knoten v
hinzuflgt, die bereits miteinander verbunden sind, und gleichzeitig eine Kante auf

dieser Verbindung entfernt, entsteht wieder ein Wald mit gleich vielen Baumen.

Beweis jeweils mit der Definition, dass es in einem Baum zwischen je zwei Knoten
genau eine Verbindung gibt.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.2 Spannbaume und GerUste 1 63

5.5.2 Spannbaume und Geruste

[Ein Gertst oder Spannwald (spanning forest) eines ungerichteten Graphen
G=(V,E)istein Wald (V, F) mit F c E, der die gleichen Zusammenhangs-
komponenten wie G besitzt.

[Das heif3t:

O Ein Gerust eines Graphen enthalt alle Knoten des Graphen und eine moglichst
kleine Teilmenge seiner Kanten.

O Jeder Zusammenhangskomponente des Graphen entspricht ein Baum im GerUst.
O Insbesondere gibt es fiir jede Kante {u, v} € E des Graphen einen Weg im
GerUst von u nach v.

[Abklrzend wird auch die Kantenmenge F eines GeruUsts (V, F) als GerUst
bezeichnet.

[Wenn der Graph G zusammenhangend ist, ist jedes Gerlst von G ein Baum, der
dann als Spannbaum (spanning tree) von G bezeichnet wird.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.3 Minimale Spannbaume und GerUste 1 64

5.5.3 Minimale Spannbaume und Geruste

A

A

Ein gewichteter Graph G = (V, E, p) ist ein Graph (V, E) mit einer zugehorigen
Gewichtsfunktion p: E — IR, die jeder Kante e € E ein Gewicht p(e) € IR zuordnet.

Abklrzend wird auch p(u, v) statt p((u, v)) (Gewicht der gerichteten Kante (u, v)) bzw.
p({u, v}) (Gewicht der ungerichteten Kante {u, v }) geschrieben.

Sofern nichts anderes gesagt wird, sind prinzipiell auch negative Kantengewichte
zulassig.

Das Gewicht einer Kantenmenge F c E ist die Summe p(F) =) p(e) der Gewichte
ecF

aller Kanten e € F.

Ein Minimalgertst (oder minimales Gertst, minimaler Spannwald; minimum
spanning forest) eines ungerichteten, gewichteten Graphen G = (V, E, p) ist ein
GerUst F des Graphen mit minimalem Gewicht, d. h. p(F) < p(F’) fir jedes Gerust F’
von G.

Wenn der Graph zusammenhangend ist, ist jedes MinimalgerUst ein Baum, der dann
als minimaler Spannbaum (minimum spanning tree, MST) des Graphen bezeichnet
wird.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.5 Anwendungsbeispiele 165

5.5.4 Beispiel

Die roten Kanten bilden einen von zwei moglichen minimalen Spannbaumen des
Graphen.

5.5.5 Anwendungsbeispiele
[Verbindung elektrischer Bauteile mit moglichst wenig Draht

[Approximationsverfahren zur LOsung des Problems des Handlungsreisenden
(vgl. §5.7.3)

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.6 Schleifeninvarianten 1 66

5.5.6 Schleifeninvarianten
Definition

[Eine Schleifeninvariante ist eine Aussage, die an folgenden Stellen gilt:

O Vor Beginn einer Schleife

O Am Anfang und am Ende jedes Schleifendurchlaufs

O Nach Beendigung der Schleife

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.6 Schleifeninvarianten 1 67

Verwendung in Beweisen

[Um zu beweisen, dass eine bestimmte Aussage tatsachlich eine Schleifeninvariante
darstellt, gentgt es (ahnlich wie bei vollstandiger Induktion), zwei Dinge zu zeigen
(unter der Annahme, dass die Auswertung der Schleifenbedingung keine Neben-
effekte verursacht):

O Initialisierung:
Die Invariante gilt vor Beginn der Schleife.
(Dann gilt sie auch am Anfang des ersten Durchlaufs, sofern es Gberhaupt einen
Durchlauf gibt.)

O Aufrechterhaltung:
Wenn die Invariante am Anfang eines Durchlaufs gilt, dann gilt sie auch am Ende
dieses Durchlaufs (und damit auch am Anfang des nachsten Durchlaufs, sofern es
einen solchen gibt).
(Zusammen mit der Initialisierung folgt dann durch vollstandige Induktion, dass die
Invariante nach jedem Durchlauf gilt.)

[Daraus folgt dann automatisch:

O Terminierung:
Wenn die Schleife terminiert (was ggf. anderweitig gezeigt werden muss, sofern
es nicht offensichtlich ist), dann gilt die Invariante auch nach ihrer Beendigung.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.6 Schleifeninvarianten 1 68

Beispiel
int pow (int x, 1int n) {

int p =1, k = 0;
while (k < n) {

return p;

3 Um zu zeigen, dass diese Funktion flir n > 0 tatsachlich x" berechnet, kann die
Schleifeninvariante p = x* verwendet werden:

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.6 Schleifeninvarianten 1 69

O Initialisierung:

Vor Beginn der Schleife gilt: p =1 = x¥ = x¥

O Aufrechterhaltung:
Wenn die Aussage p = x* am Anfang eines Durchlaufs gilt, dann gilt am Ende
dieses Durchlaufs: p’ = p- x = x¥- x = x¥*1 = x¥.
Dabei bezeichnen p und k die Werte der entsprechenden Variablen am Anfang

des Durchlaufs, p” und k” ihre Werte am Ende des Durchlaufs.

O Terminierung:

Nach Beendigung der Schleife ist k = n (sofern n > 0 ist) und somit gilt:

p=xK=x"

Anmerkung

[for-Schleifen sind flr derartige Beweise aus mehreren Griinden schlecht geeignet:

O Die Veranderung der Laufvariablen erfolgt (je nach konkreter syntaktischer Form)
mehr oder weniger ,versteckt®.

O Vor Beginn und nach Beendigung der Schlieife existiert die Laufvariable meist gar
nicht.

Deshalb sollten for-Schleifen in aquivalente while-Schleifen umgeschrieben werden,
wenn die Laufvariable in der Schleifeninvariante gebraucht wird.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 70

5.5.7 Algorithmus von Kruskal

Gegeben

[Ungerichteter, gewichteter Graph G = (V, E, p)
Algorithmus

1 Setze F = Q.
2 Sortiere die Kantenmenge E nach aufsteigenden Gewichten.
3 Fir jede Kante {u, v} € E in dieser sortierten Reihenfolge:
Wenn die Knoten u und v noch nicht durch Kanten aus F verbunden sind:

Flige die Kante {u, v} zur Menge F hinzu.
Ergebnis

[Nach Ausfuhrung des Algorithmus ist die Kantenmenge F ein Minimalgerust von G
(das aus |V | — | F| Baumen besteht).

3 Wenn G zusammenhangend ist (d. h. wenn |V| — | F| =1 ist), ist F folglich ein
minimaler Spannbaum von G.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 71

Beispiel
A Siehe §5.5.4.
Korrektheit

1. Nachdem eine Kante {u, v} € E in Schritt 3 des Algorithmus verarbeitet wurde, sind
die Knoten u und v durch Kanten aus F verbunden.

2. Die Kantenmenge F ist zu jedem Zeitpunkt Teilmenge eines Minimalgerusts von G,
d. h. es gibt immer ein Minimalgertst M mit F < M.

3. Nach Ausfuhrung des Algorithmus ist die Kantenmenge F ein Minimalgerust von G.
Beweis von Aussage 1:

A Wenn u und v vor der Verarbeitung der Kante {u, v } bereits durch Kanten aus F
verbunden sind, ist nichts zu zeigen.

[Andernfalls wird die Kante zur Menge F hinzugefligt, sodass die Behauptung
anschlieBend erfullt ist.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 72

Beweis von Aussage 2 als Schleifeninvariante:

3 Initialisierung:
Vor Beginn der Schleife in Schritt 3 des Algorithmus ist F = &, und somit gilt trivialer-
weise F < M flr jedes Minimalgerist M.

[Aufrechterhaltung:

O

o O

Bevor in Schritt 3 eine Kante e = {u, v} zur Menge F hinzugefiigt wird, ist die
ursprungliche Menge F aufgrund der Invariante Teilmenge eines Minimal-
gerusts M.

Da M ein GerUst von G ist, gibt es in M einen Weg von u nach v.

Da u und v noch nicht durch Kanten aus F verbunden sind, muss es auf diesem
Weg mindestens eine Kante e” = {u’, v’} geben, deren Knoten u” und v’ ebenfalls
noch nicht durch Kanten aus F verbunden sind.

Insbesondere muss e” ¢ F und somit F — M\ {e’} gelten.

Deshalb gilt fir die neue Menge F'=F u{e}: FFcM\{e'}u{e} =M,
wobei M’ aufgrund des Lemmas in § 5.5.1 ebenfalls ein Gerust von G ist.

Da u” und v’ noch nicht durch Kanten aus F verbunden sind, wurde die Kante e’
wegen Aussage 1 vom Algorithmus noch nicht verarbeitet.

Da die Kanten nach aufsteigendem Gewicht verarbeitet werden, gilt folglich

p(e) < p(e’) und somit p(M’) = p(M) — p(€’) + p(€) < p(M).

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 73

O Da M bereits ein MinimalgerUst von G ist, muss somit auch M’ ein Minimalgerust
sein.

O Wegen F” ¢ M’ ist die neue Menge F” also wiederum Teilmenge eines Minimal-
gerusts von G.

Beweis von Aussage 3:

[Nach Aussage 2 gilt nach Ausfliihrung des Algorithmus:
F < M fir ein Minimalgerutst M von G.

3 Fir jede Kante {u, v} € M qilt:
O Nach Aussage 1 sind die Knoten v und v durch Kanten aus F verbunden.
O Wegen F < M sind v und v in M durch dieselben Kanten verbunden.

O Da es im Gerust M hochstens eine Verbindung von u und v gibt,
kann diese Verbindung nur aus der Kante {u, v } bestehen.

O Also muss die Kante {u, v} auch zur Menge F gehdéren.

[Also gilt F = M, d.h. F ist ein MinimalgerUst von G.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 74

Hilfsdatenstruktur zur effizienten Implementierung

[Um effizient Gberprifen zu kdnnen, ob zwei Knoten u und v bereits durch Kanten
aus F verbunden sind, werden die Knoten des Graphen sukzessive zu Baumen
zusammengefasst (deren Kanten jedoch nichts mit den Kanten des Graphen G bzw.
des vom Algorithmus konstruierten MinimalgerUsts F zu tun haben).

[Fidr jeden Knoten v € V werden #{(v), «v) und &v) hierflr wie folgt definiert:

[Wenn v der Wurzelknoten eines Baums ist, ist z(v) = L.
Andernfalls ist z(v) der Vorganger von v im entsprechenden Baum.

[Durch Verfolgen der Vorgangerkette findet man zu einem Knoten v den zugehdérigen
v, falls z{v) = L

7(7(v)) sonst

[Far einen Knoten v ist &v) die Tiefe des Teilbaums mit Wurzel v.

Wurzelknoten #(v) =

3 Initialisierung der Hilfsdatenstruktur:
Zu Beginn des Algorithmus wird z(v) = 1L und §v) = O far jeden Knoten v € V gesetzt,
d. h. jeder Knoten stellt einen einelementigen Baum dar.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 75

3 Immer, wenn in Schritt 3 des Algorithmus eine Kante {u, v } zur Menge F hinzugefugt
wird, werden die Baume, zu denen u und v gehoren, zu einem einzigen Baum
zusammengefasst, indem einer der beiden (im Zweifelsfall der mit der geringeren
Tiefe) in den anderen eingehangt wird (auf diese Weise bleibt die Tiefe der Baume
moglichst klein), das heif3t:

O Seien u’ = f{u) und v’ = 7f{v) die Wurzelknoten der beiden Baume.

O Wenn §u’) < &v’): Setze »(u’) = v/,
d. h. hange den Baum mit Wurzel v’ in den Baum mit Wurzel v’ ein,
dessen Tiefe dabei unverandert bleibt.

O Wenn §u’) > &v’): Setze #(v’) = u’ (also gerade umgekehrt).

O Wenn §u’) = &v7): Setze ~(u”’) = v’ und §v’) = §v’) + 1,
d. h. hange den Baum mit Wurzel u” in den Baum mit Wurzel v’ ein,
dessen Tiefe dabei um eins groBer wird.

[Dann gilt offensichtlich zu jedem Zeitpunki:
Zwei Knoten u und v sind genau dann durch Kanten in F verbunden, wenn #{u) = «(v)
gilt, d. h. wenn u und v zum selben Baum gehoren.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 76

Optimierungsmaoglichkeit

[Jedesmal, wenn mittels «{v) der zu einem Knoten v gehérende Wurzelknoten r
bestimmt wurde, wird flr alle dabei durchlaufenen Knoten u ihr Vorganger z(u) auf r
gesetzt, d. h. diese Knoten werden direkt in den Wurzelknoten r eingehangt.

[Damit werden anschlieBende Berechnungen von (u) fur diese Knoten u. U. erheblich
beschleunigt.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 77

Laufzeit der Operationen auf der Hilfsdatenstruktur

Behauptung:

7 Ein Baum der Hilfsdatenstruktur mit Tiefe k enthalt mindestens 2% Knoten.
Beweis durch vollstandige Induktion nach k:

[Induktionsanfang k = O:

O Ein Baum mit Tiefe k = 0 enthalt genau 1 = 2° = 2 Knoten.

[Induktionsschritt kK — k + 1:

O Ein Baum mit Tiefe k + 1 ist urspringlich aus zwei Baumen mit Tiefe k entstanden
(Fall u’) = &v’) beim Zusammenfassen zweier Baume), zu dem spater eventuell
weitere Baume mit Tiefe < k hinzugefugt wurden (Falle §u’) < §v’) und
au’) > &v)).

O Deshalb enthalt ein Baum mit Tiefe k + 1 nach Induktionsvoraussetzung
mindestens 2 - 2% = 21 Knoten.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.7 Algorithmus von Kruskal 1 78

Daraus folgt:
[Ein Baum mit N Knoten hat héchstens Tiefe log, N.
[Die Lange der Vorgangerkette eines Knotens ist O(log |V |).

3 Sowohl der Test #{(u) = «v) zur Uberprifung, ob u und v bereits durch Kanten in F
verbunden sind, als auch das Zusammenfassen zweier Baume hat Laufzeit
O(log |V]).

Laufzeit des Algorithmus

[Sortieren der Kantenmenge E mit einem geeigneten Verfahren:
O(|E|log |E|) = O(|E|log | V|?) = O(|E| 2log |V|) = O(|E | log | V)
(FUr jeden Graphen gilt: |E| < [V |?))
[Operationen auf der Hilfsdatenstruktur:
| E'|-mal Test 7(u) = #«(v) und héchstens | E |-mal Zusammenfassen zweier Baume,
insgesamt also O(| E | log |V |).

O Gesamtlaufzeit somit: O(| E | log |V|)

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 79

5.5.8 Algorithmus von Prim

Gegeben

[Ungerichteter, gewichteter Graph G = (V, E, p)
Algorithmus

1 FOr jeden Knotenv € V':
1 FlUge v mit Prioritat &§v) = « in eine Minimum-Vorrangwarteschlange Q ein.
2 Setze #(v) = 1.
2 Solange Q nicht leer ist:
1 Entnimm einen Knoten u mit minimaler Prioritat.
2 FuUr jeden Nachfolger v von u:
Wenn v € Q und p(u, v) < §v):
1 Erniedrige die Prioritat &v) auf p(u, v).
2 Setze #(v) = u.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 80

Laufzeit

[Operationen auf der Vorrangwarteschlange:
O |V |-mal EinfGgen eines Knotens
V' |-mal Test, ob die Warteschlange leer ist

V |-mal Entnehmen eines Knotens mit minimaler Prioritat

o O O

E |-mal Test, ob ein Knoten enthalten ist
(Der Rumpf der inneren Schleife wird insgesamt | E |-mal ausgefihrt.)

O Maximal | E |-mal Erniedrigen der Prioritat eines Knotens
Insgesamt: O(|V | + |E|)

[Laufzeit jeder solchen Operation: O(log |V |),
da die Warteschlange maximal |V | Eintrdge enthalt.

A Gesamtlaufzeit somit: O((|V'| + |E|)log |V])

A Fidr zusammenhangende Graphen: O(|E | log |V |), da fir sie |E| = |V| — 1 gilt.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 81

Ergebnis

3 Nach Ausflhrung des Algorithmus ist die Kantenmenge F = {{#(v), v} | a(v) # L} ein
Minimalgerist von G (das aus |V | — | F| Baumen besteht).

3 Wenn G zusammenhangend ist (d. h. wenn |V| — | F| = 1 ist), ist F folglich ein
minimaler Spannbaum von G.

[Andernfalls kann der Algorithmus dies bei Bedarf feststellen:
Wenn mehr als einmal ein Knoten u mit §u) = «« entnommen wird, ist der Graph nicht

zusammenhangend.

Beispiel

A Siehe §5.5.4.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 82

Korrektheit

[Bezeichnungen (jeweils am Anfang eines Schleifendurchlaufs):
O Q = Menge aller Knoten, die sich noch in der Vorrangwarteschlange befinden
O P =V \Q = Menge aller Knoten, die bereits entnommen wurden

O PQ={{p,q}eE|peP,geQ}-=
Menge aller Kanten, die Knoten aus P mit Knoten aus Q verbinden

O F={{xv),v}|veP, av)=+L1}

[Schleifeninvariante fur Schritt 2 des Algorithmus:

1. Fur alle Knoten q € Q gilt entweder z(q) = L und &q) = o
oder 7(q) € P, {(q), g} € E und &q) = p(=(q), q)

2. Fir alle Kanten {p, g} € PQ qilt: &q) < p(p, q)

3. Die Kantenmenge F ist Teilmenge eines Minimalgerusts von G,
d. h. es gibt ein Minimalgerist M mit F c M

4. Far alle Knoten py, p, € P qilt:
Wenn p, und p, zur gleichen Zusammenhangskomponente von G gehoren,
dann sind sie durch Kanten in F verbunden.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 83

[Initialisierung: Vor Beginn der Schleife gilt:
1. 7(g) = Lund §q) =~ flr alle g € Q
2. P =Y und somit auch PQ =9
3. F =Y und somit F < M fur jedes Minimalgertst M
4. P=O
[Aufrechterhaltung: Wenn die Invariante am Anfang eines Schleifendurchlaufs gilt,
gilt am Ende dieses Durchlaufs:

1. Wenn z(v) und §v) in Schritt 2.2 verandert werden,
bleibt Teil 1 der Invariante jeweils erhalten.

2. Weil der Knoten u zur Menge P hinzukommt, muss Teil 2 der Invariante zusatzlich
fur alle Kanten {u, v} mitv € Q gelten.
Dies wird durch Schritt 2.2 sichergestellt.

Fir alle anderen Kanten { p, g} € PQ qilt Teil 2 der Invariante weiterhin, weil §q)
wahrend eines Schleifendurchlaufs nur kleiner, aber niemals gro3er werden kann.

3. Wenn z(u) = L ist, ist nichts zu zeigen,
weil die Menge F in diesem Fall unverandert bleibt.

Wenn #(u) # L ist, kommt die Kante e = { #n(u), u} zur Menge F hinzu, und es gilt:

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 84

O Aufgrund von Teil 3 der Invariante ist die urspringliche Menge F Teilmenge
eines Minimalgertsts M von G.

O Da M ein Gertist von G ist, gibt es in M einen Weg von ~{u) € P nach u € Q,
der mindestens eine Kante e’ = { p, q} € PQ enthalten muss.
(Beachte: u gehdrt noch zur urspringlichen Menge Q.)

O Esgilt: ple) = plrtu), u) = &u) = Aq) < pp. q) = p(e’), denn:

a) Teil 1 der Invariante
b) Es wird ein Knoten u mit minimaler Prioritat 6{u) enthommen
c) Teil 2 der Invariante

O Deshalb gilt fir M := M\ {e’} U {e}, das aufgrund des Lemmas in §5.5.1
ebenfalls ein Gerust von G ist:

p(M’) = p(M) — p(€) + p(e) < p(M).

O Da M bereits ein Minimalgerust von G ist, muss somit auch M’ ein Minimal-
gerust sein.

O Wegenqg ¢ Pgilte’={p, g} ¢ F (F enthélt nur Kanten { #(v), v} mitv € P
und 7(v) € P)und somit F'=F u{e}=F\{e'}u{elcM\{e}uie}=M,
d. h. die neue Menge F’ ist wiederum Teilmenge eines Minimalgerusts von G.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 85

4. Welil der Knoten u zur Menge P hinzukommt, muss Teil 4 der Invariante zusatzlich
far p; = u und jeden Knoten p, = p € P gelten.

Wenn §u) = oo ist:

O Weil ein Knoten u mit minimaler Prioritat s(u) entnommen wird,
ist §(q) = « flr alle Knoten g € Q.

O Deshalb gibt es wegen Teil 2 der Invariante zu diesem Zeitpunkt keine Kanten
in PQ und deshalb keinen Weg von p € P nach u € Q, d.h. p und u gehoren
nicht zur gleichen Zusammenhangskomponente.

Wenn §u) < o ist:
O Nach Teil 1 der Invariante gilt: z#(u) € P und {z(u), u} € E.

O Wenn p und u zur gleichen Zusammenhangskomponente gehoren, gehort
wegen { 7(u), u} € E auch #{u) € P zu dieser Zusammenhangskomponente,
das aufgrund von Teil 4 der Invariante bereits durch Kanten in F mit p
verbunden ist.

O Dadie Kante { #(u), u} zu F hinzukommt, sind dann auch p und u durch
Kanten in F verbunden.

Far alle Gbrigen Knoten py, p, € P gilt Teil 4 der Invariante weiterhin, weil die
Kantenmenge F wahrend eines Schleifendurchlaufs nur gro3er, aber niemals
kleiner werden kann.

C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Geriste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 86

[Terminierung: Nach Beendigung der Schleife gilt:
3. Die endgultige Kantenmenge F ist Teilmenge eines Minimalgerusts von G.

4. Fur alle Knoten p;, p, € P =V qilt:
Wenn p, und p, zur gleichen Zusammenhangskomponente von G gehoren,

dann sind sie durch Kanten in F verbunden.

Damit ist F ein vollstandiges Minimalgerust von G.

T C. Heinlein: Algorithmen und Datenstrukturen 2 (WS 2025/2026) 5.5 Minimale Spannbaume und Gertiste
5 Graphalgorithmen 5.5.8 Algorithmus von Prim 1 87

Modifizierter Algorithmus mit vorgegebenem Startknoten

Gegeben
[Ungerichteter, gewichteter Graph G = (V, E, p)
[Startknoten s € V

Algorithmus
1 Firjeden Knotenv € V \{s}:
1 Flge v mit Prioritat &§v) = « in eine Minimum-Vorrangwarteschlange Q ein.
2 Setze #(v) = 1.
Setze #(s) = L.
Setze u = s.
Solange Q nicht leer ist:
1 FUr jeden Nachfolger v von u:
Wennv € Q und p(u, v) < §v):
1 Erniedrige die Prioritat &v) auf p(u, v).
2 Setze 2(v) = u.
2 Entnimm einen Knoten u mit minimaler Prioritat.

