
5.5 Minimale Spannbäume und Gerüste

5.5.1 Bäume und Wälder

❐ Ein zusammenhängender Graph G = (V , E ) heißt Baum, wenn E  = V  − 1 gilt.
(Zu jedem Knoten außer der Wurzel gibt es genau eine Kante, die ihn mit seinem
übergeordneten Knoten verbindet. Je nach Art des Baums, können diese Kanten
unger ichtet, „von oben nach unten“ gerichtet oder „von unten nach oben“ gerichtet
sein. Bei einem ungerichteten Baum kann jeder Knoten die Rolle des Wurzelknotens
spielen.)

❐ Eine Menge von Bäumen heißt Wald .

❐ Anmer kung: Für jeden zusammenhängenden Graphen gilt: E  ≥ V  − 1.
Damit ist ein Baum ein zusammenhängender Graph mit möglichst wenig Kanten.

Alternative Definition

❐ Ein Graph ohne Schlingen heißt Baum, wenn es zwischen je zwei Knoten genau eine
Verbindung gibt.

❐ Ein Graph ohne Schlingen heißt Wald, wenn es zwischen je zwei Knoten höchstens
eine Verbindung gibt.
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Anmerkung

❐ Da ein ungerichteter Graph mit mindestens einer Kante {u , v } = {v , u } gemäß
§ 5.1.3 immer Zyklen u , v , u und v , u , v enthält, ist die Charakter isier ung eines
Baums als zusammenhängender, azyklischer Graph (vgl. Wikipedia) für ungerichtete
Graphen falsch.

❐ Um solche „unerwünschten“ Zyklen zu ver meiden, könnte man zusätzlich ver langen,
dass die Kanten auf einem Zyklus paarweise verschieden sind.

❐ Dann bestünde jedoch ein feiner Unterschied zwischen einem ungerichteten Graphen
und dem entsprechenden gerichteten Graphen, in dem es zu jeder Kante auch die
entgegengesetzte Kante gibt: Der ungerichtete Graph könnte dann azyklisch sein,
der gerichtete Graph wäre jedoch immer zyklisch (sofer n es mindestens eine Kante
gibt).
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Lemma

1. Wenn man aus einem Baum eine Kante entfer nt, zerfällt er in zwei Bäume.

2. Wenn man zwei Bäume durch eine Kante verbindet, entsteht ein einziger Baum.

3. Wenn man zu einem Baum eine Kante von einem Knoten u zu einem Knoten v

hinzufügt und gleichzeitig eine Kante auf der Verbindung von u nach v entfer nt,
entsteht wieder ein Baum.

4. Wenn man zu einem Wald eine Kante von einem Knoten u zu einem Knoten v

hinzufügt, die bereits miteinander verbunden sind, und gleichzeitig eine Kante auf
dieser Verbindung entfer nt, entsteht wieder ein Wald mit gleich vielen Bäumen.

Beweis jeweils mit der Definition, dass es in einem Baum zwischen je zwei Knoten
genau eine Verbindung gibt.
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5.5.2 Spannbäume und Gerüste

❐ Ein Gerüst oder Spannwald (spanning forest) eines ungerichteten Graphen
G = (V , E ) ist ein Wald (V , F ) mit F ⊆ E , der die gleichen Zusammenhangs-
komponenten wie G besitzt.

❐ Das heißt:

❍ Ein Gerüst eines Graphen enthält alle Knoten des Graphen und eine möglichst
kleine Teilmenge seiner Kanten.

❍ Jeder Zusammenhangskomponente des Graphen entspricht ein Baum im Gerüst.

❍ Insbesondere gibt es für jede Kante {u , v } ∈ E des Graphen einen Weg im
Gerüst von u nach v .

❐ Abkürzend wird auch die Kantenmenge F eines Gerüsts (V , F ) als Gerüst
bezeichnet.

❐ Wenn der Graph G zusammenhängend ist, ist jedes Gerüst von G ein Baum, der
dann als Spannbaum (spanning tree) von G bezeichnet wird.
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5.5.3 Minimale Spannbäume und Gerüste

❐ Ein gewichteter Graph G = (V , E , ρ) ist ein Graph (V , E ) mit einer zugehörigen
Gewichtsfunktion ρ:E → IR, die jeder Kante e ∈ E ein Gewicht ρ(e) ∈ IR zuordnet.

❐ Abkürzend wird auch ρ(u , v ) statt ρ((u , v )) (Gewicht der gerichteten Kante (u , v )) bzw.
ρ({u , v }) (Gewicht der ungerichteten Kante {u , v }) geschr ieben.

❐ Sofer n nichts anderes gesagt wird, sind prinzipiell auch negative Kantengewichte
zulässig.

❐ Das Gewicht einer Kantenmenge F ⊆ E ist die Summe ρ(F ) =
e ∈F
Σ ρ(e) der Gewichte

aller Kanten e ∈ F .

❐ Ein Minimalgerüst (oder minimales Gerüst , minimaler Spannwald ; minimum
spanning forest) eines ungerichteten, gewichteten Graphen G = (V , E , ρ) ist ein
Gerüst F des Graphen mit minimalem Gewicht, d. h. ρ(F ) ≤ ρ(F ′) für jedes Gerüst F ′
von G.

❐ Wenn der Graph zusammenhängend ist, ist jedes Minimalgerüst ein Baum, der dann
als minimaler Spannbaum (minimum spanning tree, MST) des Graphen bezeichnet
wird.
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5.5.4 Beispiel

A B C

DEF

3

1

5

8

7

2

5

5

7

84

Die roten Kanten bilden einen von zwei möglichen minimalen Spannbäumen des
Graphen.

5.5.5 Anwendungsbeispiele

❐ Verbindung elektrischer Bauteile mit möglichst wenig Draht

❐ Approximationsverfahren zur Lösung des Problems des Handlungsreisenden
(vgl. § 5.7.3)
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5.5.6 Schleifeninvarianten

Definition

❐ Eine Schleifeninvariante ist eine Aussage, die an folgenden Stellen gilt:

❍ Vor Beginn einer Schleife

❍ Am Anfang und am Ende jedes Schleifendurchlaufs

❍ Nach Beendigung der Schleife
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Verwendung in Beweisen

❐ Um zu beweisen, dass eine bestimmte Aussage tatsächlich eine Schleifeninvariante
darstellt, genügt es (ähnlich wie bei vollständiger Induktion), zwei Dinge zu zeigen
(unter der Annahme, dass die Auswertung der Schleifenbedingung keine Neben-
effekte ver ursacht):

❍ Initialisier ung:

Die Invariante gilt vor Beginn der Schleife.
(Dann gilt sie auch am Anfang des ersten Durchlaufs, sofer n es überhaupt einen
Durchlauf gibt.)

❍ Aufrechterhaltung:

Wenn die Invariante am Anfang eines Durchlaufs gilt, dann gilt sie auch am Ende
dieses Durchlaufs (und damit auch am Anfang des nächsten Durchlaufs, sofer n es
einen solchen gibt).
(Zusammen mit der Initialisierung folgt dann durch vollständige Induktion, dass die
Invariante nach jedem Durchlauf gilt.)

❐ Daraus folgt dann automatisch:

❍ Terminier ung:

Wenn die Schleife ter miniert (was ggf. anderweitig gezeigt werden muss, sofer n
es nicht offensichtlich ist), dann gilt die Invariante auch nach ihrer Beendigung.
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Beispiel

int pow (int x, int n) {
int p = 1, k = 0;
while (k < n) {
p = p * x;
k = k + 1;

}
return p;

}

❐ Um zu zeigen, dass diese Funktion für n ≥ 0 tatsächlich x n berechnet, kann die
Schleifeninvariante p = x k verwendet werden:
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❍ Initialisier ung:
Vor Beginn der Schleife gilt: p = 1 = x 0 = x k

❍ Aufrechterhaltung:
Wenn die Aussage p = x k am Anfang eines Durchlaufs gilt, dann gilt am Ende
dieses Durchlaufs: p ′ = p ⋅ x = x k ⋅ x = x k +1 = x k ′.
Dabei bezeichnen p und k die Wer te der entsprechenden Var iablen am Anfang
des Durchlaufs, p ′ und k ′ ihre Wer te am Ende des Durchlaufs.

❍ Terminier ung:
Nach Beendigung der Schleife ist k = n (sofer n n ≥ 0 ist) und somit gilt:
p = x k = x n .

Anmerkung

❐ for-Schleifen sind für derar tige Beweise aus mehreren Gründen schlecht geeignet:

❍ Die Veränder ung der Laufvar iablen erfolgt (je nach konkreter syntaktischer For m)
mehr oder weniger „versteckt“.

❍ Vor Beginn und nach Beendigung der Schleife existier t die Laufvar iable meist gar
nicht.

Deshalb sollten for-Schleifen in äquivalente while-Schleifen umgeschrieben werden,
wenn die Laufvar iable in der Schleifeninvariante gebraucht wird.
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5.5.7 Algorithmus von Kruskal

Geg eben

❐ Unger ichteter, gewichteter Graph G = (V , E , ρ)

Algorithmus

1 Setze F = ∅.

2 Sor tiere die Kantenmenge E nach aufsteigenden Gewichten.

3 Für jede Kante {u , v } ∈ E in dieser sortier ten Reihenfolge:

Wenn die Knoten u und v noch nicht durch Kanten aus F verbunden sind:

Füge die Kante {u , v } zur Menge F hinzu.

Ergebnis

❐ Nach Ausführ ung des Algorithmus ist die Kantenmenge F ein Minimalgerüst von G

(das aus V  − F  Bäumen besteht).

❐ Wenn G zusammenhängend ist (d. h. wenn V  − F  = 1 ist), ist F folglich ein
minimaler Spannbaum von G.
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Beispiel

❐ Siehe § 5.5.4.

Korrektheit

1. Nachdem eine Kante {u , v } ∈ E in Schritt 3 des Algorithmus verarbeitet wurde, sind
die Knoten u und v durch Kanten aus F verbunden.

2. Die Kantenmenge F ist zu jedem Zeitpunkt Teilmenge eines Minimalgerüsts von G,
d. h. es gibt immer ein Minimalgerüst M mit F ⊆ M .

3. Nach Ausführ ung des Algorithmus ist die Kantenmenge F ein Minimalgerüst von G.

Beweis von Aussage 1:

❐ Wenn u und v vor der Verarbeitung der Kante {u , v } bereits durch Kanten aus F

verbunden sind, ist nichts zu zeigen.

❐ Ander nfalls wird die Kante zur Menge F hinzugefügt, sodass die Behauptung
anschließend erfüllt ist.
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Beweis von Aussage 2 als Schleifeninvariante:

❐ Initialisier ung:
Vor Beginn der Schleife in Schr itt 3 des Algorithmus ist F = ∅, und somit gilt trivialer-
weise F ⊆ M für jedes Minimalgerüst M .

❐ Aufrechterhaltung:

❍ Bevor in Schr itt 3 eine Kante e = {u , v } zur Menge F hinzugefügt wird, ist die
ursprüngliche Menge F aufgrund der Invariante Teilmenge eines Minimal-
gerüsts M .

❍ Da M ein Gerüst von G ist, gibt es in M einen Weg von u nach v .

❍ Da u und v noch nicht durch Kanten aus F verbunden sind, muss es auf diesem
Weg mindestens eine Kante e′ = {u ′, v ′ } geben, deren Knoten u ′ und v ′ ebenfalls
noch nicht durch Kanten aus F verbunden sind.
Insbesondere muss e′ ∉ F und somit F ⊆ M \ {e′ } gelten.

❍ Deshalb gilt für die neue Menge F ′ = F ∪ {e }: F ′ ⊆ M \ {e′ } ∪ {e } =: M ′,
wobei M ′ aufgrund des Lemmas in § 5.5.1 ebenfalls ein Gerüst von G ist.

❍ Da u ′ und v ′ noch nicht durch Kanten aus F verbunden sind, wurde die Kante e′
wegen Aussage 1 vom Algorithmus noch nicht verarbeitet.
Da die Kanten nach aufsteigendem Gewicht verarbeitet werden, gilt folglich
ρ(e) ≤ ρ(e′) und somit ρ(M ′) = ρ(M ) − ρ(e′) + ρ(e) ≤ ρ(M ).
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❍ Da M bereits ein Minimalgerüst von G ist, muss somit auch M ′ ein Minimalgerüst
sein.

❍ Wegen F ′ ⊆ M ′ ist die neue Menge F ′ also wiederum Teilmenge eines Minimal-
gerüsts von G.

Beweis von Aussage 3:

❐ Nach Aussage 2 gilt nach Ausführ ung des Algorithmus:
F ⊆ M für ein Minimalgerüst M von G.

❐ Für jede Kante {u , v } ∈ M gilt:

❍ Nach Aussage 1 sind die Knoten u und v durch Kanten aus F verbunden.

❍ Wegen F ⊆ M sind u und v in M durch dieselben Kanten verbunden.

❍ Da es im Gerüst M höchstens eine Verbindung von u und v gibt,
kann diese Verbindung nur aus der Kante {u , v } bestehen.

❍ Also muss die Kante {u , v } auch zur Menge F gehören.

❐ Also gilt F = M , d. h. F ist ein Minimalgerüst von G.
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Hilfsdatenstruktur zur effizienten Implementierung

❐ Um effizient überprüfen zu können, ob zwei Knoten u und v bereits durch Kanten
aus F verbunden sind, werden die Knoten des Graphen sukzessive zu Bäumen
zusammengefasst (deren Kanten jedoch nichts mit den Kanten des Graphen G bzw.
des vom Algorithmus konstr uierten Minimalgerüsts F zu tun haben).

❐ Für jeden Knoten v ∈V werden π(v ), τ(v ) und δ(v ) hierfür wie folgt definiert:

❐ Wenn v der Wurzelknoten eines Baums ist, ist π(v ) = ⊥.
Ander nfalls ist π(v ) der Vorgänger von v im entsprechenden Baum.

❐ Durch Verfolgen der Vorgänger kette findet man zu einem Knoten v den zugehörigen

Wurzelknoten τ(v ) = {v ,
τ(π(v ))

falls π(v ) = ⊥
sonst

❐ Für einen Knoten v ist δ(v ) die Tiefe des Teilbaums mit Wurzel v .

❐ Initialisier ung der Hilfsdatenstruktur :
Zu Beginn des Algorithmus wird π(v ) = ⊥ und δ(v ) = 0 für jeden Knoten v ∈V gesetzt,
d. h. jeder Knoten stellt einen einelementigen Baum dar.
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❐ Immer, wenn in Schritt 3 des Algorithmus eine Kante {u , v } zur Menge F hinzugefügt
wird, werden die Bäume, zu denen u und v gehören, zu einem einzigen Baum
zusammengefasst, indem einer der beiden (im Zweifelsfall der mit der geringeren
Tiefe) in den anderen eingehängt wird (auf diese Weise bleibt die Tiefe der Bäume
möglichst klein), das heißt:

❍ Seien u ′ = τ(u) und v ′ = τ(v ) die Wurzelknoten der beiden Bäume.

❍ Wenn δ(u ′) < δ(v ′): Setze π(u ′) = v ′,
d. h. hänge den Baum mit Wurzel u ′ in den Baum mit Wurzel v ′ ein,
dessen Tiefe dabei unveränder t bleibt.

❍ Wenn δ(u ′) > δ(v ′): Setze π(v ′) = u ′ (also gerade umgekehr t).

❍ Wenn δ(u ′) = δ(v ′): Setze π(u ′) = v ′ und δ(v ′) = δ(v ′) + 1,
d. h. hänge den Baum mit Wurzel u ′ in den Baum mit Wurzel v ′ ein,
dessen Tiefe dabei um eins größer wird.

❐ Dann gilt offensichtlich zu jedem Zeitpunkt:
Zwei Knoten u und v sind genau dann durch Kanten in F verbunden, wenn τ(u) = τ(v )
gilt, d. h. wenn u und v zum selben Baum gehören.
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Optimier ungsmöglichkeit

❐ Jedesmal, wenn mittels τ(v ) der zu einem Knoten v gehörende Wurzelknoten r

bestimmt wurde, wird für alle dabei durchlaufenen Knoten u ihr Vorgänger π(u) auf r

gesetzt, d. h. diese Knoten werden direkt in den Wurzelknoten r eingehängt.

❐ Damit werden anschließende Berechnungen von τ(u) für diese Knoten u. U. erheblich
beschleunigt.
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Laufz eit der Operationen auf der Hilfsdatenstruktur

Behauptung:

❐ Ein Baum der Hilfsdatenstruktur mit Tiefe k enthält mindestens 2k Knoten.

Beweis durch vollständige Induktion nach k :

❐ Induktionsanfang k = 0:

❍ Ein Baum mit Tiefe k = 0 enthält genau 1 = 20 = 2k Knoten.

❐ Induktionsschr itt k → k + 1:

❍ Ein Baum mit Tiefe k + 1 ist ursprünglich aus zwei Bäumen mit Tiefe k entstanden
(Fall δ(u ′) = δ(v ′) beim Zusammenfassen zweier Bäume), zu dem später eventuell
weitere Bäume mit Tiefe ≤ k hinzugefügt wurden (Fälle δ(u ′) < δ(v ′) und
δ(u ′) > δ(v ′)).

❍ Deshalb enthält ein Baum mit Tiefe k + 1 nach Induktionsvoraussetzung
mindestens 2 ⋅ 2k = 2k +1 Knoten.
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Daraus folgt:

❐ Ein Baum mit N Knoten hat höchstens Tiefe log2 N .

❐ Die Länge der Vorgänger kette eines Knotens ist O(log V ).

❐ Sowohl der Test τ(u) = τ(v ) zur Überprüfung, ob u und v bereits durch Kanten in F

verbunden sind, als auch das Zusammenfassen zweier Bäume hat Laufzeit
O(log V ).

Laufz eit des Algorithmus

❐ Sor tieren der Kantenmenge E mit einem geeigneten Verfahren:
O(E  log E ) = O(E  log V 

2) = O(E  2 log V ) = O(E  log V )

(Für jeden Graphen gilt: E  ≤ V 
2.)

❐ Operationen auf der Hilfsdatenstruktur :
E -mal Test τ(u) = τ(v ) und höchstens E -mal Zusammenfassen zweier Bäume,
insgesamt also O(E  log V ).

❐ Gesamtlaufzeit somit: O(E  log V )
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5.5.8 Algorithmus von Prim

Geg eben

❐ Unger ichteter, gewichteter Graph G = (V , E , ρ)

Algorithmus

1 Für jeden Knoten v ∈V :

1 Füge v mit Prior ität δ(v ) = ∞ in eine Minimum-Vorrangwar teschlange Q ein.

2 Setze π(v ) = ⊥.

2 Solange Q nicht leer ist:

1 Entnimm einen Knoten u mit minimaler Prior ität.

2 Für jeden Nachfolger v von u :

Wenn v ∈ Q und ρ(u , v ) < δ(v ):

1 Erniedr ige die Prior ität δ(v ) auf ρ(u , v ).

2 Setze π(v ) = u .
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Laufz eit

❐ Operationen auf der Vorrangwar teschlange:

❍ V -mal Einfügen eines Knotens

❍ V -mal Test, ob die War teschlange leer ist

❍ V -mal Entnehmen eines Knotens mit minimaler Prior ität

❍ E -mal Test, ob ein Knoten enthalten ist
(Der Rumpf der inneren Schleife wird insgesamt E -mal ausgeführt.)

❍ Maximal E -mal Erniedr igen der Prior ität eines Knotens

Insgesamt: O(V  + E )

❐ Laufzeit jeder solchen Operation: O(log V ),
da die War teschlange maximal V  Einträge enthält.

❐ Gesamtlaufzeit somit: O((V  + E ) log V )

❐ Für zusammenhängende Graphen: O(E  log V ), da für sie E  ≥ V  − 1 gilt.
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Ergebnis

❐ Nach Ausführ ung des Algorithmus ist die Kantenmenge F = { { π(v ), v }  π(v ) ≠ ⊥ } ein
Minimalgerüst von G (das aus V  − F  Bäumen besteht).

❐ Wenn G zusammenhängend ist (d. h. wenn V  − F  = 1 ist), ist F folglich ein
minimaler Spannbaum von G.

❐ Ander nfalls kann der Algorithmus dies bei Bedarf feststellen:
Wenn mehr als einmal ein Knoten u mit δ(u) = ∞ entnommen wird, ist der Graph nicht
zusammenhängend.

Beispiel

❐ Siehe § 5.5.4.
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Korrektheit

❐ Bezeichnungen (jeweils am Anfang eines Schleifendurchlaufs):

❍ Q = Menge aller Knoten, die sich noch in der Vorrangwar teschlange befinden

❍ P = V \ Q = Menge aller Knoten, die bereits entnommen wurden

❍ PQ = { { p, q } ∈ E  p ∈ P , q ∈ Q } =
Menge aller Kanten, die Knoten aus P mit Knoten aus Q verbinden

❍ F = { { π(v ), v } v ∈ P , π(v ) ≠ ⊥ }

❐ Schleifeninvariante für Schritt 2 des Algorithmus:

1. Für alle Knoten q ∈ Q gilt entweder π(q) = ⊥ und δ(q) = ∞
oder π(q) ∈ P , { π(q), q } ∈ E und δ(q) = ρ(π(q), q)

2. Für alle Kanten { p, q } ∈ PQ gilt: δ(q) ≤ ρ(p, q)

3. Die Kantenmenge F ist Teilmenge eines Minimalgerüsts von G,
d. h. es gibt ein Minimalgerüst M mit F ⊆ M

4. Für alle Knoten p1, p2 ∈ P gilt:
Wenn p1 und p2 zur gleichen Zusammenhangskomponente von G gehören,
dann sind sie durch Kanten in F verbunden.
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❐ Initialisier ung: Vor Beginn der Schleife gilt:

1. π(q) = ⊥ und δ(q) = ∞ für alle q ∈ Q

2. P = ∅ und somit auch PQ = ∅

3. F = ∅ und somit F ⊆ M für jedes Minimalgerüst M

4. P = ∅

❐ Aufrechterhaltung: Wenn die Invariante am Anfang eines Schleifendurchlaufs gilt,
gilt am Ende dieses Durchlaufs:

1. Wenn π(v ) und δ(v ) in Schritt 2.2 veränder t werden,
bleibt Teil 1 der Invariante jeweils erhalten.

2. Weil der Knoten u zur Menge P hinzukommt, muss Teil 2 der Invariante zusätzlich
für alle Kanten {u , v } mit v ∈ Q gelten.
Dies wird durch Schritt 2.2 sichergestellt.

Für alle anderen Kanten { p, q } ∈ PQ gilt Teil 2 der Invariante weiterhin, weil δ(q)
während eines Schleifendurchlaufs nur kleiner, aber niemals größer werden kann.

3. Wenn π(u) = ⊥ ist, ist nichts zu zeigen,
weil die Menge F in diesem Fall unveränder t bleibt.

Wenn π(u) ≠ ⊥ ist, kommt die Kante e = { π(u), u } zur Menge F hinzu, und es gilt:
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❍ Aufgrund von Teil 3 der Invariante ist die ursprüngliche Menge F Teilmenge
eines Minimalgerüsts M von G.

❍ Da M ein Gerüst von G ist, gibt es in M einen Weg von π(u) ∈ P nach u ∈ Q ,
der mindestens eine Kante e′ = { p, q } ∈ PQ enthalten muss.
(Beachte: u gehör t noch zur ursprünglichen Menge Q .)

❍ Es gilt: ρ(e) = ρ(π(u), u)
(a)
= δ(u)

(b)
≤ δ(q)

(c)
≤ ρ(p, q) = ρ(e′), denn:

a) Teil 1 der Invariante

b) Es wird ein Knoten u mit minimaler Prior ität δ(u) entnommen

c) Teil 2 der Invariante

❍ Deshalb gilt für M ′ := M \ {e′ } ∪ {e }, das aufgrund des Lemmas in § 5.5.1
ebenfalls ein Gerüst von G ist:
ρ(M ′) = ρ(M ) − ρ(e′) + ρ(e) ≤ ρ(M ).

❍ Da M bereits ein Minimalgerüst von G ist, muss somit auch M ′ ein Minimal-
gerüst sein.

❍ Wegen q ∉ P gilt e′ = { p, q } ∉ F (F enthält nur Kanten { π(v ), v } mit v ∈ P

und π(v ) ∈ P ) und somit F ′ = F ∪ {e } = F \ {e′ } ∪ {e } ⊆ M \ {e′ } ∪ {e } = M ′,
d. h. die neue Menge F ′ ist wiederum Teilmenge eines Minimalgerüsts von G.
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4. Weil der Knoten u zur Menge P hinzukommt, muss Teil 4 der Invariante zusätzlich
für p1 = u und jeden Knoten p2 = p ∈ P gelten.

Wenn δ(u) = ∞ ist:

❍ Weil ein Knoten u mit minimaler Prior ität δ(u) entnommen wird,
ist δ(q) = ∞ für alle Knoten q ∈ Q .

❍ Deshalb gibt es wegen Teil 2 der Invariante zu diesem Zeitpunkt keine Kanten
in PQ und deshalb keinen Weg von p ∈ P nach u ∈ Q , d. h. p und u gehören
nicht zur gleichen Zusammenhangskomponente.

Wenn δ(u) < ∞ ist:

❍ Nach Teil 1 der Invariante gilt: π(u) ∈ P und { π(u), u } ∈ E .

❍ Wenn p und u zur gleichen Zusammenhangskomponente gehören, gehört
wegen { π(u), u } ∈ E auch π(u) ∈ P zu dieser Zusammenhangskomponente,
das aufgrund von Teil 4 der Invariante bereits durch Kanten in F mit p

verbunden ist.

❍ Da die Kante { π(u), u } zu F hinzukommt, sind dann auch p und u durch
Kanten in F verbunden.

Für alle übrigen Knoten p1, p2 ∈ P gilt Teil 4 der Invariante weiterhin, weil die
Kantenmenge F während eines Schleifendurchlaufs nur größer, aber niemals
kleiner werden kann.
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❐ Terminier ung: Nach Beendigung der Schleife gilt:

3. Die endgültige Kantenmenge F ist Teilmenge eines Minimalgerüsts von G.

4. Für alle Knoten p1, p2 ∈ P = V gilt:
Wenn p1 und p2 zur gleichen Zusammenhangskomponente von G gehören,
dann sind sie durch Kanten in F verbunden.

Damit ist F ein vollständiges Minimalgerüst von G.
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Modifizier ter Algorithmus mit vorgegebenem Startknoten

Gegeben

❐ Unger ichteter, gewichteter Graph G = (V , E , ρ)

❐ Star tknoten s ∈V

Algor ithmus

1 Für jeden Knoten v ∈V \ { s }:

1 Füge v mit Prior ität δ(v ) = ∞ in eine Minimum-Vorrangwar teschlange Q ein.

2 Setze π(v ) = ⊥.

2 Setze π(s) = ⊥.

3 Setze u = s.

4 Solange Q nicht leer ist:

1 Für jeden Nachfolger v von u :

Wenn v ∈ Q und ρ(u , v ) < δ(v ):

1 Erniedr ige die Prior ität δ(v ) auf ρ(u , v ).

2 Setze π(v ) = u .

2 Entnimm einen Knoten u mit minimaler Prior ität.
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