5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.1 Basic Principle 124

5 Operator Values

5.1 Operators as Parameter Values
5.1.1 Basic Principle

[If the type of a parameter is an operator type (i. €., an operator declaration, cf. §3.8.1)
— no matter whether the parameter is anonymous and/or implicit or not —, an
expression can be passed explicitly as an operand that returns a matching operator,

l. €., an operator which can approximately replace the operator (cf. § 3.9.4) declared in
the parameter type.

[In particular, it is possible to pass a constant that has previously been initialized with
a matching operator.

For that purpose, the rules for constant declarations mentioned in § 2.4 are extended
as follows:

If the type of the constant is an operator type, and the constant is not explicitly
initialized, it is not initialized with a new synthetic value, but rather with the operator
declared in the operator type. For example:

square: (x:1int) nlm -> (int = x * Xx)

Therefore, the value of the constant square is the operator > defined here.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.1 Basic Principle 1 25

[In contrast to § 3.11.2, only approximate replaceability is necessary when an operator
Is explicitly passed to a parameter, i. e., all names in the top level signature of the
operator and the corresponding parameter are ignored according to § 3.9.4, such that
an operator with different names, which might also appear at different positions in the
signature, might be passed, too. For example (cf. § 3.8.2):

print values of (f (int) -> (int)) from (xl:int) to (x2:int)
-> (int =
for x = x1 .. x2 do

print only Xx;
print only ’'-'; print only ’'>’;
print £ x

end

) ;

print values of square from 1 to 10

Even though the types of the constant square (i.e., (int) "“" —> (int)) and the
parameter £ (i.e., £ (int) —> (int)) have different names at different positions of

their top level signature, the operator square can be passed to the parameter,
because the parameter can be approximately replaced with the operator.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.1 Basic Principle 1 26

[In analogy to § 3.11.2, the passed operator might also be more general than the
parameter, for example (cf. §3.11.3):

generic square:

[(T:type)] (x:T) "°"

[(+ (T) "*" (T) —> (T))] —> (T = x * x);

print values of generic square from 1 to 10

The operator generic square can be passed to the parameter £, because every
correct application of the parameter is also a correct application of the operator with
the same type, provided the names of the parameter and the operator are ignored
(and there is a multiplication operator for the respective type T).

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.1 Basic Principle 127

[It is also possible — comparable to lambda expressions in other languages — to
declare the passed operator directly at the point where it is needed.
But because an operator declaration does not return the declared operator, but rather
its type, a constant declaration is still necessary, which might also be anonymous,
however. For example:

print values of : (x:1int) nZn -> (int = x * x) from 1 to 10

[To reduce the “syntactic overhead” even more, the names of the passed operator
might be omitted (because they are meaningless anyway) as well as its parameter
and result types (provided they can be deduced by compiler, which is possible in most
cases). For example:

print values of : (x:) —> (= x * x) from 1 to 10

The colon after the name of the parameter and the equals sign before the
implementation of the operator are still necessary, however, because otherwise the
parameter name could be interpreted as the type of an anonymous parameter, and
the implementation expression could be interpreted as the result type of the operator.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.2 Typical Examples from Functional ... 1 28

5.1.2 Typical Examples from Functional Programming

Map

[map xs using f applies the function or rather operator £ to all elements of the list xs
(cf. §4.3.4) and returns a new list containing the result values of the function
invocations:

[(X:type) (Y:type)]
map (xs:X*) using (f: £ (X) —> (Y)) —> (Y* =
if xs then f xs.head -> map xs.tail using f end

[For example:

Xs =1 > 2 ->3 ->4 -> 5 ->;
print map xXs using square; SS 1->4->9->16->25->
print map (xs) using : (x:) -> (= 2*x) $$ 2->4->6->8->10->

(Without the parentheses around xs, the last line could also be interpreted as the
declaration of a constant with the names print map xs using.)

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.2 Typical Examples from Functional ... 1 29

Filter

[filter xs using f applies the function £ to all elements of the list xs and returns a

new list containing all elements of xs for which the function invocation did not return
nil:

[(X:type) (Y:type)]
filter (xs:X*) using (f: £ (X) -> (Y)) —> (X* =
if xs then
h := xs.head;
r := £ h;
t := filter xs.tail using £f;
if r then h -=> t else t end
end

)

To make sure that the order of the invocations of £ is the same as the order of the list
elements, £ h must be executed before the recursive invocation of filter.

[For example:

print filter (xs) using : (x:) —> (= x —:— 2 = 0)

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.2 Typical Examples from Functional ... 1 30

Fold

[fold x and xs using £ combines the value x and the elements of the list xs left-
associatively by successive invocations of the binary function £ and returns the result
of the last invocation. If the list xs is empty, the value x is directly returned:

[(X:type)]
fold (x:X) and (xs:X*) using (f: £ (X) (X) —> (X)) —> (X =
if xs then fold f x xs.head and xs.tail using f else x end

)

[Accordingly, fold xs and x using combines the elements of the list xs and the
value x right-associatively by successive invocations of £ and returns the result of the
last invocation. If the list xs Is empty, the value x is directly returned again:

[(X:type)]
fold (xs:X*) and (x:X) using (f: £ (X) (X) -> (X)) —> (X =
if xs then f xs.head fold xs.tail and x using f else x end

)
[For example:

print fold 0 and xs using : (x:) (y:) —> (= x + Vy); $SS 15
print fold xs and 1 using : (x:) (y:) —> (= x * V) $S 120

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.1 Operators as Parameter Values
5 Operator Values 5.1.2 Typical Examples from Functional ... 1 31

[Difference between left and right fold:

print fold 0 and xs using : (x:) (y:) —> (= x + -Vy); $SS -15
print fold xs and 0 using : (x:) (y:) —> (= x + -y) $S 3

x + —y IS used instead of x - y, because the latter might also be interpreted as a
recursive application of the operator passed to fold to the operands x and -y.

Remark

[Because lists, as commonly in functional programming, are defined recursively here —
a list is either empty, or it consists of a first element head and arest list tail —, the
operators map, filter, and fold can be implemented recursively, too, which is also
typical for functional programming:

If the list is empty, the recursion ends, while the operator is recursively applied to the
rest list otherwise. The “actual” operation is executed only for the first element of the
current list in each recursive step.

[For very long lists, however, the recursion might cause a stack overflow because the
MOSTflexiPL compiler — in contrast to compilers of many functional programming
languages — does not automatically transform typical recursive patterns into
equivalent iterative code.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.2 Operators as Result Values
5 Operator Values 1 32

5.2 Operators as Result Values

[If the result type of an operator declaration is an operator type, the implementation of
the operator must return a matching operator, i. e., once again an operator that can
approximately replace the operator declared in the result type.

[This might, for example, be defined as a local operator, again combined with an
anonymous constant declaration. For example:

add (y:1int) —-> ((int) —-> (int) =
(x:int) -> (int = x + V)
)
For an int value y, add y returns an operator that maps an int value x to the int
value x + y.

[Possible use: (cf. §4.3.4,§4.3.4 und §5.1.2):

is (=1 > 2 > 3 —> 4 —> 5 —=>;
print map is using add 10 $$ 11->12->13->14->15->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.2 Operators as Result Values
5 Operator Values 1 33

To make add also usable for types other than int for which there is a matching
addition operator (for example rat, cf. the task about rational numbers), it might be
generalized as follows:

[(T:type) (+ (T) "+" (T) -> (T))]
add (y:T) -=> ((T) -> (T) =
(x:T) —> (T = x + v)
)
Possible use then:
rs :=1/2 -> 2/3 —> 3/4 —->;
print map rs using add 1/8 $S 5/8->19/24->7/8->

To make add even more generally usable (e. g., if there is an addition operator that
adds a rat and an int value and returns the result as a rat value), it can be defined
even more generically:

[(X:type) (Y:type) (Z:type) (+ (X) "+" (Y) —> (Z2))]
add (y:Y) —> ((X) -> (z) =

(x:X) => (2 = x + V)
)

Possible use then:

print map rs using add 5 $S 11/2->17/3->23/4->

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.2 Operators as Result Values
5 Operator Values 1 34

[Definition of mul in analogy to add:

[(X:type) (Y:type) (Z:type) (+ (X) "*" (YY) —> (Z))]
mul (y:Y) —> (=
(x:X) => (= x * vy)
)

The result type of mul is the type of the locally defined operator (i.e., (X) —> (2)),
which can be automatically deduced by the compiler in the same way as the result
type (z) of this local operator.

[Composition of functions:

[(X:type) (Y:type) (Z:type)]
(f (X) —> (Y)) before (g (Y) —> (Z2)) —> (=
(x:X) —> (= g £ x)

)

For a function £ that maps a value of type X to a value of type Y, and a function g that
maps a value of type Y to a value of type 7, £ before g returns a function that first
applies the function £ to a value of type X and afterwards the function g to the
resulting value.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.2 Operators as Result Values
5 Operator Values 1 35

[Possible use:

print map is using mul 2 before add 1; $$ 3->5->7->9->11->
print map rs using add 1/8 before mul 2/3 $$ 5/12->19/36->7/12->

[To allow combinations of multiple functions, ebeforee might be defined either left- or
right-associative:

excl : (int) —-> (int) before
(: (int) —> (int) before : (int) —-> (int)) end

[Possible use:

print map is using mul 2 before add 1 before mul 3
$$ 9->15->21->27->33->

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.1 Basic Principle 1 36

5.3 Operators as Variable Values
5.3.1 Basic Principle

[If the content type of a variable is an operator type, the variable might contain a
matching operator, i. e., once again an operator that can approximately replace the
operator defined in the content type. For example:

logger : (s:char*) -> (bool) ?

[The variable 1ogger might contain any operator with parameter type char* (cf.
§4.3.4 and §4.5) and result type bool.
The parameter name s is necessary, because otherwise (char*) -> (bool) might
also be interpreted as an application of the operator «—>e defined in §4.3.2, whose
operands are both surrounded with redundant parentheses.
Alternatively, the operator (char*) —> (bool) might be given an arbitrary name,
e.gd., log (char*) —> (bool).

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.1 Basic Principle 1 37

[For example:

simple logger: (msg:char*) —-> (bool =
print msg

) ;

colored logger: (msg:char*) —-> (bool =
esc := char 27;
print only esc -> "[31m";

print only msg;
print esc -> "[39m"

) i
logger =! 1if then simple logger else colored logger end

[The operator simple logger prints the string msg normally, while the operator
colored logger USES escape sequences to print it in red.
(The character sequence esc [3 1 m switches the foreground color of an ANSI-
compliant console to red, while esc [3 9 m switches back to the standard color. esc
IS the escape character with the decimal value 27.)
Depending on some run time condition, either the operator simple logger or the
operator colored logger is then stored in the variable 1ogger.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.1 Basic Principle 1 38

[The operator contained in a variable might, for example, be passed as a parameter
value to some other operator, for example:

(f (char*) -> (bool)) (s:char*) —-> (bool = f s);
?logger "log output”

The operator defined in the first line, whose signature consists of two parameters
only, applies the operator passed to the first parameter £ to the string passed to the
second parameter s.

Therefore, the operator that is currently stored in the variable 1ogger is applied to the
string "log output™" in the second line.

[The previously defined operator can also be defined generically:

[(X:type) (Y:type)] (£ (X) —-> (Y)) (x:X) —> (Y = £ x);
?logger "log output”

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.2 Further Possibilities 139

5.3.2 Further Possibilities

[Because operators can be stored in variables, they can also be stored, e.g., in
attributes of open types (cf. §4.3.2) or similar data structures (cf. §4.4).

[For example:

[(T:type)] observer => (T? -> (var:T?) -> (bool));

[(T:type)] observe (var:T?) with (£f: (T?) -> (bool)) —-> (bool =
var@observer =! £f;
true

)

[observer defines a generic attribute (cf. § 4.3.4) that attaches an operator of type
(var:T?) —> (bool) to every variable of type T>.
(Again, the parameter name var is necessary to make sure that the second arrow in
the expression T? -> (var:T?) —> (bool) unambiguously denotes an operator
declaration and thus an operator type and that it cannot again be interpreted as an
application of the arrow operator defined in §4.3.2.
However, the first arrow in this expression denotes just that arrow operator.)

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.2 Further Possibilities 140

[observe var with f then stores the operator £ in the attribute observer of the
variable var, for example:

X : 1int?;

observe (x) with
(var:1int?) -> (bool = print "observer for variable x")

[To achieve that an “observer” attached to a variable in that way is called for every
subsequent assignment to the variable, the predefined assignment operator =1
might be overridden (actually hidden) by a user-defined operator with the same
signature (also see §3.7.1):

[(T:type)] (var:T?) "=!!" (val:T) -> (T = var =! wval);
["["(T:type)"1"] (var:T?) "=!" (val:T) —-> (T =

var =!! wval;

var.observer var;

val

)

To enable the user-defined operator to invoke the predefined operator that it hides
itself, an “alias” for it with a different signature (¢=!! ¢ in that case) must be defined in
advance.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 5.3 Operators as Variable Values
5 Operator Values 5.3.2 Further Possibilities 141

[By that means, the operator that has been previously attached to the variable x with
observe x with ..., will be called for every subsequent assignment x =!

[To make the same observer usable for multiple different variables, it receives the
respective variable as a parameter value after it has been assigned a new value.

[If no observer has been attached to a variable var, var.observer returns nil, i.e., a
nil operator that does not have an implementation and whose invocation, therefore,
has no effect.

