
5 Operator Values

5.1 Operators as Parameter Values

5.1.1 Basic Principle

❐ If the type of a parameter is an operator type (i. e., an operator declaration, cf. § 3.8.1)

−− no matter whether the parameter is anonymous and/or implicit or not −−, an

expression can be passed explicitly as an operand that returns a matching operator,

i. e., an operator which can approximately replace the operator (cf. § 3.9.4) declared in

the parameter type.

❐ In particular, it is possible to pass a constant that has previously been initialized with

a matching operator.

For that purpose, the rules for constant declarations mentioned in § 2.4 are extended

as follows:

If the type of the constant is an operator type, and the constant is not explicitly

initialized, it is not initialized with a new synthetic value, but rather with the operator

declared in the operator type. For example:

square: (x:int) "2" -> (int = x * x)

Therefore, the value of the constant square is the operator •2 defined here.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.1 Basic Pr inciple 124

❐ In contrast to § 3.11.2, only approximate replaceability is necessary when an operator

is explicitly passed to a parameter, i. e., all names in the top level signature of the

operator and the corresponding parameter are ignored according to § 3.9.4, such that

an operator with different names, which might also appear at different positions in the

signature, might be passed, too. For example (cf. § 3.8.2):

print values of (f (int) -> (int)) from (x1:int) to (x2:int)
-> (int =
for x = x1 .. x2 do
print only x;
print only ’-’; print only ’>’;
print f x

end
);

print values of square from 1 to 10

Even though the types of the constant square (i. e., (int) "2" −> (int)) and the

parameter f (i. e., f (int) −> (int)) have different names at different positions of

their top level signature, the operator square can be passed to the parameter,

because the parameter can be approximately replaced with the operator.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.1 Basic Pr inciple 125

❐ In analogy to § 3.11.2, the passed operator might also be more general than the

parameter, for example (cf. § 3.11.3):

generic square:
[(T:type)] (x:T) "2" [(+ (T) "*" (T) -> (T))] -> (T = x * x);

print values of generic square from 1 to 10

The operator generic square can be passed to the parameter f, because every

correct application of the parameter is also a correct application of the operator with

the same type, provided the names of the parameter and the operator are ignored

(and there is a multiplication operator for the respective type T).

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.1 Basic Pr inciple 126

❐ It is also possible −− comparable to lambda expressions in other languages −− to

declare the passed operator directly at the point where it is needed.

But because an operator declaration does not return the declared operator, but rather

its type, a constant declaration is still necessary, which might also be anonymous,

however. For example:

print values of : (x:int) "2" -> (int = x * x) from 1 to 10

❐ To reduce the “syntactic overhead” even more, the names of the passed operator

might be omitted (because they are meaningless anyway) as well as its parameter

and result types (provided they can be deduced by compiler, which is possible in most

cases). For example:

print values of : (x:) -> (= x * x) from 1 to 10

The colon after the name of the parameter and the equals sign before the

implementation of the operator are still necessary, how ever, because otherwise the

parameter name could be interpreted as the type of an anonymous parameter, and

the implementation expression could be interpreted as the result type of the operator.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.1 Basic Pr inciple 127

5.1.2 Typical Examples from Functional Programming

Map

❐ map xs using f applies the function or rather operator f to all elements of the list xs
(cf. § 4.3.4) and returns a new list containing the result values of the function

invocations:

[(X:type) (Y:type)]
map (xs:X*) using (f: f (X) -> (Y)) -> (Y* =
if xs then f xs.head -> map xs.tail using f end

)

❐ For example:

xs := 1 -> 2 -> 3 -> 4 -> 5 ->;
print map xs using square; $$ 1->4->9->16->25->
print map (xs) using : (x:) -> (= 2*x) $$ 2->4->6->8->10->

(Without the parentheses around xs, the last line could also be interpreted as the

declaration of a constant with the names print map xs using.)

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.2 Typical Examples from Functional . . . 128

Filter

❐ filter xs using f applies the function f to all elements of the list xs and returns a

new list containing all elements of xs for which the function invocation did not return

nil:

[(X:type) (Y:type)]
filter (xs:X*) using (f: f (X) -> (Y)) -> (X* =
if xs then
h := xs.head;
r := f h;
t := filter xs.tail using f;
if r then h -> t else t end

end
)

To make sure that the order of the invocations of f is the same as the order of the list

elements, f h must be executed before the recursive invocation of filter.

❐ For example:

print filter (xs) using : (x:) -> (= x -:- 2 = 0)
$$ 2->4->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.2 Typical Examples from Functional . . . 129

Fold

❐ fold x and xs using f combines the value x and the elements of the list xs left-

associatively by successive invocations of the binary function f and returns the result

of the last invocation. If the list xs is empty, the value x is directly returned:

[(X:type)]
fold (x:X) and (xs:X*) using (f: f (X) (X) -> (X)) -> (X =
if xs then fold f x xs.head and xs.tail using f else x end

)

❐ Accordingly, fold xs and x using combines the elements of the list xs and the

value x right-associatively by successive invocations of f and returns the result of the

last invocation. If the list xs is empty, the value x is directly returned again:

[(X:type)]
fold (xs:X*) and (x:X) using (f: f (X) (X) -> (X)) -> (X =
if xs then f xs.head fold xs.tail and x using f else x end

)

❐ For example:

print fold 0 and xs using : (x:) (y:) -> (= x + y); $$ 15
print fold xs and 1 using : (x:) (y:) -> (= x * y) $$ 120

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.2 Typical Examples from Functional . . . 130

❐ Difference between left and right fold:

print fold 0 and xs using : (x:) (y:) -> (= x + -y); $$ -15
print fold xs and 0 using : (x:) (y:) -> (= x + -y) $$ 3

x + −y is used instead of x − y, because the latter might also be interpreted as a

recursive application of the operator passed to fold to the operands x and −y.

Remark

❐ Because lists, as commonly in functional programming, are defined recursively here −−

a list is either empty, or it consists of a first element head and a rest list tail −−, the

operators map, filter, and fold can be implemented recursively, too, which is also

typical for functional programming:

If the list is empty, the recursion ends, while the operator is recursively applied to the

rest list otherwise. The “actual” operation is executed only for the first element of the

current list in each recursive step.

❐ For ver y long lists, how ever, the recursion might cause a stack overflow because the

MOSTflexiPL compiler −− in contrast to compilers of many functional programming

languages −− does not automatically transfor m typical recursive patter ns into

equivalent iterative code.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.1 Operators as Parameter Values
5.1.2 Typical Examples from Functional . . . 131

5.2 Operators as Result Values

❐ If the result type of an operator declaration is an operator type, the implementation of

the operator must return a matching operator, i. e., once again an operator that can

approximately replace the operator declared in the result type.

❐ This might, for example, be defined as a local operator, again combined with an

anonymous constant declaration. For example:

add (y:int) -> ((int) -> (int) =
: (x:int) -> (int = x + y)

)

For an int value y, add y retur ns an operator that maps an int value x to the int
value x + y.

❐ Possible use: (cf. § 4.3.4, § 4.3.4 und § 5.1.2):

is := 1 -> 2 -> 3 -> 4 -> 5 ->;
print map is using add 10 $$ 11->12->13->14->15->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.2 Operators as Result Values
132

❐ To make add also usable for types other than int for which there is a matching

addition operator (for example rat, cf. the task about rational numbers), it might be

generalized as follows:

[(T:type) (+ (T) "+" (T) -> (T))]
add (y:T) -> ((T) -> (T) =
: (x:T) -> (T = x + y)

)

❐ Possible use then:

rs := 1/2 -> 2/3 -> 3/4 ->;
print map rs using add 1/8 $$ 5/8->19/24->7/8->

❐ To make add ev en more generally usable (e. g., if there is an addition operator that

adds a rat and an int value and returns the result as a rat value), it can be defined

ev en more generically:

[(X:type) (Y:type) (Z:type) (+ (X) "+" (Y) -> (Z))]
add (y:Y) -> ((X) -> (Z) =
: (x:X) -> (Z = x + y)

)

❐ Possible use then:

print map rs using add 5 $$ 11/2->17/3->23/4->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.2 Operators as Result Values
133

❐ Definition of mul in analogy to add:

[(X:type) (Y:type) (Z:type) (+ (X) "*" (Y) -> (Z))]
mul (y:Y) -> (=
: (x:X) -> (= x * y)

)

The result type of mul is the type of the locally defined operator (i. e., (X) −> (Z)),

which can be automatically deduced by the compiler in the same way as the result

type (Z) of this local operator.

❐ Composition of functions:

[(X:type) (Y:type) (Z:type)]
(f (X) -> (Y)) before (g (Y) -> (Z)) -> (=
: (x:X) -> (= g f x)

)

For a function f that maps a value of type X to a value of type Y, and a function g that

maps a value of type Y to a value of type Z, f before g retur ns a function that first

applies the function f to a value of type X and afterwards the function g to the

resulting value.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.2 Operators as Result Values
134

❐ Possible use:

print map is using mul 2 before add 1; $$ 3->5->7->9->11->
print map rs using add 1/8 before mul 2/3 $$ 5/12->19/36->7/12->

❐ To allow combinations of multiple functions, •before• might be defined either left- or

right-associative:

excl : (int) -> (int) before
(: (int) -> (int) before : (int) -> (int)) end

❐ Possible use:

print map is using mul 2 before add 1 before mul 3
$$ 9->15->21->27->33->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.2 Operators as Result Values
135

5.3 Operators as Variable Values

5.3.1 Basic Principle

❐ If the content type of a var iable is an operator type, the var iable might contain a

matching operator, i. e., once again an operator that can approximately replace the

operator defined in the content type. For example:

logger : (s:char*) -> (bool) ?

❐ The var iable logger might contain any operator with parameter type char* (cf.

§ 4.3.4 and § 4.5) and result type bool.

The parameter name s is necessary, because otherwise (char*) −> (bool) might

also be interpreted as an application of the operator •−>• defined in § 4.3.2, whose

operands are both surrounded with redundant parentheses.

Alter natively, the operator (char*) −> (bool) might be given an arbitrar y name,

e. g., log (char*) −> (bool).

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.1 Basic Pr inciple 136

❐ For example:

simple logger: (msg:char*) -> (bool =
print msg

);

colored logger: (msg:char*) -> (bool =
esc := char 27;
print only esc -> "[31m";
print only msg;
print esc -> "[39m"

);

logger =! if then simple logger else colored logger end

❐ The operator simple logger pr ints the string msg nor mally, while the operator

colored logger uses escape sequences to print it in red.

(The character sequence esc [3 1 m switches the foreground color of an ANSI-

compliant console to red, while esc [3 9 m switches back to the standard color. esc
is the escape character with the decimal value 27.)

Depending on some run time condition, either the operator simple logger or the

operator colored logger is then stored in the var iable logger.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.1 Basic Pr inciple 137

❐ The operator contained in a var iable might, for example, be passed as a parameter

value to some other operator, for example:

(f (char*) -> (bool)) (s:char*) -> (bool = f s);
?logger "log output"

The operator defined in the first line, whose signature consists of two parameters

only, applies the operator passed to the first parameter f to the string passed to the

second parameter s.

Therefore, the operator that is currently stored in the var iable logger is applied to the

str ing "log output" in the second line.

❐ The previously defined operator can also be defined generically:

[(X:type) (Y:type)] (f (X) -> (Y)) (x:X) -> (Y = f x);
?logger "log output"

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.1 Basic Pr inciple 138

5.3.2 Further Possibilities

❐ Because operators can be stored in var iables, they can also be stored, e. g., in

attr ibutes of open types (cf. § 4.3.2) or similar data structures (cf. § 4.4).

❐ For example:

[(T:type)] observer => (T? -> (var:T?) -> (bool));

[(T:type)] observe (var:T?) with (f: (T?) -> (bool)) -> (bool =
var@observer =! f;
true

)

❐ observer defines a generic attribute (cf. § 4.3.4) that attaches an operator of type

(var:T?) −> (bool) to every var iable of type T?.

(Again, the parameter name var is necessary to make sure that the second arrow in

the expression T? −> (var:T?) −> (bool) unambiguously denotes an operator

declaration and thus an operator type and that it cannot again be interpreted as an

application of the arrow operator defined in § 4.3.2.

However, the first arrow in this expression denotes just that arrow operator.)

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.2 Further Possibilities 139

❐ observe var with f then stores the operator f in the attribute observer of the

variable var, for example:

x : int?;

observe (x) with
: (var:int?) -> (bool = print "observer for variable x")

❐ To achieve that an “observer” attached to a var iable in that way is called for every

subsequent assignment to the var iable, the predefined assignment operator •=!•
might be overr idden (actually hidden) by a user-defined operator with the same

signature (also see § 3.7.1):

[(T:type)] (var:T?) "=!!" (val:T) -> (T = var =! val);

["["(T:type)"]"] (var:T?) "=!" (val:T) -> (T =
var =!! val;
var.observer var;
val

)

To enable the user-defined operator to invoke the predefined operator that it hides

itself, an “alias” for it with a different signature (•=!!• in that case) must be defined in

advance.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.2 Further Possibilities 140

❐ By that means, the operator that has been previously attached to the var iable x with

observe x with ..., will be called for every subsequent assignment x =! ...

❐ To make the same observer usable for multiple different var iables, it receives the

respective var iable as a parameter value after it has been assigned a new value.

❐ If no observer has been attached to a var iable var, var.observer retur ns nil, i. e., a

nil operator that does not have an implementation and whose invocation, therefore,

has no effect.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
5 Operator Values

5.3 Operators as Var iable Values
5.3.2 Further Possibilities 141

