g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.1 Basic Principle
4 Static Operators 1 06

4 Static Operators

4.1 Basic Principle

[If a double arrow => is used instead of a single arrow —-> in the declaration of an
operator, the declared operator is a static operator.
(Operators defined with a single arrow are also called dynamic operators in contrast.)

[A static operator has a “memory” to “remember” all invocations performed so far plus
the corresponding result values.

1 If it is invoked once more with the same syntax and the same parameter values as
some time before, it directly returns the former result value from its memory and,
therefore, the implementation of the operator is not evaluated again.

[This can be used in principle to automatically optimize operators in a table-based
manner (dynamic programming). However, the number of different invocations should
not be too large in that case.

[Much more important, however, is the possibility to use this to implement user-defined
data structures.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.2 Operators without Explicit Implementation
4 Static Operators 1 07

4.2 Operators without Explicit Implementation

[If no explicit implementation is given in the declaration of a (static or dynamic)
operator, the operator’'s implementation is implicitly an expression that returns a new
(and thus unique) synthetic value in each evaluation (just like the operator uniq in

§3.7.3).

[But because the implementation of a static operator is not evaluated if it is invoked
with the same syntax and the same parameter values as some time before, the same

value as before is returned in such a case.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.1 First Idea 1 08

4.3 Open Types
4.3.1 First Idea
Point : type;

(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

pl : Point; pl@x =! 3; plRy =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

(p:Point) "." y —-> (int = 7?pQy);

print only pl.x; print only ’ ’; print pl.y; S 3 4
print only p2.x; print only ' ’; print p2.y $S 5 6

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.1 First Idea 109

Explanations

[Point is a constant of the meta type type with a new synthetic value and, therefore,
represents a new unique type.

[For some value p of this type Point, p@x and pQy each returns a synthetic value of
type int?, i.e., a variable with content type int.

[Because both are static operators, a new variable is returned if one of these
operators is invoked the first time for a particular point p, but the same variable is
returned for all further invocations of the respective operator for the same point p.

[pl and p2 are constants of type Point, each having a new synthetic value, and,
therefore, represent unique objects of type Point.

[Therefore, each of the expressions pl@x, pl@y, p2@x, and p2Qy returns a different
variable, which is the same for each evaluation of the respective expression, however.
Therefore, this variable can be used to store the respective coordinate of the
respective point.

[The expressions p.x and p.y are just abbreviations for ?p@x and ?pQy, respectively.

[Because the content of the variables pe@x and p@y may change between invocations
of p.x and p.y, these operators must be dynamic.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.2 Generalization and Improvement 11 O

4.3.2 Generalization and Improvement
Generic Definitions
(U:type) "->" (V:type) => (type);

[(U:type) (V:itype)]
(u:U) "@" (a:U->V) => (V2?2 =u /\ a /\ v:V?);

[(U:type) (V:type)]
(W:U) "." (a:U->V) -> (V = ?uRa);

excl
U : type; ul : U; al : U -> U; u2 : U; a2 : U -=> U; v : 1int?;
(ul@al) <-> (2?2v); ul <> v; al <> v;
(u2.a2) <=> (?2v); u2 <> v; a2 <> v

end

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.2 Generalization and Improvement 111

Specific Usage

Point : type;
X : Point -> int;
y : Polnt —-> 1int;

pl : Point; pl@x =! 3; plQ@y =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

print only pl.x; print only '’ ’; print pl.y; $S 3 4
print only p2.x; print only ' ’; print p2.y $S 5 6

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.2 Generalization and Improvement 112

Explanations

A

A

For two arbitrary types U and v, U->V always returns a unique type that is used to
represent attributes of type U with target type V.

For an object u of any type U and an attribute a of this type with target type v, ua
normally (if u and a are not nil) returns a unique variable v with content type v in each
case, which is used to store the value of attribute a of object u.

Exception: If u or a is nil, uRa also returns nil (i. e., a nil variable) causing assignments
to uRa to have no effect and 2uRa to return nil in turn (cf. § 2.7; the conjunction ¢ /\ e
whose right operand is evaluated only if necessary is defined on a task sheet).

u.a is again an abbreviation for ?u. a.

The operators «@e and ¢ . ¢ shall have the same binding properties as the predefined
variable query.

In the specific usage, x and y are constants of the type Point->int with unique
values and, therefore, represent two distinct attributes of type Point with target type
int.

Therefore, expressions such as pl@ex, p2Qy, pl.y, etc. have the same meaning as
before.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.3 Generic Constructor and Attribute Update . 11 3

4.3.3 Generic Constructor and Attribute Update Operator

Generic Definitions

$$S Create new object of the open type U

SS$S and store vl, v2, ... as values of the attributes al, a2,
(U:type) "(" [(Vl:type)] (al:U->V1) "=" (v1:V1)
{"," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =
u : Uy
u@al =! vil;
{ uRaz2 =! v2 };
u

) ;

SS Store vl, v2, ... as new values of the attributes al, a2,
$$ of object u.

[(U:type)] (u:U) "(" [(Vli:type)] (al:U->V1) "=" (v1:V1)
{"," [(V2:type)] (a2:U->V2) "=" (v2:V2) } "M)" -> (U =
u@al =! vl;

{ u@Qaz2 =! v2 };
u

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.3 Generic Constructor and Attribute Update . 114

Specific Usage

$S Create point p with coordinates 1 and 2.
p := Point(x =1, y = 2);

$S Set coordinates of p to 5 and 6.
p(y=6,X=5)

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.4 Generic Open Types 11 5

4.3.4 Generic Open Types
Example: Lists

$$ Generic Type T*
$S for the representation of lists with element type T.
(T:type) "*" => (type);

$S * shall bind stronger than ->
$S because T -> T* shall be interpreted as T -> (T*).
excl (int -> int)* end;

S$ Generic attributes head and tail of T*.
[(T:type)] head => (T* -> T);
[(T:type)] tail => (T* -> T*);

$$ List with first element h and optional rest list t.
[(T:type)] (h:T) "->" [(t:T*)] -> (T* =

T* (head = h, tail = t)
) i

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.4 Generic Open Types 11 6

$$ —> shall bind stronger than constant declaration
$S because 1ls := 1 -> should be interpreted as 1ls := (1 ->).
excl (x := 1) -> end;

$$ Length of the list 1s.
[(T:type)] "#" (1ls:T*) -> (int =

p : T*?;
p =! ls;
while ?p do p =! ?p.tail end

Exemplary Use

$SS Create lists with different element types
$S and print their lenghts.

ls (=1 > 2 > 3 =>4 -> 5 —=>;
print #ls; $$ 5
1s2 :=Ta’ —> 'b" —> 'c' —>;

print #1s2 $S 3

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.4 Generic Open Types 117

Explanations

[Because the type of the attributes head and tail depends on their type parameter T,
these attributes cannot be defined as constants but rather as static operators.

[In typical applications of head and tail, the assignment of T and therefore the
specific type of the attribute is always deduced from the application context (cf.
§3.7.3).

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.4 Generic Open Types 11 8

Output of Lists

SS Print the elements of the list 1ls,
$S provided there is an output operator for its element type T.
[(T:type)] print <o>[only] (ls:T*)
[(+ print only (T) -> (bool))] -> (bool =
p : T*?;
p =! 1s;
while ?p do
print only ?p.head;
print only ’'-'; print only ’'>’;
p =! ?p.tail
end;
<o>[true | print 1:0]

Exemplary Use
print 1s2; $$ a->b->c—>

183 := 182 —> 182 —>;
print 1s3 $$ a->b->c—->->a->b->c—>

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.3 Open Types
4 Static Operators 4.3.5 Remarks 1 19

4.3.5 Remarks

[Because additional attributes can always be added to a previously defined type later
— also at different locations of a program or even in different modules —, these types
are open for later extensions and are, therefore, called open types.

[Furthermore, not all objects of such a type must always have values for all attributes
of the type. Then, non-existent attributes also do not occupy memory, and querying
them always returns nil.

[Therefore, open types are very well-suited (in particular, much better than union
types in C) for the flexible storage of variant data structures.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.4 Array-like Types
4 Static Operators 1 20

4.4 Array-like Types
Generic Definitions

$$S Generic type T []
$S for the representation of arrays with element type T.

(type) " [" "] nw :> (type) ;

$S Access to the i-th element of the array a.

[(T:type)] (a:T[]) "@" (i:int) => (T? = a /\ i /\ (v:T?));
[(T:type)] (a:T[]) "."™ (i:int) -> (T = a@i)

Specific Usage

letters : char [];

letters@l =! "a’;

letters@26 =! ’"z’;

print letters.l; $S a

print letters.2; $S (nothing)

print letters.26 $S z

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.5 Strings
4 Static Operators 121

4.5 Strings

[MOSTflexiPL deliberately does not provide a predefined type for strings, because a
suitable type can easily be defined by any user himself (typically in a library).
For example, the list type char* (cf. §4.3.4) or an array-like type (cf. §4.4) can be
used for that purpose.

[Nevertheless, there are predefined string literals consisting of any number of Unicode
characters inside of (double) quotation marks.
Just as with names of constants (cf. § 2.4) and operators, such a quotation mark must
be duplicated to include it into a string literal.
(The only difference to such names is the fact, that string literals might also contain
white space and might be empty.)

[To use such a literal, there must be an operator of type
str { (c:char) } —-> (S)

with an arbitrary result type s in the current context, which is implicitly passed to the
literal (cf. §3.11) and will be invoked by it with all characters of the literal.

[The result value of the literal will then be the value with type s returned by this
operator (i.e., string literals will then have type s).

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.5 Strings
4 Static Operators 122

Example

str { (c:char) } -> (char* =
h : char*?;
t : char*?;

{
t =! ?2t@tail =! char* (head = c);

?h \/ h =! 2t

};
?h

[The operator str constructs a list containing the characters ¢ by appending each
character at the end of the already constructed list and finally returns the start of the

list.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 4.5 Strings
4 Static Operators 1 23

Exemplary Use

print "Hello!"; SS H->e-—>1->1->0-—>!-—>

print [only] (s:char*) -> (bool =
s : char*?; s =! s;
while ?s do
print only ?s.head;
s =! (?s.tail)
end;
[true | print 1:0]

) i
print "Hello!" $$ Hello!

[Because the operator str that is implicitly passed to string literals has result type
char*, string literals such as "Hello!" also have that type.

[Therefore, the operator print in the first line of the example denotes the output
operator for lists defined at the end of §4.3.4.

[The operator print defined afterwards prints only the characters of the list s without
arrows. Because it is more specific than the generic output operator for lists, it is
preferred in the last line of the example.

