
4 Static Operators

4.1 Basic Principle

❐ If a double arrow => is used instead of a single arrow −> in the declaration of an

operator, the declared operator is a static operator.

(Operators defined with a single arrow are also called dynamic operators in contrast.)

❐ A static operator has a “memory” to “remember” all invocations perfor med so far plus

the corresponding result values.

❐ If it is invoked once more with the same syntax and the same parameter values as

some time before, it directly returns the for mer result value from its memory and,

therefore, the implementation of the operator is not evaluated again.

❐ This can be used in principle to automatically optimize operators in a table-based

manner (dynamic programming). However, the number of different invocations should

not be too large in that case.

❐ Much more important, however, is the possibility to use this to implement user-defined

data structures.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.1 Basic Pr inciple
106

4.2 Operators without Explicit Implementation

❐ If no explicit implementation is given in the declaration of a (static or dynamic)

operator, the operator’s implementation is implicitly an expression that returns a new

(and thus unique) synthetic value in each evaluation (just like the operator uniq in

§ 3.7.3).

❐ But because the implementation of a static operator is not evaluated if it is invoked

with the same syntax and the same parameter values as some time before, the same

value as before is returned in such a case.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.2 Operators without Explicit Implementation
107

4.3 Open Types

4.3.1 First Idea

Point : type;

(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

p1 : Point; p1@x =! 3; p1@y =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

(p:Point) "." x -> (int = ?p@x);
(p:Point) "." y -> (int = ?p@y);

print only p1.x; print only ’ ’; print p1.y; $$ 3 4
print only p2.x; print only ’ ’; print p2.y $$ 5 6

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.1 First Idea 108

Explanations

❐ Point is a constant of the meta type type with a new synthetic value and, therefore,

represents a new unique type.

❐ For some value p of this type Point, p@x and p@y each returns a synthetic value of

type int?, i. e., a var iable with content type int.

❐ Because both are static operators, a new var iable is returned if one of these

operators is invoked the first time for a particular point p, but the same var iable is

retur ned for all further invocations of the respective operator for the same point p.

❐ p1 and p2 are constants of type Point, each having a new synthetic value, and,

therefore, represent unique objects of type Point.

❐ Therefore, each of the expressions p1@x, p1@y, p2@x, and p2@y retur ns a different

variable, which is the same for each evaluation of the respective expression, however.

Therefore, this var iable can be used to store the respective coordinate of the

respective point.

❐ The expressions p.x and p.y are just abbreviations for ?p@x and ?p@y, respectively.

❐ Because the content of the var iables p@x and p@y may change between invocations

of p.x and p.y, these operators must be dynamic.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.1 First Idea 109

4.3.2 Generalization and Improvement

Generic Definitions

(U:type) "->" (V:type) => (type);

[(U:type) (V:type)]
(u:U) "@" (a:U->V) => (V? = u /\ a /\ v:V?);

[(U:type) (V:type)]
(u:U) "." (a:U->V) -> (V = ?u@a);

excl
U : type; u1 : U; a1 : U -> U; u2 : U; a2 : U -> U; v : int?;
(u1@a1) <-> (?v); u1 <-> v; a1 <-> v;
(u2.a2) <-> (?v); u2 <-> v; a2 <-> v

end

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.2 Generalization and Improvement 110

Specific Usage

Point : type;
x : Point -> int;
y : Point -> int;

p1 : Point; p1@x =! 3; p1@y =! 4;
p2 : Point; p2@x =! 5; p2@y =! 6;

print only p1.x; print only ’ ’; print p1.y; $$ 3 4
print only p2.x; print only ’ ’; print p2.y $$ 5 6

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.2 Generalization and Improvement 111

Explanations

❐ For two arbitrar y types U and V, U−>V always retur ns a unique type that is used to

represent attr ibutes of type U with target type V.

❐ For an object u of any type U and an attribute a of this type with target type V, u@a
nor mally (if u and a are not nil) returns a unique var iable v with content type V in each

case, which is used to store the value of attribute a of object u.

❐ Exception: If u or a is nil, u@a also returns nil (i. e., a nil var iable) causing assignments

to u@a to have no effect and ?u@a to return nil in turn (cf. § 2.7; the conjunction •/\•
whose right operand is evaluated only if necessary is defined on a task sheet).

❐ u.a is again an abbreviation for ?u.a.

❐ The operators •@• and •.• shall have the same binding properties as the predefined

variable query.

❐ In the specific usage, x and y are constants of the type Point−>int with unique

values and, therefore, represent two distinct attributes of type Point with target type

int.

❐ Therefore, expressions such as p1@x, p2@y, p1.y, etc. have the same meaning as

before.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.2 Generalization and Improvement 112

4.3.3 Generic Constructor and Attribute Update Operator

Generic Definitions

$$ Create new object of the open type U
$$ and store v1, v2, ... as values of the attributes a1, a2, ...
(U:type) "(" [(V1:type)] (a1:U->V1) "=" (v1:V1)

{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =
u : U;
u@a1 =! v1;
{ u@a2 =! v2 };
u

);

$$ Store v1, v2, ... as new values of the attributes a1, a2, ...
$$ of object u.
[(U:type)] (u:U) "(" [(V1:type)] (a1:U->V1) "=" (v1:V1)

{ "," [(V2:type)] (a2:U->V2) "=" (v2:V2) } ")" -> (U =
u@a1 =! v1;
{ u@a2 =! v2 };
u

)

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.3 Generic Constructor and Attribute Update . . .113

Specific Usage

$$ Create point p with coordinates 1 and 2.
p := Point(x = 1, y = 2);

$$ Set coordinates of p to 5 and 6.
p(y = 6, x = 5)

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.3 Generic Constructor and Attribute Update . . .114

4.3.4 Generic Open Types

Example: Lists

$$ Generic Type T*
$$ for the representation of lists with element type T.
(T:type) "*" => (type);

$$ * shall bind stronger than ->
$$ because T -> T* shall be interpreted as T -> (T*).
excl (int -> int)* end;

$$ Generic attributes head and tail of T*.
[(T:type)] head => (T* -> T);
[(T:type)] tail => (T* -> T*);

$$ List with first element h and optional rest list t.
[(T:type)] (h:T) "->" [(t:T*)] -> (T* =
T*(head = h, tail = t)

);

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.4 Generic Open Types 115

$$ -> shall bind stronger than constant declaration
$$ because ls := 1 -> should be interpreted as ls := (1 ->).
excl (x := 1) -> end;

$$ Length of the list ls.
[(T:type)] "#" (ls:T*) -> (int =
p : T*?;
p =! ls;
while ?p do p =! ?p.tail end

)

Exemplar y Use

$$ Create lists with different element types
$$ and print their lenghts.

ls := 1 -> 2 -> 3 -> 4 -> 5 ->;
print #ls; $$ 5

ls2 := ’a’ -> ’b’ -> ’c’ ->;
print #ls2 $$ 3

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.4 Generic Open Types 116

Explanations

❐ Because the type of the attributes head and tail depends on their type parameter T,

these attributes cannot be defined as constants but rather as static operators.

❐ In typical applications of head and tail, the assignment of T and therefore the

specific type of the attribute is always deduced from the application context (cf.

§ 3.7.3).

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.4 Generic Open Types 117

Output of Lists

$$ Print the elements of the list ls,
$$ provided there is an output operator for its element type T.
[(T:type)] print <o>[only] (ls:T*)

[(+ print only (T) -> (bool))] -> (bool =
p : T*?;
p =! ls;
while ?p do
print only ?p.head;
print only ’-’; print only ’>’;
p =! ?p.tail

end;
<o>[true | print 1:0]

)

Exemplar y Use

print ls2; $$ a->b->c->

ls3 := ls2 -> ls2 ->;
print ls3 $$ a->b->c->->a->b->c->

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.4 Generic Open Types 118

4.3.5 Remarks

❐ Because additional attributes can always be added to a previously defined type later

−− also at different locations of a program or even in different modules −−, these types

are open for later extensions and are, therefore, called open types.

❐ Fur thermore, not all objects of such a type must always have values for all attributes

of the type. Then, non-existent attributes also do not occupy memor y, and querying

them always retur ns nil.

❐ Therefore, open types are ver y well-suited (in particular, much better than union
types in C) for the flexible storage of var iant data structures.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.3 Open Types
4.3.5 Remarks 119

4.4 Array-like Types

Generic Definitions

$$ Generic type T []
$$ for the representation of arrays with element type T.
(type) "[" "]" => (type);

$$ Access to the i-th element of the array a.
[(T:type)] (a:T[]) "@" (i:int) => (T? = a /\ i /\ (v:T?));
[(T:type)] (a:T[]) "." (i:int) -> (T = ?a@i)

Specific Usage

letters : char [];
letters@1 =! ’a’;
letters@26 =! ’z’;

print letters.1; $$ a
print letters.2; $$ (nothing)
print letters.26 $$ z

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.4 Array-like Types
120

4.5 Strings

❐ MOSTflexiPL deliberately does not provide a predefined type for strings, because a

suitable type can easily be defined by any user himself (typically in a librar y).

For example, the list type char* (cf. § 4.3.4) or an array-like type (cf. § 4.4) can be

used for that purpose.

❐ Nevertheless, there are predefined str ing literals consisting of any number of Unicode

characters inside of (double) quotation marks.

Just as with names of constants (cf. § 2.4) and operators, such a quotation mark must

be duplicated to include it into a string literal.

(The only difference to such names is the fact, that string literals might also contain

white space and might be empty.)

❐ To use such a literal, there must be an operator of type

str { (c:char) } -> (S)

with an arbitrar y result type S in the current context, which is implicitly passed to the

literal (cf. § 3.11) and will be invoked by it with all characters of the literal.

❐ The result value of the literal will then be the value with type S retur ned by this

operator (i. e., str ing literals will then have type S).

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.5 Strings
121

Example

str { (c:char) } -> (char* =
h : char*?;
t : char*?;
{
t =! ?t@tail =! char*(head = c);
?h \/ h =! ?t

};
?h

)

❐ The operator str constr ucts a list containing the characters c by appending each

character at the end of the already constructed list and finally returns the start of the

list.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.5 Strings
122

Exemplar y Use

print "Hello!"; $$ H->e->l->l->o->!->

print [only] (s:char*) -> (bool =
s : char*?; s =! s;
while ?s do
print only ?s.head;
s =! (?s.tail)

end;
[true | print 1:0]

);

print "Hello!" $$ Hello!

❐ Because the operator str that is implicitly passed to string literals has result type

char*, str ing literals such as "Hello!" also have that type.

❐ Therefore, the operator print in the first line of the example denotes the output

operator for lists defined at the end of § 4.3.4.

❐ The operator print defined afterwards prints only the characters of the list s without

arrows. Because it is more specific than the generic output operator for lists, it is

preferred in the last line of the example.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
4 Static Operators

4.5 Strings
123

