
3.11 Implicit Parameters

3.11.1 Basic Principle

❐ Many operators (e. g., min and max) cannot be completely generic, because their

implementation needs particular operators (e. g., comparison operators) which are not

available for all types.

❐ Such operators can be passed as implicit parameters, how ever, for example:

[(T:type)] $$ Deducible parameter
min (x:T) (y:T)
[(+ (T) "<=" (T) -> (bool))] $$ Implicit parameter
-> (T = if x <= y then x else y end)

Explanations

❐ In analogy to § 3.8.1, (+ (T) "<=" (T) −> (bool)) is a declaration of an anonymous

parameter (which in turn has two anonymous parameters itself) of the operator min.

❐ In contrast to normal operator declarations, where a leading plus sign or backslash is

meaningless, a plus sign at the begin of a parameter declaration marks the parameter

as an implicit parameter, which is sensibly also optional.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.1 Basic Pr inciple 100



3.11.2 Assignment of Implicit Parameters

❐ In an application of the min operator such as min 1 2, a matching operator from the

current context is passed automatically, i. e., an operator which can exactly replace

the parameter (cf. § 3.9.1).

❐ Because the type int has already been deduced for the parameter T according to the

operands 1 and 2, an operator must be passed here which can replace an operator of

type (int) "<=" (int) −> (bool), which is possible, for example, for the chained

compar ison operator for int values defined on a task sheet.

❐ Applications of the implicit parameter in the implementation of the operator (the

expression x <= y in the example) are then forwarded to the passed operator.

❐ If there is no matching operator in the current context, the expression is erroneous.

For example, min ’a’ ’z’ would be erroneous, because there is no operator that can

replace an operator of type (char) "<=" (char) −> (bool).

❐ This error could be remedied, however, by defining such an operator in advance, for

example:

(x:char) "<=" (y:char) -> (bool = int x <= int y)

❐ By that means, implicit parameters can be used to express additional conditions or

constraints for the types of other parameters of an operator, and, if necessary, an

operator can also have multiple implicit parameters.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.2 Assignment of Implicit Parameters 101



❐ If there is more than one matching operator for an implicit parameter in the current

context, the most specific one (cf. § 3.9.2) is passed if it exists; otherwise, the

expression would be ambiguous in that case.

Notes

❐ If a parameter declaration does not start with a plus sign, it does not declare an

implicit parameter, and, therefore, no matching operator is passed automatically (and,

accordingly, it is not an error if there is no matching operator in that case).

❐ If the parameter is nevertheless optional and no matching operator is passed

explicitly (cf. § 5.1.1), the parameter is assigned, according to § 3.4, the value nil, i. e.,

a nil operator that does not have an implementation and that returns a new synthetic

value for every application (cf. § 4.2).

❐ Initially, there are no exclusions for the operators defined by implicit parameters

except for the exclusion of the predefined sequential evaluation mentioned in § 3.6.

It is possible, how ever, to define appropriate exclusions inside the implementation of

the operator to which these parameters belong.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.2 Assignment of Implicit Parameters 102



3.11.3 Indirect Implicit Parameters

❐ If an implicitly passed operator has implicit parameters itself, matching operators from

the current context must also be passed for them to make the respective expression

correct (and so on, if these operators have implicit parameters in turn, and so for th).

Example: Double Square Operator

[(T:type)] (x:T) "2" [(+ (T) "*" (T) -> (T))] -> (T = x * x);
[(T:type)] (x:T) "4" [(+ (T) "2" -> (T))] -> (T = (x2)2)

❐ For the expression 104, the square operator •2 is implicitly passed to the double

square operator •4, and the predefined operator for multiplication, division, and

remainder of int values (cf. § 3.5.3) is in turn implicitly passed to the square operator

(where this operator is more general than the implicit parameter •*•).

❐ For the expression ’x’4, a multiplication operator for char values would have to be

passed accordingly, which is usually not available, causing the expression to be

erroneous.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.3 Indirect Implicit Parameters 103



Example: Output of Variables

[(T:type)]
print <o>[only] (x:T?)
[(+ print only (T) -> (bool))]
-> (bool =
print only ?x;
<o>[true | print 1:0]

)

❐ To be able to print the value of a var iable x of type T?, the above operator print
needs a corresponding output operator for the content type T that is passed as an

implicit parameter.

❐ Because 1:0 is equal to nil, print 1:0 simply prints a line terminator (cf. § 2.12).

❐ Exemplar y use:

i : int?; i =! 1; print i; $$ 1
ii : int??; ii =! i; print ii; $$ 1
iii : int???; iii =! ii; print iii $$ 1

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.3 Indirect Implicit Parameters 104



❐ For the expression print i, the content type T is deduced as int and, therefore, the

predefined operator print is passed to the implicit parameter (where this operator is

more general than the parameter).

❐ For the expression print ii, the content type T is deduced as int? and, therefore,

the operator print for var iables is passed to its own implicit parameter.

For this operator, T is then deduced as int and, therefore, the predefined operator

print is passed to its implicit parameter.

❐ For the expression print iii, the content type T is deduced as int?? and,

therefore, the operator print for var iables is again passed to its own implicit

parameter.

For this operator, T is then deduced as int? and, therefore, the operator print for

variables is again passed to its implicit parameter.

For this operator, T is finally deduced as int and, therefore, the predefined operator

print is passed to its implicit parameter.

❐ In the same way, var iables with any number of “levels” can be printed in principle, if

there is an output operator for their “final“ content type.

❐ However, the compiler aborts the recursive search for assignments of implicit

parameters at a certain depth to avoid endless recursions for “malicious” programs.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.11 Implicit Parameters
3.11.3 Indirect Implicit Parameters 105


