g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.1 Basic Principle 1 OO

3.11 Implicit Parameters
3.11.1 Basic Principle

[Many operators (e. g., min and max) cannot be completely generic, because their
implementation needs particular operators (e. g., comparison operators) which are not
available for all types.

[Such operators can be passed as implicit parameters, however, for example:

[(T:type)] $S Deducible parameter
min (x:T) (y:T)
[(+ (T) "<=" (T) -> (bool))] $S Implicit parameter

-> (T = 1f x <= y then x else y end)
Explanations

[In analogy to §3.8.1, (+ (T) "<=" (T) —> (bool)) is a declaration of an anonymous
parameter (which in turn has two anonymous parameters itself) of the operator min.

[In contrast to normal operator declarations, where a leading plus sign or backslash is
meaningless, a plus sign at the begin of a parameter declaration marks the parameter
as an implicit parameter, which is sensibly also optional.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.2 Assignment of Implicit Parameters 1 01

3.11.2 Assignment of Implicit Parameters

[In an application of the min operator such as min 1 2, a matching operator from the
current context is passed automatically, i. e., an operator which can exactly replace
the parameter (cf. §3.9.1).

[Because the type int has already been deduced for the parameter T according to the
operands 1 and 2, an operator must be passed here which can replace an operator of
type (int) "<=" (int) -> (bool), which is possible, for example, for the chained
comparison operator for int values defined on a task sheet.

[Applications of the implicit parameter in the implementation of the operator (the
expression x <=y in the example) are then forwarded to the passed operator.

[If there is no matching operator in the current context, the expression is erroneous.
For example, min "a’ ’ z’ would be erroneous, because there is no operator that can
replace an operator of type (char) "<=" (char) —> (bool).

[This error could be remedied, however, by defining such an operator in advance, for
example:

(x:char) "<=" (y:char) -> (bool = int x <= int vy)

[By that means, implicit parameters can be used to express additional conditions or
constraints for the types of other parameters of an operator, and, if necessary, an
operator can also have multiple implicit parameters.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.2 Assignment of Implicit Parameters 1 02

[If there is more than one matching operator for an implicit parameter in the current
context, the most specific one (cf. § 3.9.2) is passed if it exists; otherwise, the
expression would be ambiguous in that case.

Notes

[If a parameter declaration does not start with a plus sign, it does not declare an
implicit parameter, and, therefore, no matching operator is passed automatically (and,
accordingly, it is not an error if there is no matching operator in that case).

1 If the parameter is nevertheless optional and no matching operator is passed
explicitly (cf. §5.1.1), the parameter is assigned, according to § 3.4, the value nil, i. e.,
a nil operator that does not have an implementation and that returns a new synthetic
value for every application (cf. §4.2).

3 Initially, there are no exclusions for the operators defined by implicit parameters
except for the exclusion of the predefined sequential evaluation mentioned in § 3.6.
It is possible, however, to define appropriate exclusions inside the implementation of
the operator to which these parameters belong.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.3 Indirect Implicit Parameters 1 03

3.11.3 Indirect Implicit Parameters

3 If an implicitly passed operator has implicit parameters itself, matching operators from
the current context must also be passed for them to make the respective expression
correct (and so on, if these operators have implicit parameters in turn, and so forth).

Example: Double Square Operator

[(T:type)] (x:T) men [(+ (T) "*" (T) —> (T))] —> (T
(x

[(T:type)] (x:T) "*" [(+ (T) "“" —> (T))] -> (T =

= X * X);
) %)

M For the expression 10°, the square operator «“ is implicitly passed to the double
square operator o * and the predefined operator for multiplication, division, and
remainder of int values (cf. § 3.5.3) is in turn implicitly passed to the square operator
(where this operator is more general than the implicit parameter o *).

[For the expression " x’ ‘a multiplication operator for char values would have to be
passed accordingly, which is usually not available, causing the expression to be
erroneous.

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.3 Indirect Implicit Parameters 1 04

Example: Output of Variables

[(T:type)]
print <o>[only] (x:T?)
[(+ print only (T) -> (bool))]
-> (bool =
print only ?x;
<o>[true | print 1:0]

[To be able to print the value of a variable x of type T2, the above operator print

needs a corresponding output operator for the content type T that is passed as an
implicit parameter.

[Because 1:0 is equal to nil, print 1:0 simply prints a line terminator (cf. §2.12).

i : int?; 1 =! 1; print i; $S 1
1i : 1nt??; 1i =! 1; print 11i; SS 1
1ii : 1nt???; iii =! ii; print iii SS 1

g C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.11 Implicit Parameters
3 Generalized Operator Declarations 3.11.3 Indirect Implicit Parameters 1 05

[For the expression print i, the content type T is deduced as int and, therefore, the
predefined operator print is passed to the implicit parameter (where this operator is
more general than the parameter).

[For the expression print ii, the content type T is deduced as int? and, therefore,
the operator print for variables is passed to its own implicit parameter.
For this operator, T is then deduced as int and, therefore, the predefined operator
print Is passed to its implicit parameter.

[For the expression print iii, the content type T is deduced as int?? and,
therefore, the operator print for variables is again passed to its own implicit
parameter.

For this operator, T is then deduced as int? and, therefore, the operator print for
variables is again passed to its implicit parameter.

For this operator, T is finally deduced as int and, therefore, the predefined operator
print IS passed to its implicit parameter.

[In the same way, variables with any number of “levels” can be printed in principle, if
there is an output operator for their “final® content type.

[However, the compiler aborts the recursive search for assignments of implicit
parameters at a certain depth to avoid endless recursions for “malicious” programs.

