L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.1 Definitions 90

3.9 Comparison of Operators

3.9.1 Definitions

[An operator can be replaced (exactly) with another operator, if every unambiguous
and correct application of the first operator is also an unambiguous and correct
application of the second operator with the same type.

[Two operators are congeneric, if each of them can be replaced with the other.

[An operator is more restricted or more specific than another, if the first operator can
be replaced with the second, but not vice versa.
Then, the second operator is more extensive or more general than the first.

[Two operators are incomparable, if none of them can be replaced with the other.

[Two operators are non-overlapping, if no unambiguous and correct application of one
of them is also an unambiguous and correct application of the other with the same

type.

L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.2 Rules 91

3.9.2 Rules

3 If multiple congeneric operators are initially visible at some location, the one that has
been defined or imported last hides all others, causing them to become invisible.

[If the same expression can be interpreted as an application of different operators that
are visible (and not hidden) at the respective location and not excluded by an exclude
specification of the operator above:

O If one of these operators is more specific than all others, the expression is
interpreted as an application of this operator, i. e., the most specific operator is
preferred.

O If none of these operators is more specific than all others, the expression is
ambiguous.

This ambiguity can be resolved by defining another operator which exactly covers
the ,intersection® of all these operators, i. e., whose unambiguous and correct
applications are also unambiguous and correct applications of all these operators
with the same type.

Because this additional operator is now more specific than all these operators, it is
preferred according to the previous rule.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.3 Examples 92

3.9.3 Examples

[In the following example, the first constant x is hidden by the second constant x,
because both have the same type, causing the expression print x to be

unambiguous.
The first constant y, however, is not hidden by the second constant y, because they

have different types, causing the expression print y to be ambiguous:

X :=1; y := 1;

X 1= 27y ="y

print x; $S 2

print vy $$ Ambiguous
Many other uses of y are unambiguous, however, because only one of the two
constants causes the respective expression to be type-correct, for example:

print y + 0; $S 1
print char int y SS vy

L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.3 Examples

93

[In the following example, the first operator sum is more specific than the other two,

causing it to be preferred in expressions such as sum of 1 and 2 end.

The second and third operator are congeneric, causing the third to hide the second,

and therefore expressions such as sum of 1 end and sum of 1 and 2 and 3 end are

unambiguous both before and after the definition of the third one:

sum of (x:int) and (y:int) end -> (int = SS Definition
X +y $S of Operator

) ;

sum of (x:int) { and (y:int) } end -> (int = SS Definition
s : int?; s =! x; { s =! ?s + vy }; ?s $S of Operator

) 7

print sum of 1 and 2 end; $$ Use of Operator 1

print sum of 1 and 2 and 3 end; $S Use of Operator 2

sum of { (x:int) and } (y:int) end -> (int = SS Definition
s : int?; s =!vy; { s =! ?2s + x }; ?s $S of Operator

) ;

print sum of 1 and 2 end; $$ Use of Operator 1

print sum of 1 and 2 and 3 end $S Use of Operator 3

L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.3 Examples 94

[In the following example, the second operator is more specific than the first, causing it
to be preferred after its definition for swapping two int variables:

[(T:type)] (x:T?) "<->" (y:T?) —> (T? =

z := ?x; x =\ ?y; y =t z; v
) i
a bool?; a =! true;
b bool?; b =! false;
a <-> b; $S
u int?; u =! 1;
v int?; v =! 2;
u <-> v; SS

(x:int?) "<->" (y:int?) -> (int? =

x = ?x + ?y; y=! ?x - ?y; x =l ?x -
) i
a <-> Db; $S
u <> v SS

Use

Use

Use
Use

SS Definition
$S of Operator 1

of Operator 1

of Operator 1

SS Definition

Y $S of Operator 2

of Operator 1
of Operator 2

L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.4 Approximate Replaceability 95

3.9.4 Approximate Replaceability
Principle

[In certain situations, it is not necessary that an operator can be exactly replaced with
another one, because the names of the operators have no or little relevance there
and therefore can be ignored at least to some extent.

Preliminary Definition

[An operator can be approximately replaced with another one, if it can be exactly
replaced with the other when the names in the top level signature of both operators
are ignored.

Remarks

[The definition is preliminary and might be adjusted in the future, because it is
inappropriate for some cases yet.

[Furthermore, the implementation of the concept in the current version of the compiler
is still erroneous, i. e., it its behaviour is not correct in some cases yet.

[For the examples shown in the following, however, it works as desired.

L C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.9 Comparison of Operators
3 Generalized Operator Declarations 3.9.4 Approximate Replaceability 96

Examples

[In the following example, each of the three operators can be approximately replaced
with the other two (various operators used here are defined in task sheets):

(x:1nt) nZn -> (int = x * x);
(n:int) "!™ -> (int = 1if n <= 1 then 1 else (n-1)! * n end);
"|" (x:int) "|"™ -> (int = if x >= 0 then x else —-x end)

[The second and third operator sum from § 3.9.2 can be approximately replaced with
the following operator avg and vice versa:

avg of (x:int) { and (y:int) } end —-> (int =

s : 1nt?;
s =! x;
{ s =! ?2s + vy };

n := 1+ {1};
?S : n

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.10 Forwarding of Operator Applications
3 Generalized Operator Declarations 3.10.2 Solution 97

3.10 Forwarding of Operator Applications
3.10.1 Problem

[To avoid code replication, an operator such as avg in § 3.9.4 should be able to invoke
the second or third operator sum from § 3.9.2 to compute the sum of all its operand
values.

[With the bracket operators mentioned in § 3.3, however, it is only possible to access
the values of a repeatable parameter one after the other, but not to forward all of them
to another operator.

3.10.2 Solution

[In the implementation of each operator, there is another bracket operator <> ()
whose operand might be an application of any other operator with which the current
operator could be approximately replaced if its result type would be the type of this
operand.

[At run time, the whole current operator application is in essence forwarded to this
other operator, and the value returned by it is returned by the application of the
bracket operator.

The operand of the bracket operator is only needed to identify the other operator and
is never evaluated at run time.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.10 Forwarding of Operator Applications
3 Generalized Operator Declarations 3.10.4 Partial Forwarding 98

3.10.3 Example

[Forwarding of the applications of avg to the second or third operator sum:

avg of (x:int) { and (y:int) } end —-> (int =
<>(sum of 1 end) : (1 + {1})
)

3.10.4 Partial Forwarding

[In some cases it is desirable to forward only a part of an operator application to
another operator.

[Therefore, in addition to the brackets in the signature of an operator that are
mentioned in § 3.2, round brackets with just one alternative are allowed if they have a
denomination <names>.

[For each bracket of this kind, there is a corresponding bracket operator <names> ()
in the implementation of the operator, which works in analogy to the bracket operator
mentioned in § 3.10.2, but forwards only the part of the current operator application
that belongs to the subsignature in this bracket.

5 C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026) 3.10 Forwarding of Operator Applications
3 Generalized Operator Declarations 3.10.5 Example 99

3.10.5 Example

$S Compute expression in "additive normal form".

calc <ab>([minus] (a:int) { times [minus] (b:int) })
{ plus <cd> ([minus] (c:int) { times [minus] (d:int) }) } end
—> (int =
$S Compute product.
prod <mx>[minus] (x:1int) { times <my>[minus] (y:1int) } end
-> (int =
p : int?; p =! <mx>[-x | x]; { p =! ?p * <my>[-y | y] }; ?p

) i
$S Compute first product with factors a and possibly b.

r : 1nt?;

r =! <ab>(prod 1 end);

s

S$s 7

{ r =! ?2r + <cd>(prod 1 end) };
?r

) ;

$S Exemplary uses.
print calc 2 times minus 3 plus 4 times 5 end; $$ 14
print calc 2 times 3 plus minus 4 times 5 end $S —-14

