
3.9 Comparison of Operators

3.9.1 Definitions

❐ An operator can be replaced (exactly) with another operator, if every unambiguous

and correct application of the first operator is also an unambiguous and correct

application of the second operator with the same type.

❐ Tw o operators are congener ic , if each of them can be replaced with the other.

❐ An operator is more restricted or more specific than another, if the first operator can

be replaced with the second, but not vice versa.

Then, the second operator is more extensive or more general than the first.

❐ Tw o operators are incomparable, if none of them can be replaced with the other.

❐ Tw o operators are non-overlapping , if no unambiguous and correct application of one

of them is also an unambiguous and correct application of the other with the same

type.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.1 Definitions 90

3.9.2 Rules

❐ If multiple congeneric operators are initially visible at some location, the one that has

been defined or imported last hides all others, causing them to become invisible.

❐ If the same expression can be interpreted as an application of different operators that

are visible (and not hidden) at the respective location and not excluded by an exclude

specification of the operator above:

❍ If one of these operators is more specific than all others, the expression is

inter preted as an application of this operator, i. e., the most specific operator is

preferred.

❍ If none of these operators is more specific than all others, the expression is

ambiguous.

This ambiguity can be resolved by defining another operator which exactly covers

the „intersection“ of all these operators, i. e., whose unambiguous and correct

applications are also unambiguous and correct applications of all these operators

with the same type.

Because this additional operator is now more specific than all these operators, it is

preferred according to the previous rule.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.2 Rules 91

3.9.3 Examples

❐ In the following example, the first constant x is hidden by the second constant x,

because both have the same type, causing the expression print x to be

unambiguous.

The first constant y, how ever, is not hidden by the second constant y, because they

have different types, causing the expression print y to be ambiguous:

x := 1; y := 1;
x := 2; y := ’y’;
print x; $$ 2
print y $$ Ambiguous

Many other uses of y are unambiguous, how ever, because only one of the two

constants causes the respective expression to be type-correct, for example:

print y + 0; $$ 1
print char int y $$ y

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.3 Examples 92

❐ In the following example, the first operator sum is more specific than the other two,

causing it to be preferred in expressions such as sum of 1 and 2 end.

The second and third operator are congeneric, causing the third to hide the second,

and therefore expressions such as sum of 1 end and sum of 1 and 2 and 3 end are

unambiguous both before and after the definition of the third one:

sum of (x:int) and (y:int) end -> (int = $$ Definition
x + y $$ of Operator 1

);

sum of (x:int) { and (y:int) } end -> (int = $$ Definition
s : int?; s =! x; { s =! ?s + y }; ?s $$ of Operator 2

);

print sum of 1 and 2 end; $$ Use of Operator 1
print sum of 1 and 2 and 3 end; $$ Use of Operator 2

sum of { (x:int) and } (y:int) end -> (int = $$ Definition
s : int?; s =! y; { s =! ?s + x }; ?s $$ of Operator 3

);

print sum of 1 and 2 end; $$ Use of Operator 1
print sum of 1 and 2 and 3 end $$ Use of Operator 3

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.3 Examples 93

❐ In the following example, the second operator is more specific than the first, causing it

to be preferred after its definition for swapping two int variables:

[(T:type)] (x:T?) "<->" (y:T?) -> (T? = $$ Definition
z := ?x; x =! ?y; y =! z; y $$ of Operator 1

);

a : bool?; a =! true;
b : bool?; b =! false;
a <-> b; $$ Use of Operator 1
u : int?; u =! 1;
v : int?; v =! 2;
u <-> v; $$ Use of Operator 1

(x:int?) "<->" (y:int?) -> (int? = $$ Definition
x =! ?x + ?y; y =! ?x - ?y; x =! ?x - ?y; y $$ of Operator 2

);

a <-> b; $$ Use of Operator 1
u <-> v $$ Use of Operator 2

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.3 Examples 94

3.9.4 Approximate Replaceability

Principle

❐ In certain situations, it is not necessary that an operator can be exactly replaced with

another one, because the names of the operators have no or little relevance there

and therefore can be ignored at least to some extent.

Preliminar y Definition

❐ An operator can be approximately replaced with another one, if it can be exactly

replaced with the other when the names in the top level signature of both operators

are ignored.

Remarks

❐ The definition is preliminary and might be adjusted in the future, because it is

inappropr iate for some cases yet.

❐ Fur thermore, the implementation of the concept in the current version of the compiler

is still erroneous, i. e., it its behaviour is not correct in some cases yet.

❐ For the examples shown in the following, however, it wor ks as desired.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.4 Approximate Replaceability 95

Examples

❐ In the following example, each of the three operators can be approximately replaced

with the other two (various operators used here are defined in task sheets):

(x:int) "2" -> (int = x * x);
(n:int) "!" -> (int = if n <= 1 then 1 else (n-1)! * n end);
"|" (x:int) "|" -> (int = if x >= 0 then x else -x end)

❐ The second and third operator sum from § 3.9.2 can be approximately replaced with

the following operator avg and vice versa:

avg of (x:int) { and (y:int) } end -> (int =
s : int?;
s =! x;
{ s =! ?s + y };
n := 1 + {1};
?s : n

)

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.9 Comparison of Operators
3.9.4 Approximate Replaceability 96

3.10 Forwarding of Operator Applications

3.10.1 Problem

❐ To avoid code replication, an operator such as avg in § 3.9.4 should be able to invoke

the second or third operator sum from § 3.9.2 to compute the sum of all its operand

values.

❐ With the bracket operators mentioned in § 3.3, however, it is only possible to access

the values of a repeatable parameter one after the other, but not to forward all of them

to another operator.

3.10.2 Solution

❐ In the implementation of each operator, there is another bracket operator <>(•)
whose operand might be an application of any other operator with which the current

operator could be approximately replaced if its result type would be the type of this

operand.

❐ At run time, the whole current operator application is in essence forwarded to this

other operator, and the value returned by it is retur ned by the application of the

bracket operator.

The operand of the bracket operator is only needed to identify the other operator and

is never evaluated at run time.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.10 Forwarding of Operator Applications
3.10.2 Solution 97

3.10.3 Example

❐ Forwarding of the applications of avg to the second or third operator sum:

avg of (x:int) { and (y:int) } end -> (int =
<>(sum of 1 end) : (1 + {1})

)

3.10.4 Par tial Forwarding

❐ In some cases it is desirable to forward only a part of an operator application to

another operator.

❐ Therefore, in addition to the brackets in the signature of an operator that are

mentioned in § 3.2, round brackets with just one alternative are allowed if they have a

denomination <names>.

❐ For each bracket of this kind, there is a corresponding bracket operator <names>(•)
in the implementation of the operator, which wor ks in analogy to the bracket operator

mentioned in § 3.10.2, but forwards only the part of the current operator application

that belongs to the subsignature in this bracket.

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.10 Forwarding of Operator Applications
3.10.4 Par tial Forwarding 98

3.10.5 Example

$$ Compute expression in "additive normal form".
calc <ab>([minus] (a:int) { times [minus] (b:int) })

{ plus <cd> ([minus] (c:int) { times [minus] (d:int) }) } end
-> (int =
$$ Compute product.
prod <mx>[minus] (x:int) { times <my>[minus] (y:int) } end
-> (int =
p : int?; p =! <mx>[-x | x]; { p =! ?p * <my>[-y | y] }; ?p

);
$$ Compute first product with factors a and possibly b.
r : int?;
r =! <ab>(prod 1 end);
$$ ^
$$ ^
{ r =! ?r + <cd>(prod 1 end) };
?r

);

$$ Exemplary uses.
print calc 2 times minus 3 plus 4 times 5 end; $$ 14
print calc 2 times 3 plus minus 4 times 5 end $$ -14

C. Heinlein: Adv. Progr. with MOSTflexiPL (WS 2025/2026)
3 Generalized Operator Declarations

3.10 Forwarding of Operator Applications
3.10.5 Example 99

