
Studienbereich Infor matik

Fakultät Elektronik und Infor matik

Advanced Programming with MOSTflexiPL

Lecture in Wintersemester 2025/2026

Prof. Dr. habil. Christian Heinlein

6. Task Sheet (Dezember 9, 2025)

Task 11: Forwarding of Operator Applications

Subtask 11.a)

Define an operator that exactly covers the intersection of the operators from task 7 and 8.b, causing expressions

such as 1 = 2 /= 3 to be unambiguous even if both of these operators are visible.

Implement this new operator by forwarding its applications to one of these two other operators.

Just like in task 9.a, every operand shall be evaluated only if its value is needed to determine the result value of the

entire comparison.

This operator shall also have the same binding properties as the predefined equality test •=•.

Note: When forwarding operator applications, a lambda parameter might only be forwarded to another lambda

parameter, and an ordinary parameter might only be forwarded to another ordinary parameter, even though the

compiler erroneously accepts other combinations, which will not work correctly at run time, however.

Subtask 11.b)

Eliminate, if possible, code replications in the implementations of your operators defined in previous tasks by

means of complete or partial forwarding to suitable local auxiliary operators.

Because partial forwarding sometimes causes run time errors, try to use complete forwarding whenever possible.

For example:

(while|until|do) [(X:type)] (\ x -> (X))
{ (while|until|do) [(Y:type)] (\ y -> (Y)) }
end -> (int =

......

(?* (
$$ Direct implementation:
......; $$ Processing of x.
{ }; $$ Repeated processing of y

$$ in the same way as x.

HTW Aalen, Advanced Programming with MOSTflexiPL, WS 2025/2026, Sheet 6 1

$$ Alternatively with local auxiliary operator:
aux { (while|until|do) [(Z:type)] (\ z -> (Z)) } -> (int =

{ } $$ Repeated processing of z.
);
<>(aux);

......
)) - 1

)

Task 12: Flexible Output of int, char, and bool Values

Define an operator print that consecutively prints any number of int, char, and bool values.

As with the predefined operator print, a terminating line separator is printed after the last value if only has not

been given.

After print and optionally only, any number of operands with types int, char, and bool and any number of the

following words and phrases can be given in any order:

• bin: Binary output of int values.

• oct: Octal output of int values.

• dec: Decimal output of int values (default).

• hex: Hexadecimal output of int values.

• lower: Use of lower case letters for the hexadecimal output of int values and for the output of bool values with

letters (default).

• upper: Use of upper case letters for the hexadecimal output of int values and for the output of bool values with

letters.

• letter: Output of the bool values true and false with the letters t and f or T and F, respectively, according

to lower or upper.

• digit: Output of the bool values true and false with the digits 1 and 0 (default).

• sign: Output of the bool values true and false with the characters + and −.

• chars t f with two arbitrary char values t and f:

Output of the bool values true and false with the characters t and f.

• sep s: The separator character s is printed between consecutive values (default is a space character).

• tight: No separator character is printed between consecutive values.

• reset: All settings are reset to the default values mentioned above.

Each of these specifications is applied to all subsequent operands of the current and all subsequent applications of

print until it is overridden by another specification of the same category (bin/oct/dec/hex, lower/upper,

letter/digit/sign/chars, sep/tight) or until reset is used to reset it to the default value of this category.

After each of the values, an optional width and an int value specifying the minimum output width for this value

can be given. If the value’s width (i. e., the number of characters for its output) is less than the minimum width, the

corresponding number of space characters is printed before the value. (This means conversely: If the value’s width

is greater than or equal to the minimum width, or if the minimum width is an unnatural value, no additional spaces

are printed.)

HTW Aalen, Advanced Programming with MOSTflexiPL, WS 2025/2026, Sheet 6 2

As with the predefined operator print, the output of unnatural int and char values as such shall be empty. Every

bool value except false shall be printed in the same way as true.

For example:

$$ Application of print: $$ Corresponding output:

print 10 20 30; $$ 10 20 30
print 10 hex 20 30; $$ 10 14 1e
print true false; $$ 1 0
print sep ’|’ letter upper true false; $$ T|F
print 0 tight chars ’W’ ’F’ true; $$ 0W
print dec sep ’|’ 0 1:0 width 2 -123 width 5 456 width 1:0;

$$ 0| | -123|456
print; $$ (Just a blank line)
print only reset $$ (Reset all settings without any output)

%

HTW Aalen, Advanced Programming with MOSTflexiPL, WS 2025/2026, Sheet 6 3

