
A Note on SpanP FunctionsMeena Mahajan� Thomas Thieraufy Vinodchandran N.V.zKeywords. Computational Complexity.1 IntroductionValiant [10] introduced the class #P to count the number of solutions of NP sets. Recently,Fenner, Fortnow, and Kurtz [3] considered the class GapP, the closure of #P under subtraction,and showed many interesting properties of this class.K�obler, Sch�oning, and Tor�an introduced the class SpanP that counts the number of di-stinct outputs produced by a nondeterministic Turing machine. With this concept, they coulddistinguish between whether two given graphs are isomorphic or not.We introduce the class GapSpanP, the closure of SpanP under subtraction. We show thatthis class of functions coincides with the class GapPNP.2 PreliminariesWe follow the standard de�nitions and notations in computational complexity theory (see, e.g.,[1] or [4]). We �x an alphabet to � = f0; 1g. P (NP, PP) is the class of sets that are accepted bysome deterministic (nondeterministic, probabilistic) polynomial-time bounded Turing machine.FP denotes the class of all polynomial-time computable functions from �� to N.A counting machine M is a nondeterministic Turing machine with two halting states: ac-cepting and rejecting, and every computation path must end in one of these states. M denotesthe machine obtained by interchanging the accepting and rejecting states of M .accM(x) denotes the number of accepting paths of a CM M on input x. gapM(x) denotesthe value accM(x) � accM(x), i.e., the di�erence between the number of accepting paths and the�The Institute of Mathematical Sciences, Madras 600 113, India. Part of the work done when the author wasat the Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India.yAbteilung f�ur Theoretische Informatik, Universit�at Ulm, 89069 Ulm, Germany. Part of the work done whilevisiting the Department of Computer Science at the University of Rochester, Rochester, NY. Supported in partby DFG Postdoctorial Stipend Th 472/1-1 and NSF grant CCR-8957604.zThe Institute of Mathematical Sciences, Madras 600 113, India. Part of the work done when the author wasat the Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India.1

number of rejecting paths. #P [10] and GapP [3] are the classes of functions f for which thereexists a polynomial-time bounded counting machine M such that f = accM and f = gapM ,respectively.Another extension of #P is as follows. For a class C of sets, # �C is the class of functions f forwhich there exist a set A 2 C and a polynomial p such that f(x) = kf y 2 �p(jxj) j hx; yi 2 A gk.Clearly, #P = # � P.For a nondeterministic Turing transducer M and an x 2 ��, let outM(x) denote the setof outputs produced by M along accepting paths on input x. spanM(x) is de�ned as thenumber of di�erent outputs of M on input x, i.e., spanM(x) = koutM(x)k. SpanP [6] is theclass of functions f for which there exists a polynomial-time bounded transducer M such thatf = spanM .Here, we introduce the gap analog of the class SpanP. For a nondeterministic transducer M ,let gapspanM denote the function spanM�spanM . In other words, for any x 2 ��, gapspanM(x)is the di�erence between the number of distinct witnesses M can produce for x and against x.GapSpanP is the class of functions f for which there exists a polynomial-time bounded nonde-terministic transducer M such that f = gapspanM .As a variant of this de�nition, we consider the number of elements in the set theoreticdi�erence of the span of M and M . That is, for a nondeterministic transducer M , let di�spanMdenote the function koutM(x) � outM(x)k. In other words, we are counting the number ofdi�erent outputs on accepting paths of M on input x that are not outputs on rejecting pathsof M on input x. Di�SpanP is the class of functions f for which there is a polynomial-timebounded transducerM such that f = di�spanM . Relativized versions of these classes are de�nedin the obvious way.In this note, we characterize GapSpanP and Di�SpanP in terms of the class GapP and#P, respectively. Namely, we show that GapSpanP = GapPNP and Di�SpanP = #PNP. Thefollowing �gure summarizes the relationships among these classes.
#P@@@@@@ ������GapP������ SpanP = # �NP#PNP = # � co-NP= Di�SpanPHHHHHHGapSpanP = GapPNP

2

3 GapSpanPClearly, SpanP � GapSpanP. This holds since any given transducer M can be modi�ed toobtain a transducer M 0 that simulates M and if M reaches a rejecting state, M 0 branches oncemore and halts. One path will be accepting and the other rejecting. On both, M 0 outputs aspecial symbol, say #. Then spanM = gapspanM 0 .GapP is the closure of #P under subtraction.Theorem 3.1. [3] GapP = #P � #P = #P � FP = FP � #P.We show in the following Theorem that GapSpanP is the closure of SpanP under subtraction.Below, we will also establish the other equalities in Theorem 3.1 for GapSpanP.Theorem 3.2. GapSpanP = SpanP� SpanP.Proof. From the de�nition of GapSpanP it is clear that GapSpanP � SpanP � SpanP. Toshow the other containment, let f and g be SpanP functions. Let f = spanM0 and g = spanM1 .Without loss of generality, we can assume that both, M0 and M1 have rejecting computationson all inputs. For i = 0; 1, let M 0i be the transducer obtained from Mi that outputs a specialsymbol, say #, on any rejecting computation of Mi.Consider the following transducer N on input x. First, N branches once. Then N simulatesM 00 on input x on one branch, M 01 on input x on the other branch, and �nally makes the sameoutput as these machines on each branch.Then we have gapspanN = f � g.Many arithmetic properties of GapP carry over to GapSpanP, because SpanP, like #P, isclosed under addition and multiplication. In particular, GapSpanP is closed under addition,multiplication and subtraction.For our other characterizations of GapSpanP, we need the following result from [5], [6] and [9](see also [8]).Lemma 3.3. [5, 6, 9] SpanP = # �NP � #PNP = # � co-NP � FP� SpanP.Theorem 3.4. GapSpanP = SpanP� FP = FP� SpanP = GapPNP:Proof. It follows from Theorem 3.2 that SpanP � FP � GapSpanP and FP � SpanP �GapSpanP. On the other hand, we haveGapSpanP � #PNP �#PNP (by Theorem 3.2 and Lemma 3.3)= GapPNP (by Theorem 3.1, relativized)= #PNP � FP (by Theorem 3.1, relativized)� (FP� SpanP)� FP (by Lemma 3.3)= FP� (SpanP + FP)= FP� SpanP; 3

and analogously, GapSpanP � FP�#PNP � FP� (FP� SpanP) = SpanP � FP.Note that all the inclusions in the above proof are in fact equations. 1For any relativizable class of sets C, let Low(C) denote the class of sets that are low for C,that is, Low(C) = nL j CL = Co.SPP [3] is the class of sets L for which there is a GapP function f such that for all x,x 2 L =) f(x) = 1;x 62 L =) f(x) = 0:Fenner, Fortnow, and Kurtz [3] have shown that SPP is precisely the class of sets that arelow for GapP, i.e., SPP = Low(GapP). By Theorem 3.4, GapSpanP and GapP are di�erent,unless NP is low for GapP.Corollary 3.5. GapSpanP = GapP, NP � SPPThis nicely contrasts with the result in [6] that SpanP = #P , NP � UP, where UP is thesubset of NP where the nondeterministic machines accepting a set have to be unambiguous.Note also that there is an oracle relative to which NP is not a subset of SPP (for example, anoracle such that NP is not contained in �P [9]). Therefore, such an oracle also separates GapPand GapSpanP.Next, we de�ne the span analog of SPP.De�nition 3.6. A set L is in SpanSPP if there exists a machine M such that for all x,x 2 L =) gapspanM(x) = 1;x 62 L =) gapspanM(x) = 0:It follows from Theorem 3.4 that SpanSPP = SPPNP (in a di�erent setting, this has beenobserved independently in [11]). An obvious question now is whether SpanSPP is the class ofsets that are low for GapSpanP. We can show only one inclusion, namely that any set that islow for GapSpanP must be in SpanSPP. Note that not all SpanSPP sets are low for GapSpanP,unless NP is low for PPNP. Also, it is not even known whether SPP is low for GapSpanP.Proposition 3.7. Low(GapSpanP) � SpanSPP.Proof. Let L be low for GapSpanP. First, we show that the characteristic function of L is inGapSpanPL. Let M be a transducer that, on input x, queries its oracle on x. If x is in the1The authors have been informed by Klaus Wagner that, as reported in [11], the equations SpanP� SpanP =SpanP�FP = FP�SpanP = #PNP �#PNP = #PNP �FP = FP�#PNP have independently been observed bythe participants of a workshop in Georgenthal [2]. 4

oracle set, M accepts and outputs x. Otherwise, M branches, with one branch accepting andone branch rejecting, and outputs x on both branches. Thus, we havegapspanML(x) = 8<: 1 if x 2 L;0 otherwise.Since L is low for GapSpanP, there is a machine N such that gapspanN = gapspanML , andtherefore, L 2 SpanSPP.It follows from (relativized versions of) Theorem 3.2 and Theorem 3.4 that any set that islow for SpanP or #PNP must be low for GapSpanP.Corollary 3.8. Low(SpanP) [Low(#PNP) � Low(GapSpanP).On the other hand, SpanSPP is clearly a weak class that does not, for example, contain PPunless the Counting Hierarchy [12] collapses.Proposition 3.9. If PP is in SpanSPP, then the Counting Hierarchy collapses to SpanSPP.Proof. If PP is in SpanSPP, then PPPP � PPSPPNP � PPNP. The latter inclusion holdsbecause SPP is low for GapP and the proof relativizes. Since PPNP � PPP by Toda's theorem[7], we get PPPP � PSPPNP = SPPNP. Consequently, by an inductive argument, the CountingHierarchy collapses to SPPNP.Finally, we show an interesting characterization of #PNP. In [6], it is shown that the class#PNP can be characterized as the class of all functions f , such that there exist two transducersMand M 0 such that f(x) is the number of witnesses that M produces but M 0 does not produce oninput x. This is denoted as f = spanM�M 0. We will use this result in the following Theorem.Theorem 3.10. #PNP = Di�SpanPProof. From the de�nition, we have Di�SpanP � #PNP. For the reverse inclusion, let f 2#PNP. Then there exist two transducers M0 and M1 such that f(x) = spanM0�M1(x) [6]. Now,let transducer N be de�ned as in the proof of Theorem 3.2. Then we have di�spanN(x) =spanM0�M1(x).References[1] J. L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity { I. Springer Verlag, BerlinHeidelberg, 1988.[2] H. J. Burtschick. Notes of a seminar on complexity theory. Manuscript, Georgenthal 1991.[3] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. Gap-de�nable counting classes. In Proceedingsof the Sixth Annual Conference on Structure in Complexity Theory, pages 30{42, 1991.5

[4] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.Addison-Wesley, 1979.[5] J. K�obler. Strukturelle Komplexit�at von Anzahlproblemen. PhD thesis, Institut f�ur Infor-matik der Universit�at Stuttgart, 1989.[6] J. K�obler, U. Sch�oning, and J. Tor�an. On countimg and approximation. Acta Informatica,26:363{379, 1989.[7] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing20:865-877, 1991.[8] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-timehierarchy. In Proceedings of the Sixth Annual Conference on Structure in Complexity theory,pages 2{12, 1991.[9] J. Tor�an. Structural properties of the counting hierarchies. PhD thesis, Barcelona, 1988.[10] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,8:189{201, 1979.[11] H. Vollmer and K.W. Wagner. The complexity of �nding middle elements. Manuscript,1993. To appear in International Journal of Foundation of Computer Science.[12] K.W. Wagner. The complexity of combinatorial problems with succinct input representa-tions. Acta Informatica 23:325�356, 1986.
6

