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1. IntroductionGiven a set A, suppose that instead of solving the decision problem for A for anarbitrary input x, we are interested in obtaining the following partial informationabout A: which one of two given input strings x and y is more likely to be in A?More precisely, is there a polynomial-time algorithm that works as follows? If atleast one of x or y belongs to A, then output a member of fx; yg that belongs to A;else, if neither x nor y belongs to A, then either of the strings can be output. If sucha polynomial-time algorithm exists, then A is said to be P-selective.34 P-selectivesets were de�ned by Selman34 as a complexity-theoretic analog of semi-recursivesets in recursion theory. 20 Subsequently, this property has been studied by manyresearchers (e.g. see Ref. [39,19,18,11,40,10,32,7,1]).This research has revealed that P-selective sets are an important tool in studyingseveral important structural concepts such as function complexity classes,19;32;7;1;12reducing search to decision and self-reducibility,18;41;11 and promise problems.36;29A survey of the current state of knowledge about selective sets can be found inDenny-Brown et al..13Selman 34 proved that SAT, the set of all satis�able boolean formulas, is P-selective if and only if P = NP. Thus P is the largest level of the polynomialhierarchy that is known to contain only P-selective sets. In as much as the powerof nondeterministic computation is one unifying theme of complexity theory, it isnatural to wonder whether some broader notion of selectivity can capture moreof the polynomial hierarchy. Thus motivated, we study the class of NP-selectivesets|sets having an \NP function"8 that serves as a selector. That is, a languageL is NP-selective if it has a selector function that is computable by a single-valuedand total NP transducer. (A formal de�nition is given in Section 2.)We ask whether each NP set has a nondeterministic but total polynomial-timeselector. Our results provide a negative answer to this question despite the factthat NP-selectivity is a more inclusive notion than P-selectivity and that every setin NP\ coNP is NP-selective. We study several properties of NP-selective sets suchas self-reducibility, hardness under various reductions, lowness, and nonuniformcomplexity. Thus, in this note, we construct a theory of NP-selective sets that isparallel to that of P-selective sets.Self-reducibility31 has widely been discussed as a property possessed by most\natural" sets such as SAT. It is known that a language L is in P if and only Lis P-selective and Turing self-reducible.11 Analogously, we show that a language Lis in NP \ coNP if and only if L is Turing self-reducible and NPMVt-selective. Asa consequence of this, all NP sets are NP-selective only if NP = coNP. Wang41has recently shown that such characterizations hold for arbitrary time complexityclasses.One important line of research on P-selective sets has been to determine thestrongest consequence of NP sets reducing to a P-selective set under various reductions.27Selman35 showed that if there exists a P-selective set that is NP-hard under posi-tive truth-table reductions, then P = NP. Buhrman, Torenvliet, and van EmdeBoas10 generalized this to show that if there exists a P-selective that is NP-hard2



under positive Turing reductions, then P = NP. Recently, Agrawal and Arvind,1Beigel, Kummer, and Stephan,7 and Ogihara32 independently have proved that theexistence of a �Pbtt-hard P-selective set for NP implies P = NP. We show that theexistence of an NP-selective set that is NP-hard under �
 or �Ppos or �Pbtt reductionsimplies that NP = coNP. These results are described in Section 3.Section 4 studies the lowness and nonuniform complexity of NP-selective sets.We show that NP-selective sets are of simple nonuniform complexity; all NP-selective sets are in (NP \ coNP)=poly. Although inclusion in the third level ofthe low hierarchy33 for all NP-selective sets in NP follows immediately from this,we show the stronger result that NP-selective sets are as low as P-selective sets: allNP-selective sets in NP are in the second level of the low hierarchy. This upperbound on the lowness of the NP-selective sets is optimal (with respect to relativiz-able proof techniques), due to the recently proven lower bound on the lowness ofP-selective sets.3 As to extended lowness,5 we note that all NP-selective sets areExtendedLow�3.Several of our results are obtained by relativizing known results for P-selectivesets. In Section 5, we apply this technique to study the properties of certain promiseproblems. Longpr�e and Selman29 showed that if a set A is �Pd -hard for NP, thena natural promise problem associated with A, PP-A, is Turing-hard for NP. Weimprove this to show that: If A is �Ppos-hard for NP, then PP-A is Turing-hard forNP.Finally, using the relativization technique, we show that the result \NP �(NP \ coNP)=poly ) PH = �P2 ," �rst explicitly proved by Abadi, Feigenbaum,and Kilian,2 and K�amper,21 is implicit in Karp and Lipton's (Ref. [22]) seminalresult: NP � P=poly) PH = �P2 .2. De�nitionsAll languages are de�ned over strings in the alphabet f0; 1g and all functionsmap strings to strings. We use the standard de�nitions of nondeterministic func-tion classes8 (see also Ref. [37]) to formalize our notion of a nondeterministic se-lector. A transducer M outputs a string y on input x if there exists an accep-ting path of M on input x that outputs y. Such transducers compute partial,multivalued functions. For each partial, multivalued function f , let dom(f) =fx j 9y(y is an output of f(x))g: We say that f is a total function if dom(f) =f0; 1g�. A partial function is single-valued if for all x 2 dom(f), kfy j y is anoutput of f(x)gk = 1.De�nition 1 Ref. [8]1. NPMV is the class of all partial multivalued functions f such that there existsa nondeterministic polynomial-time transducer M such that for all strings xand y, M (x) outputs y if and only if f(x) maps to y.2. NPSV is the class of all single-valued NPMV functions.3. NPMVt is the class of all total functions in NPMV.3



4. NPSVt is the class of all single-valued NPMVt functions.5. PF is the class of functions computable by deterministic poly-time transducers.The following de�nitions are useful for studying partial multivalued functions.De�nition 2 Ref. [8,37]1. Given a partial multivalued function f , for all x, we de�ne set-f(x) = fy j yis an output of f(x)g.2. Given partial multivalued functions f and g, g is an extension of f if dom(g) �dom(f) and for all x 2 dom(f), set-g(x) = set-f(x).3. Given partial multivalued functions f and g, g is a re�nement of f if dom(g) =dom(f) and for all x 2 dom(g), set-g(x) � set-f(x).Our next de�nition can be used to de�ne selectivity for any partial, multivaluedfunction class.De�nition 3 Ref. [19] [Selectivity by Classes of Functions]1. Let FC be a class of (possibly multivalued, possibly partial) functions mappingfrom �� to ��. A set A is FC-selective if there is a function f 2 FC so that,for every x; y 2 ��,(a) set-f(x; y) � fx; yg, and(b) if x 2 A or y 2 A, then ; 6= set-f(x; y) � A.2. Let FC be any class of functions mapping from �� to ��. We de�ne FC-sel =fA j A is FC-selectiveg.The function f is called the selector functions for A.Observe that the de�nition of a P-selective set is identical to that of a PFt-selective set. We say that a set L is NP-selective if L is NPSVt-selective. We willuse P-sel to denote the class of P-selective sets, NP-sel to denote the class of NP-selective sets, and NPMVt-sel to denote the class of NPMVt-selective sets. In thisnote, we will focus on NP-selective sets and NPMVt-selective sets. Hemaspaandraet al.19 study the partial counterparts, NPSV-selective sets and NPMV-selectivesets.The following proposition, although easy to prove, will be extensively used inthe later sections.Proposition 11. If L is NP-selective, then there is an NPSVt-selector for L such that (8x; y 2��)[f(x; y) = f(y; x)].2. NPSVt = PFNP\coNPt .3. NP = NPNPSVt .aaWe use the natural notion of access to a single-valued function oracle; the value of the functionon the queried string is returned. 4



4. NPSVt = (NPSVt)NPSVt .We assume that the reader is familiarwith the standard notations and de�nitionsof polynomial-time reducibilities.27 We will use the 
 reductions of Adleman andManders, which are the same as many-one strong nondeterministic reductions.4;28We say that A �
 B if there is a nondeterministic polynomial-time transducerN such that(i) for each string x, N (x) has at least one accepting path p(x), and(ii) for each accepting path p(x) of N (x), it holds thatx 2 A () output(x; p(x)) 2 B;where output(x; p(x)) denotes the output value on path p(x).For sets A and B, we let A � B denote the disjoint union of A and B, namely,A �B = f0x j x 2 Ag [ f1x j x 2 Bg.The standard de�nition of self-reducibility that is used in most contemporaryresearch in complexity theory was given by Meyer and Paterson.31De�nition 4 Ref. [31] A polynomial time computable partial order < on �� is OKif there exists a polynomial p such that,1. each strictly decreasing chain is �nite and every �nite <-decreasing chain isshorter than p of the length of its maximum element, and2. for all x; y 2 ��, x < y implies that jxj � p(jyj).De�nition 5 Ref. [31] A set L is Turing self-reducible if there is an OK partialorder < and a deterministic polynomial time-bounded oracle machine M such thatM accepts L with oracle L and, on any input x, M asks its oracle only aboutstrings strictly less than x in the OK partial order <. If the Turing self-reductionof the oracle machine M in fact is also a polynomial-time disjunctive (conjunctive)truth-table reduction, then L is said to be disjunctive (conjunctive) self-reducible.Lowness and extended lowness are used here as de�ned, respectively, by Sch�oning33and Balc�azar, Book, and Sch�oning.5De�nition 61. [Ref. [33]] For each k � 1, de�ne Lowk = fL 2 NP j �P; Lk = �Pkg, where the�Pk 38 are the � levels of the polynomial hierarchy .2. [Ref. [5]] For each k � 2, de�ne ExtendedLowk = fL j �P; Lk = �P; SAT�Lk�1 g.For each k � 3, de�neExtendedLow�k = fL j P(�P;Lk�1)[O(logn)] � P(�P;SAT�Lk�2 )[O(logn)]g;where P(�P; Lk�1 )[O(logn)] denotes the class of languages computable in polynomialtime by querying at most O(logn) strings to a �Pk�1 oracle.5



The �rst question that arises is whether NP-sel properly contains P-sel. Thefollowing theorem answers this question conditionally in the a�rmative.Theorem 1 P-sel 6= NP-sel if and only if P 6= NP \ coNP.Proof. If P = NP \ coNP then all NPSVt functions are computable inpolynomial time (Ref. [8], or see Part 2 of Proposition 1), and thus P-sel = NP-sel.By the results of Selman,35 it follows that if P 6= NP \ coNP, then there is a setB 2 (NP\ coNP)�P such that B is not P-selective. However, observe that all setsin NP \ coNP are NP-selective. 2Let us now turn to our main question: how do various properties of NP-selectivesets compare with those of P-selective sets? Buhrman, van Helden, and Torenvliet11showed that if a Turing self-reducible set is P-selective, then it is in P. The nexttheorem is a nondeterministic analog of this result.Theorem 2 If a set A is polynomial-time Turing self-reducible and is �
 -reducibleto S � S, for some NPMVt-selective set S, then A is in NP \ coNP.Proof. Let A be polynomial-time Turing self-reducible via machine M , let Abe �
-reducible to S � S via a nondeterministic machine N , and let S be NPMVt-selective via a nondeterministic machine F . Let x be a string whose membership inA we are testing. Suppose that N on x outputs cu for some accepting computationpath so that x 2 A if and only if �S(u) = c. Let us �x such c and u. For any v andw (v 6= w), let us write v <F w if w 2 set-F (v; w); that is, it is witnessed by F thatv 2 S ) w 2 S. By convention, let ? and > be strings such that ? <F v for anyv, and v <F > for any v.Consider a simulationM 0 of M on x de�ned as follows: The simulation will usetwo strings, a and b. Initially, a is set to > and b is set to ?. M 0 simulates M suchthat when M makes the ith query yi, M 0 performs the following steps:1. Simulate N on yi to compute divi such that yi 2 A, �S(vi) = di.2. If a <F vi, then choose the branch corresponding to vi 2 S.If vi <F b, then choose the branch corresponding to vi 62 S.If b <F vi <F a, then simulate F on (u; vi). If u <F vi, then set a to vi andchoose the branch corresponding to vi 2 S. If vi <F u, then set b to vi andchoose the branch corresponding to vi 62 S.Let r be 1 if M accepts in the simulation and 0 if M rejects in the simulation.Let a0 and b0 be the �nal values of a and b, respectively. Let i and j be such thata0 is set to vi and b0 is set to vj. The following properties hold:1. b0 <F u <F a0.2. If b0 62 S and a0 2 S, then MA on x accepts if and only if r = 1, so �A(x) = r.3. If b0 2 S, then u 2 S, so �A(x) = c.4. If a0 62 S, then u 62 S, so �A(x) = 1� c.6



Suppose r = c. Then we have �A(x) = r if and only if a0 2 S. So, �A(x) = r if andonly if vi 2 S if and only if �A(yi) = di. If this case holds, let z = yi and e = 1 ifr = di and 0 otherwise. Suppose r = 1� c. Then we have �A(x) = r if and only ifb0 62 S. So, �A(x) = r if and only if vj 62 S if and only if �A(yj) = 1 � dj. If thiscase holds, let z = yj and e = 0 if r = dj and 1 otherwise. It holds that x 2 A ifand only if �A(z) = e.Thus, M 0 will �nd strings z and e such that �A(x) = 1 if and only if �A(z) = e.It is not hard to see that (i) there is some computation path of M 0 that �nds suchz and e, (ii) the simulation runs in time polynomial in jxj, and (iii) z is a stringappearing in the self-reduction tree of M on x. By repeating the above simulationpolynomiallymany times, we eventually �nd strings z0 and e0 such that x 2 A if andonly if �A(z0) = e0, andM on z0 determines the membership of z0 inA in polynomialtime without making any query. Thus, we have nondeterministic polynomial timeprocedures for both membership in A and non-membership in A. 2Corollary 1 If a set A is Turing self-reducible and 1-tt reducible to an NPMVt-selective set, then A 2 NP \ coNP.Corollary 2 If there exists an NPMVt-selective set L such that L is �
 -hard forNP, then NP = coNP.Since PSPACE, PP and �P contain Turing self-reducible complete languages,15a similar relationship holds for these classes.Corollary 3 If every language in PSPACE (respectively, �P, PP) is 
 reducibleto S � S for some NP-selective set S, then NP \ coNP = PSPACE (respectively,NP \ coNP � �P, NP \ coNP = PP).It follows from Corollary 1 that NP � NPMVt-sel if and only if NP = coNP.However the next theorems demonstrate that (unlikely) assertions such as NP �NPMVt-sel are equivalent to (equally unlikely) assertions about the complexity ofcomputing satisfying assignments, from which, we see that the above implicationholds directly without use of Theorem 2 or its corollaries.Let sat denote the partial multivalued function that, on input x, computes asatisfying assignment of x, if it exists. Note that sat belongs to the class NPMV.Theorem 3 The following are equivalent:1. SAT is NPSVt-selective.2. NP � NPSVt-sel.3. There is a single-valued re�nement g of sat such that some extension of g toa total function belongs to NPSVt.4. For every f 2 NPMV, there is a single-valued re�nement g of f such thatsome extension of g to a total function belongs to NPSVt.5. NP = coNP.Proof. The fact that assertion (1) is equivalent to (2) follows by NP-completenessof SAT and that (3) is equivalent to (4) follows by a result of Selman.37 It su�cesto show that (3) ) (5) ) (1) and that (1) ) (3).7



To see that (3) implies (5), let g be a single-valued re�nement of sat and let h bean extension of g that belongs to NPSVt. Observe that the following NP machineM accepts SAT. On input x, M simulates h(x). If the output of h(x) is a satisfyingassignment of x, it rejects, else it accepts x. Thus (5) holds. It is easy to observethat (5) implies (1), since all sets in NP \ coNP are NPSVt-selective.Finally, suppose that SAT is NPSVt-selective. Then, we can �nd a satisfyingassignment of a boolean formula by an NPSVt function that generates a satisfyingassignment by traversing the disjunctive self-reduction tree of SAT and using theNPSVt-selector to decide, at each node, whether to take the left branch or the rightbranch. If the leaf reached is a satisfying assignment then output the assignment,else output a special string ?. This proves that (1) implies (3). 2Theorem 4 The following are equivalent:1. SAT is NPMVt-selective.2. NP � NPMVt-sel.3. There is a re�nement g of sat such that some extension of g to a total functionbelongs to NPMVt.4. For every f 2 NPMV, there is a re�nement g of f such that some extensionof g to a total function belongs to NPMVt.5. NP = coNP.The proof of Theorem 4 is similar to that of Theorem 3, though a bit of carehas to be used in the arguments that Part (1) implies Part (3) and that Part (3)implies Part (5) to correctly handle, respectively, the fact that multiple leaves maybe reached and that multiple outputs may occur.Next, we investigate the existence of NP-hard NP-selective sets under variousreducibilities. Buhrman, Torenvliet, and van Emde Boas10 have proved that ifthere exists a P-selective set that is �Ppos-hard for NP, then P = NP. Also, recentresearch1;7;32 has revealed that if there exists a P-selective set that is �Pbtt-hard forNP, then P = NP. We now obtain analogous results for NP-selective sets, whichare proved by relativizing the corresponding results for P-selective sets.Lemma 1 (Relativizing Ref. [10]) If A �Ppos B, B is PFLt -selective for some setL, B 6= ; and B 6= ��, then A �P; Lm B and hence A is PFLt -selective.Theorem 5 If A �Ppos B and B is NP-selective, then1. A is NP-selective, and2. if B 6= �� and B 6= ; then A �NPSVtm B.Proof. Let B be NP-selective with selector f 2 NPSVt. There exists alanguage L 2 NP\coNP such thatB is PFLt -selective. Thus by Lemma1, A �P;Lm B.Since L 2 NP \ coNP, by Proposition 1, Part 2, it follows that A �NPSVtm B andthat A is NP-selective. 2Corollary 4 If A �Ppos A and A is NP-selective, then A 2 NP \ coNP.8



Similarly, it is easy to see that if A �
 A and A is NP-selective, then A 2NP \ coNP.Corollary 5 If there exists an NP-selective set that is �Ppos-hard for NP, thenNP = coNP.Lemma 2 (Relativizing Ref. [1,7,32]) If B is �Pbtt-hard for NP and B is PFLt -selective for some set L, then PL = NPL.Theorem 6 If there exists an NP-selective set that is �Pbtt-hard for NP, then NP =coNP.Proof. Let B be NP-selective with selector f 2 NPSVt. There exists aset L 2 NP \ coNP such that B is PFLt -selective. By Lemma 2, it follows thatPL = NPL, which implies that NP = coNP. 2Thus, not only is NP unlikely to be contained in the class of NP-selective sets,but even NP-selective sets that are hard for NP with respect to such powerfulreductions as �
 , �Pbtt or �Ppos reductions are unlikely to exist, unless NP = coNP.Our results for the general question, \Is C contained in FC-sel?" for C =fNP; coNPg and FC = fNPSVt;NPMVtg can be summarized by the followingtable. Results about the partial function classes NPMV and NPSV were obtainedin Ref. [19] and have been included here for completeness.Theorem 7 The following results hold:FC NP � FC-selective coNP � FC-selectiveNPSVt holds i� NP = coNP holds i� NP = coNPNPSV 19 holds if NP = coNP holds i� NP = coNPholds only if NPNP = coNPNPNPMVt holds i� NP = coNP holds i� NP = coNPNPMV19 holds (without any assumption) holds i� NP = coNP3. Lowness and Nonuniform ComplexityKo showed that P-selective sets have low circuit complexity; they are in P=poly(see Ref. [22] for formal de�nitions). By relativizing Ko's result (see also Ref. [29]),we can show that NP-selective sets have low circuit complexity too; they are in(NP \ coNP)=poly.Lemma 3 Ref. [23] For all sets A and L, if A is PFLt -selective, then A 2 PL=poly.Theorem 8 NP-sel � (NP \ coNP)=poly.Proof. Suppose A is NP-selective via a selector f 2 NPSVt. Then, by Part 2 ofProposition 1, there exists a language L in NP\coNP such that A is PFLt -selective.By Lemma 3, A is in PL=poly. Since PNP\coNP = NP\ coNP, the theorem follows.2 From Theorem 8, it follows immediately that the NP-selective sets in NP areLow3 (since (NP\coNP)=poly\NP � (NP=poly)\(coNP=poly)\NP � (coNP=poly)\NP, which due to K�amper21 is Low3). However, we will directly prove that the NP-selective sets in NP are even lower. Indeed, they are as low as P-selective sets.We use the following restatement of a theorem by Longpr�e and Selman29 (see alsoRef. [23]) to prove our theorem. 9



Lemma 4 Ref. [29,23] If A in NP is PL-selective for some L, then �P;A2 � �P;L2 .Theorem 9 The NP-selective sets in NP are Low2.Proof. Suppose A 2 NP is NP-selective. Then by Part 2 of Proposition 1, thereexists a set L 2 NP \ coNP such that A is PFLt -selective. By applying Lemma 4,and by using the fact that L 2 NP \ coNP is Low1,33 it follows that �P;A2 � �P2 .2 Hemaspaandra et al.19 have generalized this result to show that all NPSV-selective sets in NP are Low2.A set A is said to be GeneralizedLow2 if �P;A2 = �P2 .5 We obtain the followinggeneralized lowness result for NP-selective sets by relativizing the following resultof Balc�azar, Book, and Sch�oning5 (see also Ref. [29,22]).Lemma 5 Ref. [5] If A is Turing self-reducible and A is Turing reducible to aP-selective set then A is GeneralizedLow2.Theorem 10 If A is Turing self-reducible and A is Turing reducible to an NP-selective set, then A is GeneralizedLow2.Proof. Suppose A is Turing self-reducible and Turing reducible to an NP-selective set. Then A is Turing reducible to a PFLt -selective set for some set L 2NP \ coNP. By relativizing Lemma 5, it follows that A 2 �P;L2 . Since NP =NPNP\coNP, �P;L2 � �P2 , which completes the proof. 2As to extended lowness, K�obler24 has shown that (NP \ coNP)=poly isExtendedLow�3. From this and Theorem 8, we can immediately conclude that theNP-selective sets are ExtendedLow�3.b4. Applications of the Relativization TechniqueThe proofs of Theorems 5, 6, 8, and 9 used relativization of well-known resultson P-selective sets to obtain the corresponding properties of NP-selective sets. Inthis section, we use relativization to obtain some results of independent interest. Wenote that a nice example of this approach can be found in the literature. Buhrmanand Torenvliet9 have noted that, since the deterministic time hierarchy theoremrelativizes,42;16 simply by relativizing the deterministic time hierarchy it followsthat (for each k) the �k level of the polynomial hierarchy di�ers from the �k levelof the exponential hierarchy .16;17 This result is incomparable with the recent resultof Mocas30 that for all k, PNP[nk] � NEXP, where NEXP = [c>0NTIME[2nc ].Of course, since the nondeterministic time hierarchy theorem relativizes,42;16 itsimilarly holds that for each k the �k level of the polynomial hierarchy di�ers fromthe �k level of the exponential hierarchy.4.1. Relativizing Karp-LiptonWe note now that a result proved a half-decade ago by K�amper21 and Abadi,Feigenbaum, and Kilian2 is, in fact, merely a relativized version of a famous 1980result by Karp and Lipton.22bVery recently, K�obler25 has shown that NP-selective sets are ExtendedLow2.10
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