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ABSTRACT

In this note, we study NP-selective sets (formally, sets that are selective via NPSV
functions) as a natural generalization of P-selective sets. We show that, assuming P #
NP M coNP, the class of NP-selective sets properly contains the class of P-selective sets.
We study several properties of NP-selective sets such as self-reducibility, hardness under
various reductions, lowness, and nonuniform complexity. We prove many of our results
via a “relativization technique,” by using the known properties of P-selective sets. Using
this technique, we strengthen a result of Longpré and Selman on hard promise problems
and show that the result “NP C (NP M coNP)/poly = PH = NPYF” is implicit in Karp
and Lipton’s seminal result on nonuniform classes.
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1. Introduction

Given a set A, suppose that instead of solving the decision problem for A for an
arbitrary input z, we are interested in obtaining the following partial information
about A: which one of two given input strings z and y is more likely to be in A?
More precisely, 1s there a polynomial-time algorithm that works as follows? If at
least one of  or y belongs to A, then output a member of {«, y} that belongs to A;
else, if neither & nor y belongs to A, then either of the strings can be output. If such
a polynomial-time algorithm exists, then A is said to be P-selective.3* P-selective

3% as a complexity-theoretic analog of semi-recursive

sets were defined by Selman
sets in recursion theory. 2° Subsequently, this property has been studied by many
researchers (e.g. see Ref. [39,19,18,11,40,10,32,7,1]).

This research has revealed that P-selective sets are an important tool in studying

several important structural concepts such as function complexity classes, 327112

18,4111 36,29

reducing search to decision and self-reducibility, and promise problems.
A survey of the current state of knowledge about selective sets can be found in
Denny-Brown et al..'3

Selman 3* proved that SAT, the set of all satisfiable boolean formulas, is P-
selective if and only if P = NP. Thus P is the largest level of the polynomial
hierarchy that is known to contain only P-selective sets. In as much as the power
of nondeterministic computation is one unifying theme of complexity theory, it is
natural to wonder whether some broader notion of selectivity can capture more
of the polynomial hierarchy. Thus motivated, we study the class of NP-selective
sets—sets having an “NP function”® that serves as a selector. That is, a language
L 1s NP-selective if it has a selector function that is computable by a single-valued
and total NP transducer. (A formal definition is given in Section 2.)

We ask whether each NP set has a nondeterministic but total polynomial-time
selector. Qur results provide a negative answer to this question despite the fact
that NP-selectivity is a more inclusive notion than P-selectivity and that every set
in NP NcoNP is NP-selective. We study several properties of NP-selective sets such
as self-reducibility, hardness under various reductions, lowness, and nonuniform
complexity. Thus, in this note, we construct a theory of NP-selective sets that is
parallel to that of P-selective sets.

Self-reducibility®' has widely been discussed as a property possessed by most
“natural” sets such as SAT. It is known that a language L is in P if and only L
is P-selective and Turing self-reducible.!! Analogously, we show that a language L
is in NP N coNP if and only if L is Turing self-reducible and NPMV;-selective. As
a consequence of this, all NP sets are NP-selective only if NP = coNP. Wang?*!
has recently shown that such characterizations hold for arbitrary time complexity
classes.

One important line of research on P-selective sets has been to determine the
strongest consequence of NP sets reducing to a P-selective set under various reductions.?”
Selman?®® showed that if there exists a P-selective set that is NP-hard under posi-
tive truth-table reductions, then P = NP. Buhrman, Torenvliet, and van Emde
Boas'? generalized this to show that if there exists a P-selective that is NP-hard



under positive Turing reductions, then P = NP. Recently, Agrawal and Arvind,'
Beigel, Kummer, and Stephan,” and Ogihara3? independently have proved that the
existence of a <P, -hard P-selective set for NP implies P = NP. We show that the
existence of an NP-selective set that is NP-hard under <, or §§Os or <P, reductions
implies that NP = coNP. These results are described in Section 3.

Section 4 studies the lowness and nonuniform complexity of NP-selective sets.
We show that NP-selective sets are of simple nonuniform complexity; all NP-
selective sets are in (NP N coNP)/poly. Although inclusion in the third level of
the low hierarchy®? for all NP-selective sets in NP follows immediately from this,
we show the stronger result that NP-selective sets are as low as P-selective sets: all
NP-selective sets in NP are in the second level of the low hierarchy. This upper
bound on the lowness of the NP-selective sets is optimal (with respect to relativiz-
able proof techniques), due to the recently proven lower bound on the lowness of

5 we note that all NP-selective sets are

P-selective sets.® As to extended lowness,
ExtendedLow®s3.

Several of our results are obtained by relativizing known results for P-selective
sets. In Section b, we apply this technique to study the properties of certain promise
problems. Longpré and Selman?® showed that if a set A is §g—hard for NP, then
a natural promise problem associated with A, PP-A, is Turing-hard for NP. We
improve this to show that: If A is §£Os—hard for NP, then PP-A is Turing-hard for
NP.

Finally, using the relativization technique, we show that the result “NP C
(NP N coNP)/poly = PH = X first explicitly proved by Abadi, Feigenbaum,
and Kilian,? and Kamper,?! is implicit in Karp and Lipton’s (Ref. [22]) seminal
result: NP C P/poly = PH = XF.

2. Definitions

All languages are defined over strings in the alphabet {0,1} and all functions
map strings to strings. We use the standard definitions of nondeterministic func-
tion classes® (see also Ref. [37]) to formalize our notion of a nondeterministic se-
lector. A transducer M outputs a string y on input z if there exists an accep-
ting path of M on input x that outputs y. Such transducers compute partial,
multivalued functions. TFor each partial, multivalued function f, let dom(f) =
{x | Jy(y is an output of f(x))}. We say that f is a total function if dom(f) =
{0,1}*. A partial function is single-valued if for all € dom(f), |{y | vy is an
output of f(z)}|| = 1.

Definition 1 Ref. [8]

1. NPMYV s the class of all partial multivalued functions f such that there exists
a nondeterministic polynomual-time transducer M such that for all strings x
and y, M(z) outputs y if and only if f(x) maps to y.

2. NPSV s the class of all single-valued NPMV functions.

3. NPMV, s the class of dall total functions in NPMV.



4. NPSV, is the class of all single-valued NPMYV, functions.
5. PF s the class of functions computable by deterministic poly-time transducers.

The following definitions are useful for studying partial multivalued functions.

Definition 2 Ref. [8,37]

1. Given a partial multivalued function f, for all x, we define set-f(x) ={y | vy
is an output of f(x)}.

2. Given partial multivalued functions f and g, g is an extension of f if dom(g) D
dom(f) and for all x € dom(f), set-g(x) = set-f(x).

3. Given partial multivalued functions f and g, g is a refinement of f if dom(g) =
dom(f) and for all x € dom(yg), set-g(x) C set-f(x).

Our next definition can be used to define selectivity for any partial, multivalued
function class.
Definition 3 Ref. [19] [Selectivity by Classes of Functions]

1. Let FC be a class of (possibly multivalued, possibly partial) functions mapping
from X% to ¥*. A set A 1s FC-selective if there 1s a function f € FC so that,
for every x,y € X*,

(a) set-f(z, y) C {x, y}, and
(b) ife€ Aoryec A, then 0 # set-f(z, y) C A.

2. Let FC be any class of functions mapping from X% to X*. We define FC-sel =
{A | A is FC-selective}.

The function f s called the selector functions for A.

Observe that the definition of a P-selective set is identical to that of a PF;-
selective set. We say that a set L is NP-selective if L is NPSV;-selective. We will
use P-sel to denote the class of P-selective sets, NP-sel to denote the class of NP-
selective sets, and NPMV;-sel to denote the class of NPMV;-selective sets. In this
note, we will focus on NP-selective sets and NPMV;-selective sets. Hemaspaandra

1.19

et a study the partial counterparts, NPSV-selective sets and NPMV-selective

sets.
The following proposition, although easy to prove, will be extensively used in
the later sections.

Proposition 1

1. If L is NP-selective, then there is an NPSVy-selector for L such that (Vx, y €
I (@, y) = fly, ©)]-

2. NPSV, = PFPneeN?,

3. NP = NPNPSV: a

“We use the natural notion of access to a single-valued function oracle; the value of the function
on the queried string is returned.



4. NPSV, = (NPSV,)NPSVe,

We assume that the reader is familiar with the standard notations and definitions
of polynomial-time reducibilities.?” We will use the 5 reductions of Adleman and
Manders, which are the same as many-one strong nondeterministic reductions. 8
We say that A <, B if there is a nondeterministic polynomial-time transducer

N such that
(i) for each string z, N(z) has at least one accepting path p(x), and

(i1) for each accepting path p(x) of N(z), it holds that
r € A < output(z,p(x)) € B,

where output(x, p(x)) denotes the output value on path p(z).

For sets A and B, we let A @ B denote the disjoint union of A and B, namely,
A B={0x |2z A}U{lz |z € B}.

The standard definition of self-reducibility that is used in most contemporary
research in complexity theory was given by Meyer and Paterson.3!
Definition 4 Ref. [31] A polynomial time computable partial order < on ¥* is OK

iof there exists a polynomial p such that,

1. each strictly decreasing chain is finite and every finite <-decreasing chain 1is
shorter than p of the length of its mazimum element, and

2. for all x,y € X%, x < y implies that |z| < p(|y]|).

Definition 5 Ref. [31] A set L is Turing self-reducible if there is an OK partial
order < and a deterministic polynomial time-bounded oracle machine M such that
M accepts L with oracle L and, on any wnput x, M asks its oracle only about
strings strictly less than x in the OK partial order <. If the Turing self-reduction
of the oracle machine M in fact is also a polynomial-time disjunctive (conjunctive)
truth-table reduction, then L is said to be disjunctive (conjunctive) self-reducible.

Lowness and extended lowness are used here as defined, respectively, by Schoning33
and Balcazar, Book, and Schoning.?

Definition 6

1. [Ref. [33]] For each k > 1, define Lowy = {L € NP | EE’L =X} where the
2538 are the X levels of the polynomial hierarchy .

2. [Ref. [5]] For each k > 2, define FatendedLow, = {L | EE’L = Eg’_SlAT@L}.
For each k > 3, define

ExtendedLow®y, = {I | PErDO0egn)] ¢ p(S5M )10 00g )y

P, L
where P(Ek—l)[o(bg”)] denotes the class of languages computable in polynomial
time by querying at most O(logn) strings to a XY | oracle.



The first question that arises is whether NP-sel properly contains P-sel. The
following theorem answers this question conditionally in the affirmative.

Theorem 1 P-sel # NP-sel if and only if P # NP N coNP.

Proof. If P = NP N coNP then all NPSV, functions are computable in
polynomial time (Ref. [8], or see Part 2 of Proposition 1), and thus P-sel = NP-sel.
By the results of Selman,® it follows that if P # NP N coNP, then there is a set
B € (NPNcoNP)— P such that B is not P-selective. However, observe that all sets
in NP N coNP are NP-selective. ad

Let us now turn to our main question: how do various properties of NP-selective
sets compare with those of P-selective sets? Buhrman, van Helden, and Torenvliet!!
showed that if a Turing self-reducible set is P-selective, then it is in P. The next
theorem is a nondeterministic analog of this result.

Theorem 2 If a set A is polynomial-time Turing self-reducible and s < -reducible
to S@ S, for some NPMV;-selective set S, then A is in NP N coNP.

Proof. Let A be polynomial-time Turing self-reducible via machine M| let A
be <,-reducible to S @ S via a nondeterministic machine N, and let S be NPMV,-
selective via a nondeterministic machine F'. Let  be a string whose membership in
A we are testing. Suppose that N on x outputs cu for some accepting computation
path so that z € A if and only if xg(u) = ¢. Let us fix such ¢ and u. For any v and
w (v # w), let us write v <p w if w € set-F (v, w); that is, it is witnessed by F' that
v €S = wé€S. By convention, let L and T be strings such that L <z v for any
v, and v <p T for any v.

Consider a simulation M’ of M on z defined as follows: The simulation will use
two strings, a and b. Initially, a is set to T and b is set to L. M’ simulates M such
that when M makes the ¢* query y;, M’ performs the following steps:

1. Simulate N on y; to compute d;v; such that y; € A < xs(v;) = d;.

2. If a <p v;, then choose the branch corresponding to v; € S.
If v; <p b, then choose the branch corresponding to v; € S.

If b <p v; <p a, then simulate I on (u,v;). If u <p v;, then set a to v; and
choose the branch corresponding to v; € S. If v; <p u, then set b to v; and
choose the branch corresponding to v; & S.

Let 7 be 1 if M accepts in the simulation and 0 if M rejects in the simulation.
Let ag and bg be the final values of a and b, respectively. Let ¢ and j be such that
ag is set to v; and bg is set to v;. The following properties hold:

1. bg <p u <p ag.
2. If by € S and ag € S, then M4 on z accepts if and only if r = 1, s0 xya(x) = 7.

3. If by € S, then w € S, s0 xa(x) =c.

e

Ifap €S, then u & S, so xa(e)=1—c.



Suppose » = ¢. Then we have y4(z) = r if and only if ag € S. So, xa(z) = r if and
only if v; € S if and only if xa(y;) = d;. If this case holds, let z = y; and e = 1 if
r = d; and 0 otherwise. Suppose r = 1 — ¢. Then we have y4(x) = r if and only if
by € S. So, xa(z) = rif and only if v; ¢ S if and only if xa(y;) = 1 — d;. If this
case holds, let z = y; and e = 0 if »r = d; and 1 otherwise. It holds that z € A if
and only if ya(z) = e.

Thus, M’ will find strings z and e such that x4 (2) = 1 if and only if x4(2) = e.
It is not hard to see that (i) there is some computation path of M’ that finds such
z and e, (ii) the simulation runs in time polynomial in ||, and (iii) z is a string
appearing in the self-reduction tree of M on z. By repeating the above simulation
polynomially many times, we eventually find strings 2z’ and e’ such that x € A if and
only if ya(z') = ¢/, and M on z’ determines the membership of 2’ in A in polynomial
time without making any query. Thus, we have nondeterministic polynomial time
procedures for both membership in A and non-membership in A. a
Corollary 1 If a set A is Turing self-reducible and 1-tt reducible to an NPMV,-
selective set, then A € NP N coNP.

Corollary 2 If there exists an NPMV-selective set L such that L is <,-hard for
NP, then NP = coNP.

Since PSPACE, PP and &P contain Turing self-reducible complete languages,*®
a similar relationship holds for these classes.

Corollary 3 If every language in PSPACE (respectively, ®P, PP ) is v reducible
to S @ S for some NP-selective set S, then NP N coNP = PSPACE (respectively,
NP N coNP O &P, NPNcoNP = PP).

It follows from Corollary 1 that NP C NPMV;-sel if and only if NP = coNP.
However the next theorems demonstrate that (unlikely) assertions such as NP C
NPMV;-sel are equivalent to (equally unlikely) assertions about the complexity of
computing satisfying assignments, from which, we see that the above implication
holds directly without use of Theorem 2 or its corollaries.

Let sat denote the partial multivalued function that, on input z, computes a
satisfying assignment of z, if it exists. Note that sat belongs to the class NPMV.

Theorem 3 The following are equivalent:
1. SAT s NPSV,-selective.
2. NP C NPSV-sel.

3. There is a single-valued refinement g of sat such that some extension of g to
a total function belongs to NPSV,.

4. For every f € NPMV |, there is a single-valued refinement g of f such that
some extension of g to a total function belongs to NPSV,.

5. NP = coNP.

Proof. The fact that assertion (1) is equivalent to (2) follows by NP-completeness
of SAT and that (3) is equivalent to (4) follows by a result of Selman.?” It suffices
to show that (3) = (5) = (1) and that (1) = (3).



To see that (3) implies (5), let g be a single-valued refinement of sat and let & be
an extension of ¢ that belongs to NPSV,. Observe that the following NP machine
M accepts SAT. On input , M simulates h(x). If the output of h(z) is a satisfying
assignment of z, it rejects, else it accepts #. Thus (5) holds. Tt is easy to observe
that (5) implies (1), since all sets in NP N coNP are NPSV-selective.

Finally, suppose that SAT is NPSV;-selective. Then, we can find a satisfying
assignment of a boolean formula by an NPSV, function that generates a satisfying
assignment by traversing the disjunctive self-reduction tree of SAT and using the
NPSV;-selector to decide, at each node, whether to take the left branch or the right
branch. If the leaf reached is a satisfying assignment then output the assignment,
else output a special string L. This proves that (1) implies (3). a

Theorem 4 The following are equivalent:
1. SAT s NPMV;-selective.
2. NP C NPMV-sel.

3. There is a refinement g of sat such that some extension of g to a total function
belongs to NPMV,.

4. For every f € NPMV, there is a refinement g of f such that some extension
of g to a total function belongs to NPMV,.

5. NP = coNP.

The proof of Theorem 4 is similar to that of Theorem 3, though a bit of care
has to be used in the arguments that Part (1) implies Part (3) and that Part (3)
implies Part (5) to correctly handle, respectively, the fact that multiple leaves may
be reached and that multiple outputs may occur.

Next, we investigate the existence of NP-hard NP-selective sets under various
reducibilities. Buhrman, Torenvliet, and van Emde Boas'® have proved that if
there exists a P-selective set that is §£Os—hard for NP, then P = NP. Also, recent
research’ 732 has revealed that if there exists a P-selective set that is <}, ,-hard for
NP, then P = NP. We now obtain analogous results for NP-selective sets, which
are proved by relativizing the corresponding results for P-selective sets.

Lemma 1 (Relativizing Ref. [10]) If A §§Os B, B is PFL _selective for some set

L,B#0 and B # X*, then A<P:L B and hence A is PFL -selective.
Theorem 5 If A <P B and B is NP-selective, then

pos

1. A 1s NP-selective, and
2. if B#Y* and B # 0 then A <NPSVi B,

Proof. Let B be NP-selective with selector f € NPSV,. There exists a
language L € NPNcoNP such that B is PFtL—selective. Thus by Lemma 1, A <P.X B.
Since L € NP N coNP, by Proposition 1, Part 2, it follows that 4 <X5V: B and
that A is NP-selective. ad

Corollary 4 If A §§Os A and A is NP-selective, then A € NP (N coNP.



Similarly, it is easy to see that if A <, A and A is NP-selective, then A €
NP N coNP.
Corollary 5 If there exists an NP-selective set that is §§Os -hard for NP, then
NP = coNP.
Lemma 2 (Relativizing Ref. [1,7,32]) If B is <P, -hard for NP and B is PFtL-
selective for some set L, then PL = NPE.
Theorem 6 If there exists an NP-selective set that is §En-hard for NP, then NP =
coNP.

Proof. Let B be NP-selective with selector f € NPSV,. There exists a
set L € NP N coNP such that B is PFtL—selective. By Lemma 2, it follows that
PL = NP, which implies that NP = coNP. a

Thus, not only is NP unlikely to be contained in the class of NP-selective sets,
but even NP-selective sets that are hard for NP with respect to such powerful
reductions as <, §£’n or §§Os reductions are unlikely to exist, unless NP = coNP.

Our results for the general question, “Is C contained in FC-sel?” for C =
{NP,coNP} and FC = {NPSV;,NPMV,} can be summarized by the following
table. Results about the partial function classes NPMV and NPSV were obtained

in Ref. [19] and have been included here for completeness.
Theorem 7 The following results hold:

| FC || NP C FC-selective | coNP C FC-selective |
NPSV, holds iff NP = coNP holds iff NP = coNP
NPSVY 19 holds if NP = coNP holds iff NP = coNP
holds only if NPYP — coNPNFP
NPMV; holds iff NP = coNP holds iff NP = coNP
NPMVY? || holds (without any assumption) | holds iff NP = coNP

3. Lowness and Nonuniform Complexity

Ko showed that P-selective sets have low circuit complexity; they are in P/poly
(see Ref. [22] for formal definitions). By relativizing Ko’s result (see also Ref. [29]),
we can show that NP-selective sets have low circuit complexity too; they are in
(NP N coNP)/poly.

Lemma 3 Ref. [23] For all sets A and L, if A is PFE-selective, then A € PE /poly.
Theorem 8 NP-sel C (NP N coNP)/poly.

Proof. Suppose A is NP-selective via a selector f € NPSV,. Then, by Part 2 of
Proposition 1, there exists a language L in NP NcoNP such that A is PFtL—selective.
By Lemma 3, A is in P* /poly. Since PNPNeNP — NP N ¢oNP, the theorem follows.
O

From Theorem 8, it follows immediately that the NP-selective sets in NP are
Lows (since (NPNcoNP)/polynNP C (NP/poly)N(coNP /poly)NNP C (coNP/poly)n
NP, which due to Kamper?! is Lows). However, we will directly prove that the NP-
selective sets in NP are even lower. Indeed, they are as low as P-selective sets.
29

(

We use the following restatement of a theorem by Longpré and Selman~® (see also

Ref. [23]) to prove our theorem.



Lemma 4 Ref [29,23] If A in NP is PL-selective for some L, then ES’A C EE’L.
Theorem 9 The NP-selective sets in NP are Lows.

Proof. Suppose A € NP is NP-selective. Then by Part 2 of Proposition 1, there
exists a set L € NP N coNP such that A is PFtL—selective. By applying Lemma 4,
and by using the fact that L € NP N coNP is Low;,3? it follows that ES’A cxb.
O

Hemaspaandra et al.'® have generalized this result to show that all NPSV-
selective sets in NP are Lows.

A set A is said to be GeneralizedLows if ES’A = ¥ .5 We obtain the following
generalized lowness result for NP-selective sets by relativizing the following result
of Balcazar, Book, and Schoning® (see also Ref. [29,22]).

Lemma 5 Ref. [5] If A is Turing self-reducible and A is Turing reducible to a
P-selective set then A is GeneralizedLows.

Theorem 10 If A s Turing self-reducible and A ts Turing reductble to an NP-
selective set, then A 1s GeneralizedLows.

Proof. Suppose A is Turing self-reducible and Turing reducible to an NP-
selective set. Then A is Turing reducible to a PFL-selective set for some set L €
NP N coNP. By relativizing Lemma 5, it follows that A € EE’L. Since NP =
NpNPneoNP, ES’L C ¥F which completes the proof. a

As to extended lowness, Kobler?® has shown that (NP N coNP)/poly is
ExtendedLow®s. From this and Theorem 8, we can immediately conclude that the
NP-selective sets are ExtendedLow®s5."

4. Applications of the Relativization Technique

The proofs of Theorems 5, 6, 8, and 9 used relativization of well-known results
on P-selective sets to obtain the corresponding properties of NP-selective sets. In
this section, we use relativization to obtain some results of independent interest. We
note that a nice example of this approach can be found in the literature. Buhrman
and Torenvliet? have noted that, since the deterministic time hierarchy theorem
relativizes,*?'% simply by relativizing the deterministic time hierarchy it follows
that (for each k) the Ay level of the polynomial hierarchy differs from the Ay level
of the exponential hierarchy %7 This result is incomparable with the recent result
of Mocas®® that for all k, PNP["*] ¢ NEXP, where NEXP = U.soNTIM E[2"].
Of course, since the nondeterministic time hierarchy theorem relativizes, %% it
similarly holds that for each k the Xy, level of the polynomial hierarchy differs from

the X; level of the exponential hierarchy.

4.1. Relativizing Karp-Lipton

We note now that a result proved a half-decade ago by Kamper?! and Abadi,
Feigenbaum, and Kilian? is, in fact, merely a relativized version of a famous 1980
result by Karp and Lipton.??

bVery recently, Kobler?® has shown that NP-selective sets are ExtendedLows.
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Theorem 11 Ref. [22] For all oracles L, if NPY C PL /poly, then PH" = EE’L.
Corollary 6 Ref [2,21] If NP C (NP N coNP)/poly, then PH = XF.

Proof.  Suppose that NP C (NP N coNP)/poly. Since NpNPreolP — Np,
there exists some L € NP N coNP such that SAT € P¥/poly. Thus, by downward
closure of NP under <P reductions, NP =NP C P~ /poly. Thus, by Theorem 11,
PHL C ©'". Since L € NP N coNP, it follows that PHY = PH and 5* = ©F.
The theorem follows. ad

Recently, the Karp-Lipton result has been improved®?5 to show that that if
NP C P/poly, then PH = ZPPYNP. Further, it has similarly been noted?® that NP C
(NP N coNP)/poly = PH = ZPPYY | which follows, again, simply via relativization.

4.2. Hard Promise Problems

With the help of relativization, we improve a result of Longpré and Selman?’

about promise problems.

Definition 7 Ref. [14,29]

1. Ghven any set A, we say that a set B is a solution of PP-A «f for all strings
z and y,
(reAdyeAd)=[{z,y) € B xe A

2. For sets C and D, we say PP-C' is Turing-hard for D if for every solution L
of PP-C it holds that D <% L. For any class £, we say PP-C' is Turing-hard
for & if PP-C' s Turing-hard for each set in &.

The following relationship between NP-selectivity and the complexity of soluti-
ons follows easily from Proposition 1.
Lemma 6 For each set A, A is NP-selective if and only if PP-A has a solution in
NP N coNP.

Lemma 7 1. Let A §§Os B and let L be any solution of PP-B. Then there is a
function g computable by a polynomial-time machine with oracle L such that

reAsg(x) €B.

2. If A 1s polynomial-time Turing self-reducible and A §§Os B, then PP-B s
Turing-hard for A.

Proof. Let A §§Os B and L be a solution for PP-B. We need to show that
A <BL B, Define fr(z,y) = = if (z,y) € L and f(x,y) = y otherwise. fr is a
selector for B and fr, is computable in polynomial time relative to L. Since A §§Os B
and B 1s PFtL—selective, by Lemma 1, A <P»L B. Part 1 now follows immediately
since this implies that there exists g € PFtL such that » € A < g(x) € B.

To prove Part 2, observe that A is PFtL—selective. By hypothesis, A is Turing
self-reducible; and thus, by relativizing the Buhrman, van Helden, and Torenvliet
theorem,'" it follows that A € P, Thus A §¥ L, which proves the lemma. a

Longpré and Selman showed that if a set A 18 NP-complete under disjunctive
reductions, then PP-A is Turing-hard for NP. We prove this consequence under the

assumption that A is §§Os—hard for NP.

11



Theorem 12 If A is <¥_ -hard for NP, then PP-A is Turing-hard for NP.

pos

Proof. If Ais §§Os hard for NP, then SAT §§Os A. The theorem now follows
from Part 2 of Lemma 7. o
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