
On Sets Bounded Truth-Table Reducible toP-selective Sets �Thomas Thieraufy Seinosuke Todaz Osamu WatanabexJuly 26, 1996AbstractWe show that if every NP set is polynomial-time bounded truth-table reducible to some P-selective set, then NP is contained inDTIME(2nO(1=plog n)). In the proof, we implement a recursive procedurethat reduces the number of nondeterministic steps of a given nondetermi-nistic computation.1 IntroductionThe class NP is commonly considered as a class of problems that cannot besolved e�ciently, that is, by polynomial-time bounded, deterministic Turingmachines. Changing from (uniform) Turing machines to (nonuniform) circuits,one of the important questions in computational complexity theory is whetherevery NP problem is solvable by small, that is, polynomial-size, circuits. Fur-thermore, assuming that NP problems can indeed be solved by small circuits, ithas been asked whether this is turn gives deterministic algorithms for NP fasterthan the known exponential ones. In other words, if NP is easy in the nonuni-form complexity measure, how easy is NP in the uniform complexity measure?We study such type of questions in this paper. Karp and Lipton [KL82] haveshown that if NP has small circuits then the Polynomial Hierarchy [Sto77] col-lapses, therby giving strong evidence that the assumption might not hold. Notehowever, that this does not answer the above question.�Part of the work was done while the authors were visiting the University of Rochester,Department of Computer Science. This research is supported in part by JSPS/NSF Interna-tional Collaboration Grant JSPS-ENGR-207/NSF-INT-9116781, DFG Postdoctorial StipendTh 472/1-1, and NSF grant CCR-8957604.yAbteilung Theoretische Informatik, Universit�at Ulm, 89068 Ulm, Germany. Email:thierauf@informatik.uni-ulm.de.zDepartment of Applied Mathematics, Nihon University, Setagaya-ku Sakura-Jyosui 3-25-40, Tokyo 156, Japan. Email: toda@math.chs.nihon-u.ac.jp.xDepartment of Computer Science, Tokyo Institute of Technology, Tokyo 152, Japan.Email: watanabe@cs.titech.ac.jp. 1

Small circuits can be coded by sparse sets and vice versa. Therefore, theclass of sets that have polynomial-size circuits coincides with the class of setsthat are (polynomial-time) Turing reducible to some sparse set. We denote thelatter class by RPT(SPARSE). Hence, the above question is equivalent to thefollowing one: For which uniform deterministic complexity class C do we haveNP � RPT(SPARSE) =) NP � C?Nontrivial answers to this question are only known for even stronger assump-tions such as that NP is contained in certain subclasses of RPT(SPARSE). Forexample, Mahaney [Mah82] showed that if every NP set is many-one reducibleto some sparse set then P = NP. That is,NP � RPm(SPARSE) =) NP = P:Ogiwara and Watanabe [OW91] extended Mahaney's result to bounded truth-table reductions, that is,NP � RPbtt(SPARSE) =) NP = P:This result has been improved further more recently, see [AHH+93]. Howe-ver, it is open whether the result can be improved to b(n)-bounded truth-tablereducibility for some nonconstant function b(n). Indeed, Saluja [Sal93] sho-wed that, at least with the technique used by Ogiwara and Watanabe, suchan improvement is impossible. Furthermore, for b(n) = !(logn), Homer andLongpr�e [HL94] (see also [AHH+93]) constructed an oracle relative to whichNP � RPb(n)-tt(SPARSE), but P is di�erent from NP.Small circuits can also be coded as leftcuts of real numbers and viceversa [Ko83, Sel82b]. Leftcuts can be formalized in terms of P-selectivesets [Sel82b]. Therefore, the class of sets that have polynomial-size circuitscoincides with the class of sets that are (polynomial-time) Turing reducible tosome P-selective set. Let SELECT denote the class of P-selective sets. Thus,we have RPT(SELECT) = RPT(SPARSE). However, for reductions that are morerestrictive than the Turing reduction, classes obtained by reducing to P-selectivesets can be di�erent from classes obtained by reducing to sparse sets. For exam-ple, Watanabe [Wat90] showed RPtt(SELECT) 6= RPtt(SPARSE) (see [HHO+93]for more separations). Hence, it is interesting to investigate the consequencesof NP being reducible to P-selective sets with respect to some more restrictivetype of reducibility.Selman [Sel79] showed that if every NP set is many-one reducible to some P-selective set then P = NP. Assuming that NP sets are (unbounded) truth-tablereducible to P-selective sets, Toda [Tod91] and Beigel [Bei88] showed that NPproblems can be solved e�ciently by randomized Las Vegas type algorithms, aclass denoted by R.NP � RPtt(SELECT) =) NP = R: (1)2

In this paper, we show a deterministic upper bound on NP when consideringbounded truth-table reductions. Namely, we showNP � RPbtt(SELECT) =) NP � DTIME(2nO(1=plog n)): (2)Let us give a brief outline of our proof. We start by sketching the idea toprove equation (1). The assumption NP � RPtt(SELECT) is essentially used toshow:(�) for a given polynomial-time nondeterministic Turing ma-chine M and a string x, if M on input x has exactly oneaccepting path, then the path is computable in determini-stic polynomial time.For M and x as above, the nondeterministic computation of M on x canbe viewed as a (binary) tree T . Using the randomized hashing technique ofValiant and Vazirani [VV86], one can construct subtrees T1; : : : ; Tm of T , allhaving the same root as T , such that if T has an accepting path then, say, m=4of T1; : : : ; Tm have exactly one accepting path. Then from property (�), for theTk's having exactly one accepting path, one can compute this path. Thus, bychoosing Tk randomly for several times, one can compute some accepting pathof T with high probability if there are any. This is the idea of showing NP = R.We also use (�) for proving equation (2). Consider again a nondeterministiccomputation tree T as above. Using our stronger assumption, namely that NP� RPbtt(SELECT), we can construct subtrees T 01; : : : ; T 0n of T such that if T hassome accepting path, then some T 0k has exactly one accepting path, and, byproperty (�), such a path can be computed in polynomial time. The importantpoint here is that the number of subtrees, n, can be chosen fairly small comparedwith m from above, or with the number of paths in T . Hence, the original NPquestion \Does T have an accepting path?" is reduced to another NP question\Is there a k such that T 0k has an accepting path?", and in addition, the sizeof the search space in the latter NP question (searching for some k) is muchsmaller than in the former one (searching for some path). Hence, for solving thereduced NP question, one needs a smaller number of nondeterministic guesses.We show how to apply this process recursively , thereby successively decreasingthe search space of the reduced NP questions obtained. In total, this yields asubexponential algorithm to solve the original problem deterministically .Related work was done by Jenner and Tor�an [JT95]. They showed underthe assumption that functions that can be computed in polynomial time bymaking truth-table queries to NP can already be computed in polynomial timeby making logarithmically many (adaptive) queries to NP (in symbols, FPNPtt =FPNP[log]), it follows that NP � DTIME(2n= logk n), for any k � 1. Note thattheir assumption is seemingly weaker than ours since it is not hard to see thatNP � RPtt(SELECT) implies FPNPtt = FPNP[log], but the converse implication3

is not known to hold. It seems, however, not possible to obtain our strongerupper bound on NP from their assumption by their technique [Tor93].Most notably, we mention that our result has been improved recently. Na-mely, Agrawal and Arvind [AA94], Beigel, Kummer, and Stephan [BKS95], andOgihara [O94] showed that NP � RPbtt(SELECT) =) NP = P. In fact,the result holds up to quasi-linear truth-table reducibility, i.e., O(n1��), for any� > 0, [AA94, O94]. The principal method in all three papers is a standardsearch and pruning technique with the goal to �nd a satisfying assignment fora given Boolean formula F in polynomial time (if there exist any). During thesearch, a set X of subformulas of F is maintained such that the following inva-riant is ful�lled: F 2 SAT ()X \ SAT 6= ;. Initially, X = fFg. While goingbreadth-�rst through the self-reduction tree of F , X is successively extendedand then pruned again such that the size of X remains polynomially bounded.The pruning task is to determine an x 2 X such that if X \ SAT 6= ; then(X � fxg)\ SAT 6= ;. Then x can be pruned from X since there will still be asatis�able formula in X if there are any, thereby maintaining the invariant. Byassumption, formulas inX can be reduced to a P-selective set. The crucial pointin their proofs is to also produce new Boolean formulas by or-ing together some(apppropriate) formulas of X, and to reduce them to the P-selective set as well.Since the new instances are related to the formulas in X (by the or-function),this must be reected in the way these strings are mapped by the reduction.Exactly this property is used to �nd an instance x to prune as described above.Thus, our approach is completely di�erent from the one's mentioned above.Roughly speaking, the proofs in [AA94, BKS95, O94] essentially use the factthat there are NP complete sets that are (disjunctively) self-reducible and havean or-function in order to make their searching technique work. In contrast,we use the completeness of certain NP sets, but we don't use such or-functions,and thus, we need to establish a more elaborate searching technique. Therefore,although the main result we will derive in this paper is already subsumed, wethink that our proof technique is interesting for its own, and hence, we encouragethe reader to continue reading!2 PreliminariesWe follow the standard de�nitions and notations in computational complexitytheory (see, e.g., [BDG88, BDG91]).We �x an alphabet � = f0; 1g. For any set X � ��, we denote the comple-ment of X as X = �� �X. Natural numbers are encoded in �� by using theirbinary representation. For any string x, let jxj denote the length of x, and forany set X, let jjX jj denote the cardinality of X. We consider a standard one-to-one pairing function from ����� to �� that is computable and invertible inpolynomial time. For strings x and y, we denote the output of the pairing func-tion by (x; y); this notation is extended to denote tuples. For example (x; y; z)4

is de�ned as ((x; y); z). For a function f , we simply write f(x; y) instead off((x; y)).We use the standard Turing machine as our computation model. P (resp.,NP) denotes the class of languages that can be recognized by some polynomial-time deterministic (resp., nondeterministic) Turing machine. For a nondetermi-nistic Turing machine M , we assume that every nondeterministic con�gurationof M has at most two succeeding ones. Hence, each nondeterministic computa-tion of M on a given input can be described by a string w, where the ith bit ofw indicates which branch to take at the ith nondeterministic branch point. Inthis context, we call a string w a path of M , and, in case that w leads to anaccepting con�guration of M on a given input, we call w an accepting path ofM on that input .For any sets A and B, we say that A is many-one reducible to B (and writeA �Pm B) if there is some polynomial-time computable function f , the reduction,such that for any x 2 ��, we have x 2 A () f(x) 2 B. A set C is called NP-complete if (i) every NP set is many-one reducible to C, and (ii) C itself is in NP.The reducibility notions we are interested in are generalization of the many-onereduction. We say that A is truth-table reducible to B (and write A �Ptt B)if there are two polynomial-time computable functions, generator g that, for agiven x 2 ��, produces a set of strings, and evaluator e that, when knowingwhich of the strings produced by g are in B, decides membership of x in A.That is, for any x 2 ��,x 2 A () e(x; g(x); g(x) \B) = 1;where we assume that g(x) (resp., g(x) \ B) is encoded as a string. For anyb(n) � 0, we say that A is b(n)-truth-table reducible to B (and write A �Pb(n)-ttB) if the generator g produces at most b(n) strings for each input of length n.We say that A is bounded-truth-table reducible to B (and write A �Pbtt B) ifA is �Pk-tt-reducible to B, for some constant k � 0. Hard and complete setswith respect to these reducibilities are de�ned analogously as for the many-onereducibility.For any class C of languages, let RPT(C), RPtt(C), RPb(n)-tt(C), and RPbtt(C)respectively denote the class of sets that are �PT-, �Ptt-, �Pb(n)-tt, and �Pbtt-reducible to some set in C.P-selective sets were introduced by Selman [Sel79] as the polynomial-timeanalog of semi-recursive sets [Joc68]. A set A is P-selective, if there exists apolynomial-time computable function f , called a P-selector for A, such that forall x; y 2 ��,1. f(x; y) 2 fx; yg, and2. if x 2 A or y 2 A, then f(x; y) 2 A.Intuitively, f selects the one of the two given strings that is \more likely" to5

be in A. More formally, if f(x; y) = x and y 2 A, then x 2 A. The class ofP-selective sets is denoted as SELECT.Ko [Ko83] showed that for every P-selective set A, using the P-selector func-tion f of A, one can de�ne a linear ordering on a quotient of �� such that A isthe union of an initial segment of this ordering. Toda [Tod91] modi�ed this toan ordering on a given �nite set Q (instead of ��). Here, we use this ordering.That is, we de�ne the relation �f;Q on Q as follows. For all x; y 2 Q,x �f;Q y () there exist z1; : : : ; zn 2 Q such thatf(zi; zi+1) = zi for i = 1; : : : ; n� 1;f(x; z1) = x; and f(zn; y) = zn:De�ne x �=f;Q y () x �f;Q y ^ y �f;Q x. Then �=f;Q is an equivalencerelation on Q, and �f;Q induces a linear ordering on the quotient Q= �=f;Q.This is reected by the following partial ordering �f;Q on Q:x �f;Q y () x �f;Q y ^ x 6�=f;Q y:For simplicity, we omit the subscripts f and Q when both are clear from the con-text. For technical reasons, we introduce a minimum and a maximum element,denoted as ? and > respectively, such that ? � x � >, for all x 2 Q.It is easy to see that the relations � and �= are decidable in polynomial timein Px2Q jxj. The crucial point is that A \ Q is an initial segment of Q withrespect to �. That is, we have9 z 2 Q [f?g : Q \A = f y 2 Q j y � z gand Q \A = f y 2 Q j y � z g:We call a string z witnessing this property a cutpoint of A in Q (with respectto �). A consequence of this property is that 8x; y 2 Q: x � y ^ y 2 A =)x 2 A.3 Main ResultIn this section, we show that if all NP sets are bounded truth-table reduci-ble to some P-selective set, then every NP set is solvable deterministically in2nO(1=plog n) steps. We begin by recalling a result of Toda [Tod91] that will beused in our proof. We use a formulation in terms of promise problems.De�nition 3.1 [ESY84] A promise problem is a pair of sets (Q;R). A setL is called a solution of the promise problem (Q;R), if for all x 2 Q, we havex 2 R() x 2 L.In other words, if L is a solution of a promise problem (Q;R), then L coincideswith R on all instances where the promise Q holds. That is, Q \R = Q \ L.6

Toda [Tod91] showed that if all NP sets are �Ptt-reducible to some P-selectiveset, then the promise problem (1 -SAT ; SAT) has a solution in P, where 1 -SATis the set of Boolean formulas that have at most one satisfying assignment.We restate his theorem in a slightly more general form and include a proof forcompleteness.Theorem 3.2 [Tod91] If NP � RPtt(SELECT) then, for any NP machine Nthe promise problem (1-L(N); L(N)) has a solution in P, where 1-L(N) is the setof strings x such that N has at most one accepting path on input x. Furthermore,if N is p(n) time bounded, then the solution is in DTIME(qT � p(n)), for some�xed polynomial qT.Proof. De�ne the NP set BitPATH as follows. For a nondeterministic Turingmachine N , a string x, d; t � 1, and 1 � i � d,(N; x; 0d; 0t; i) 2 BitPATH () there exists w 2 ��d such thatN accepts x on path w in t stepsand the ith bit of w is 0:By assumption, BitPATH is truth-table reducible to some P-selective setA. Let g be the generator and e the evaluator of the reduction, and let f be aP-selector for A.Let N be an NP machine, and let polynomial p bound its running time.Consider an instance x, jxj = n, for N such that N has exactly one acceptingpath w on input x. Clearly, we can reconstruct w when knowing the answers tothe questions \zi = (N; x; 0p(n); 0p(n); i) 2 BitPATH ?", for i = 1; : : : ; p(n).Let Q be the set of strings queried to A on zi by the generator of the truth-table reduction, for i = 1; : : : ; p(n), i.e., Q = f y j y 2 g(zi), for some i,1 � i � p(n) g. If we know which point of Q is a cutpoint of A w.r.t. �f;Q,we would be able to get the correct answer to each query \zi 2 BitPATH ?",thereby obtaining the unique accepting path w. Here, note that Q has onlypolynomially many elements; thus, we can try all elements y of Q and checkwhether we obtain an accepting path (namely, w) assuming that y is a cutpoint.(Note that we can easily verify whether a reconstructed path is an acceptingpath.) The algorithm in �gure 1 makes this idea more precise. Here, N and pare �xed parameters.Let MN be a deterministic Turing machine that executes this algorithm.Clearly, L(MN) is a solution for (1-L(N); L(N)). Furthermore, there existssome polynomial qT such that for any N , MN halts in O(qT(p(n))) steps. tuNow, we prove our main theorem.Theorem 3.3 If NP � RPbtt(SELECT) then NP � DTIME(2nO(1=plog n)).7

Unique-Accepting-Path(x, jxj = n);Q S1�i�p(n) g(N; x; 0p(n); 0p(n); i);for each y 2 Q [f?g dofor i 1 to p(n) doif the evaluator e accepts (N; x; 0p(n); 0p(n); i) when the answersto g(N; x; 0p(n); 0p(n); i) are given according to cutpoint ythen wi 0 else wi 1;if w = w1 � � �wp(n) is an accepting path of N on input xthen accept;reject. Figure 1: Polynomial-time algorithm for (1-L(N); L(N)).Proof. Let us �rst de�ne two NP sets. The �rst one is similar to the canonicaluniversal NP complete set except that the number of nondeterministic steps isstated explicitly. For a deterministic Turing machineM , a string x, and d; t � 1,(M;x; 0d; 0t) 2 UNIV () there exists w 2 �d such thatM accepts input (x;w)in at most t steps:Obviously, UNIV is NP complete. Our second set is de�ned similarly exceptthat it has, as an additional component, the pre�x of an accepting path for theconsidered machine. For a deterministic Turing machineM , a string x, d; t � 1,and a string u, where juj � d,(M;x; 0d; 0t; u) 2 Pre�xPATH () there exists v 2 �d�juj such thatM accepts input (x; uv)in at most t steps:Consider any instance � = (M;x; 0d; 0t) for UNIV . We can de�ne a binarytree T associated with � as follows. The nodes of T are of the form (�; u), foru 2 ��d, which are instances for Pre�xPATH . T 's root is (�; �) (where � is theempty string). Clearly, � 2 UNIV () (�; �) 2 Pre�xPATH . T 's leaves arenodes (�; u) such that juj = d. A binary string u 2 ��d is viewed as a pathfrom the root to (�; u). A string w 2 �d is called an accepting path of T if Maccepts input (x;w), or, equivalently, (�; w) 2 Pre�xPATH . Clearly, � 2 UNIVif and only if there exists an accepting path in T .Let r and e be some integers that will be speci�ed later. Below, we de�nerdd=ee subtrees Tk of T in such a way that, if there is an accepting path in T ,8

then there exists a subtree Tk that has exactly one accepting path. That is,� 2 UNIV () 9w 2 �d : w is an accepting path in T (3)() 9k � rdd=ee : Tk has exactly one accepting path. (4)At this point, we can explain our proof idea, that is, the strategy for decidingwhether � 2 UNIV in deterministic subexponential time. Consider the promiseproblem (1 -SubTREE ; SubTREE), where 1 -SubTREE is the set of Tk with atmost one accepting path, and SubTREE is the set of Tk having an acceptingpath. SubTREE clearly is an NP set. Then, by Theorem 3.2, this promiseproblem has a solution in P. Thus, if Tk has exactly one accepting path, we canverify it in polynomial time. Hence, both, equation (3) and (4) give NP-typepredicates for deciding whether � 2 UNIV . While there are 2d possibilities forw in equation (3), we can reduce the scope of k in equation (4) by choosing elarge; in other words, while d (binary) nondeterministic guesses are necessaryin equation (3), (d log r)=e guesses are enough when using equation (4). On theother hand, enlarging e will increase the time to decide the promise problem. Wewill see below that by appropriately choosing e, we can fairly reduce the numberof nondeterministic guesses without increasing the time to decide the promiseproblem too much. That is, the original NP-type predicate is reduced to asimpler one. By iterating this process, we can �nally solve the problem withoutany guesses, i.e. deterministically, and we will see that the whole process can bedone in subexponential time.Let us de�ne the subtrees more precisely. We assign an integer label toeach node of T . Subtree Tk of T is then de�ned as consisting of all nodeshaving label k and their father nodes. The way to assign labels is thereforecrucial. In order to do so, we divide T into blocks of depth e. More formally,for each h, where 0 � h � dd=ee � 1, and u 2 �h�e, we consider a set X(�; u)= f (�; uv) j v 2 �e g of nodes in T , which is regarded as a block of depth e.1Notice that if (�; u) 2 Pre�xPATH , then some elements ofX(�; u) also belong toPre�xPATH . Here, for the decomposition of T satisfying equation (4), we wouldlike to divide X(�; u) into X1(�; u); : : : ; Xr(�; u) so that if (�; u) 2 Pre�xPATHthen some Xi(�; u) has exactly one element in Pre�xPATH . Key point of ourproof is that this is possible by using the assumption that Pre�xPATH (2 NP)is �Pbtt-reducible to some P-selective set. That is, we have the following lemma.Key Lemma Let b, n > 0 and r = 6(bb=2c + 1) � 1. Let L be any set thatis �Pb-tt-reducible to some P-selective set. Then, for any X � �n, there exist rdisjoint subsets X1; : : : ; Xr of X with the following property.X \ L 6= ; () 9i � r : jjXi \ L jj = 1:Furthermore, we can computeX1; : : : ; Xr in polynomial time w.r.t. n and jjX jj.1Precisely speaking, when juj = (dd=ee � 1)e (i.e., h = dd=ee � 1), X(�;u) should bef (�; uv) j v 2 �d�juj g. In the following, we omit explaining such exceptional cases.9

1 2 3 4

5 6 7 8 91 2 3 410 11 12 13 14 15 16

1 17 18 19Figure 2: Tree with branching factor 4 and its labeling.Since Pre�xPATH is in NP, for some b > 0 it is �Pb-tt-reducible to some P-selective set by assumption. Thus, from the Key Lemma (with L = Pre�xPATHand X = X(�; u)) we can divide each X(�; u) into r = 6(bb=2c+ 1)� 1 disjointsubsets X1(�; u); : : : ; Xr(�; u) of X(�; u) such that(�; u) 2 Pre�xPATH ()9j � r : Xj(�; u) has exactly one element in Pre�xPATH :An important point to note here is that r does not depend on e.The root of T , (�; �), gets label 1. Now, let (�; u) be some node of T , whereu = v1v2 � � �vh, for some 0 � h � dd=ee and v1; : : : ; vh 2 �e. All nodes in aset Xj(�; u) get the same label. The nodes in X1(�; u) get the same label as(�; u). For j > 1, consider the r-ary tree, where the nodes are the sets Xi(�; w).If we go through this tree in a breath �rst left to right fashion, then the nodesin Xj(�; u) get as label the smallest number that not yet occured as a label.Figure 2 provides an example.More formally, let the history of (�; u) be the sequence (j1; : : : ; jh) of indices,where each ji (1 � i � h) is the index such that (�; v1 � � �vi) 2 Xji(�; v1 � � �vi�1).Note that each history is expressed as a path (from the root to some node) of ar-ary tree.Let left(j1; : : : ; jh) be the number of nodes in the r-ary tree that are in thesame depth to the left of the node with history (j1; : : : ; jh). That is, left() = 0,and left(j1; : : : ; jh; j) = r � left(j1; : : : ; jh) + j � 1:Let v 2 �e and let (j1; : : : ; jh; j) be the history of (�; uv). Thenlabel(�; uv) = � label(�; u); if j = 1, andrh + (r � 1) � left(j1; : : : ; jh) + j � 1; otherwise.Now, for each k, where 1 � k � rdd=ee, de�ne Tk as the subtree of T consistingof all nodes with label k and their father nodes.10

It is not hard to show that label is computable in polynomial time w.r.t.j(�; u)j and 2e, and furthermore, that the labels are bounded by rdd=ee.Claim 1 T has an accepting path if and only if for some k, 1 � k � rdd=ee, Tkhas exactly one accepting path.Proof. Since each path of T belongs to one of the subtrees, the if part isobvious.Assume that T has has an accepting path. Then (�; �) 2 Pre�xPATH ;hence, by the Key Lemma, some Xj1 (�; �) has exactly one element (�; v1) inPre�xPATH . Then since (�; v1) 2 Pre�xPATH , again by the Key Lemma,some Xj2(�; v1) has exactly one element (�; v1v2) in Pre�xPATH . Conti-nuing this argument, we can �nd j1; : : : ; jdd=ee and v1; : : : ; vdd=ee such thateach Xji(�; v1 � � �vi�1) has exactly one element (�; v1 � � �vi�1vi) in Pre�xPATH .In particular, v1v2 � � �vdd=ee is an accepting path. Thus, Tk, where k =label(�; v1v2 � � �vdd=ee), has exactly one accepting path. tu Claim 1Next, for each e � 1, consider the following set. For a deterministic Turingmachine M , a string x, d; t � 1, and 1 � k � rdd=ee,(M;x; 0d; 0t; k) 2 SubTREE e () Tk has an accepting path,where Tk is the subtree of Tde�ned by (M;x; 0d; 0t) and e:For each e, clearly SubTREE e is in NP and thus we could now solvethe promise problem (1 -SubTREE e; SubTREE e) deterministically in poly-nomial time applying Theorem 3.2. But we should be careful about thepolynomial-time bound, which depends on the choice of e. Precisely speaking,(1 -SubTREE e; SubTREE e) has the following upper bound.Claim 2 For some polynomial qS and for all e � 1, there exists a deterministicTuring machine Me such that(i) on inputs of length n, Me is qS(n+ 2e)-time bounded, and(ii) L(Me) is a solution of (1 -SubTREE e; SubTREE e).In other words, for every input � = (M;x; 0d; 0t; k), Me halts in qS(j�j + 2e)steps, and if � 2 1 -SubTREE e, then � 2 SubTREE e () Me accepts �.Proof. Let � = (M;x; 0d; 0t) and � = (�; k). Consider the problem of decidingwhether � is in SubTREE e. We can solve this problem by checking whetherthere exists some w 2 �d such that 1) M accepts (x;w) in t steps (i.e., wis an accepting path of the tree T de�ned by �), and 2) k = label(�; w) (i.e.,the accepting path w belongs to Tk). Thus, for some polynomial q1 and forall e � 1, this can be done nondeterministically in q1(j�j + 2e) steps. That is,11

SubTREE e 2 NTIME(q1(n + 2e)). Now the claim follows from Theorem 3.2.tu Claim 2Thus, we reached our goal to reduce the scope of the existential quanti�er;that is, � 2 UNIV () 9w 2 �d : w is an accepting path in T () 9k � rdd=ee :(�; k) 2 L(Me). Here, notice that we can easily translate our reduced problem toa new instance forUNIV . Then we can apply the above construction recursively!Claim 3 For any e, there exists a deterministic Turing machine cMe such thatfor every input � = (M;x; 0d; 0t),� 2 UNIV () (cMe; �; 0d0 ; 0t0) 2 UNIV ;where d0 = dlog re � dd=ee, r as above, and t0 = qU(j� j + 2e), for some �xedpolynomial qU.Proof. Let � = (M;x; 0d; 0t) and w be string of length at most d0 = dlog re �dd=ee. Machine cMe is de�ned as follows. For a given input (�; w), cMe simplysimulates Me, the machine de�ned in Claim 2, on input (�; w), where w isinterpreted as an integer k now. Note that 1 � k � rdd=ee. Finally, cMe accepts(�; w) if and only if Me accepts (�; k).From Claim 1 and Claim 2, we have � 2 UNIV () cMe accepts (�; w), forsome w. Since Me halts in qS(j(�; k)j+ 2e) steps, cMe halts in qU(j(�; w)j+ 2e)steps, for some polynomial qU. tu Claim 3Note that although the time bound t increases to t0, the crucial point is thatthe number of nondeterministic steps d0 decreases about a factor (log r)=e.Finally, to show that every NP set L belongs to DTIME(2nO(1=plog n)), letML be a deterministic machine and pL be a polynomial such that for everyx 2 ��, x 2 L () (ML; x; 0pL(jxj); 0pL(jxj)) 2 UNIV .Let x, jxj = n, be a string for which we want to decide membership in L.Let e = d3�(n) log re, where r = 6(bb=2c + 1)� 1 and function � will be chosenappropriately at the end of the proof. (We assume that n is large enough so thate � 3.) First, de�ne x0 = x, d0 = pL(n), t0 = pL(n), and �0 = (ML; x0; 0d0 ; 0t0).For each i � 1, de�ne inductively xi = �i�1, di = dlog re � ddi�1=ee, ti =qU(j�i�1j+ 2e), and �i = (cMe; xi; 0di ; 0ti), until di < e (= d3�(n) log re). Let mbe the �rst integer such that dm < e. Then from Claim 3, we have �0 2 UNIV() �1 2 UNIV () � � � () �m 2 UNIV . On the other hand, x 2 L ()�0 2 UNIV . Hence, x 2 L () �m 2 UNIV . That is, the problem of decidingx 2 L is reduced to that of deciding �m 2 UNIV .Let us evaluate the deterministic computation time for deciding �m 2 UNIV .First, we give an upper bound for tm. Note that for some polynomial p1, wehave j�ij � p1(ti), for i = 1; : : : ;m. Thus,tm = qU(j�m�1j+ 2e) 12

� qU(p1(tm�1) + 2e)� qU(p1 � qU(� � � (p1 � qU(pL(n) + 2e)) � � �) + 2e):Hence, for some constant c1 and c2, we havetm � ncm1 2cm1 e = 2cm1 (e+logn) � 2cm1 (c2�(n) log r+log n):On the other hand, note that for any d � e � 3, we have d0 = dlog re � dd=ee� (3d log r)=e � d=�(n). Thus,m � log�(n) d0 � c3 logn=log �(n);for some constant c3. Therefore, for some constant c4,tm � 2c c3 log nlog �(n)1 (c2�(n) log r+log n) � 2n c4log �(n) (c2�(n) log r+log n);which takes the smallest order when we choose �(n) = n1=plogn. Then, forsome constant c5, we have tm � 2nc5=plog n .Clearly, \�m 2 UNIV ?" is deterministically decidable in polynomial timew.r.t. j�mj. Also �m is deterministically computable in polynomial time w.r.t.j�mj. Recall that j�mj � p1(tm). Thus, the deterministic computation timefor computing �m and deciding �m 2 UNIV is polynomially bounded by tm.Therefore, with some constant c0, it is bounded by 2nc0=plog n . That is, x 2 Lis deterministically decidable in 2nc0=plog n steps. tuIt remains to prove the Key Lemma.Key Lemma Let b, n > 0 and r = 6(bb=2c+ 1)� 1. Let L be any set that is�Pb-tt-reducible to some P-selective set. Then, for any set X � �n, there exist rdisjoint subsets X1; : : : ; Xr of X with the following property.X \ L 6= ; () 9i � r : jjXi \ L jj = 1:Furthermore, we can computeX1; : : : ; Xr in polynomial time w.r.t. n and jjX jj.Proof. Let g and e be the generator and the evaluator of a �Pb-tt-reductionfrom L to a P-selective set A, and let f be a P-selector for A. De�ne Q to bethe set of queries to A for all x 2 X; that is, Q = Sx2X g(x). Let � denote�f;Q. Recall that � is polynomial-time decidable w.r.t. n and jjX jj.For any u; v 2 Q[f?;>g, the interval [u; v) is the set fw 2 Q j u � w � v g.For any set I of intervals, we simply write S I for SI2I I.For each x 2 X, we can de�ne an associated set of intervals in Q thatcharacterizes the membership of x in L according to a cutpoint of A in Q. Moreformally, letting g(x) = f y1 � � � � � yh g (where h � b), y0 = ?, and yh+1 = >,we de�neIx = f [yi; yi+1) j e(x; g(x); fy1; : : : ; yig) = 1; where i 2 f0; : : : ; hgg:13

If two adjacent intervals, i.e., [yi; yi+1) and [yi+1; yi+2), belong to Ix, we regardthem as one interval [yi; yi+2). Note that each Ix has at most bb=2c+1 intervals.Let Jx = S Ix, J = Sx2X Jx, and let z� be a cutpoint of A in Q. Then, forall x 2 X, we have x 2 L () z� 2 Jx, and hence, X \ L 6= ; () z� 2 J .By the Combinatorial Lemma stated below, we can select r = 6(bb=2c+1)�1subsets X1; : : : ; Xr of X such that8z 2 J; 9i � r; 9x! 2 Xi : z 2 Jx:Now, we show that X1; : : : ; Xr have the property claimed in the lemma.Suppose that X \ L 6= ;. Hence, z� 2 J . Then, from the above property ofX1; : : : ; Xr , there exists some Xi that has exactly one x such that z� 2 Jx. Thismeans that Xi has exactly one element (namely, x) in L. (Recall that x 2 L() z� 2 Jx.) Therefore, jjXi \L jj = 1. tuCombinatorial Lemma Let fIxgx2X be any family of sets of intervals inQ, where the index set X is �nite, and each Ix consists of at most ` intervals.Let I be the set of intervals appearing in Ix for some x 2 X; i.e., I = f I jI 2 Ix for some x 2 X g. Let J = S I and Jx = S Ix. Then there exist r =6`� 1 disjoint subsets X1; : : : ; Xr of X such that8z 2 J; 9i � r; 9!x 2 Xi : z 2 Jx:Furthermore, if � is polynomial-time computable w.r.t. Pu2Q juj, then theselection of X1; : : : ; Xr can be done in polynomial time w.r.t. `, jjX jj, andPu2Q juj.Proof. First, we construct a minimum size cover of I. We say that bI is aminimum size cover of I if (i) bI � I, (ii) S bI = J , and (iii) no I0 such thatjj I 0 jj < jj bI jj satis�es both, (i) and (ii).Claim 4 There is a polynomial-time algorithm that computes a minimum sizecover of I.Proof. The following greedy algorithm computes a minimum size cover of I.Minimum-Size-Cover(I;�)bI ;; J 0 S I;while J 0 6= ; doz a smallest point in J 0;Select an I 2 I such that z 2 I and jj I \ J 0 jj is maximal;bI bI [fIg; J 0 J 0 � I;return bI. 14

Clearly, this algorithm runs in polynomial time. To show its correctness, leteI = feI1; : : : ; eIkg be a minimal cover of I, and let these intervals be in increasingorder according to their left endpoints. By eJi we denote Sij=1 eIj . Let bI =fI1; : : : ; Ihg be the output of Minimum-Size-Cover, where each Ii is selectedat the ith iteration of the while-loop. By bJi we denote Sij=1 Ij.Since eI is a minimal cover, we have k � h. We will argue that k = h, andhence bI is a minimal cover for J as well. Note that both eJi and bJi are initialsegments of J . Therefore, by the choice of Ii, we have eJi � bJi for all i = 1; : : : ; k,and thus h � k, since otherwise, eI would not cover J . tu Claim 4For each I 2 bI, de�ne support(I) to be an x such that I 2 Ix, and letsupport(bI) = f support(I) j I 2 bI g. (If there is more than one x such thatI 2 Ix, choose one of them for support(I).) We will partition support(bI) intor = 6l � 1 groups X1; : : : ; Xr, such that for any two x; x0 2 support(bI):(�) if I is an interval in bI with support(I) = x and I hasnonempty intersection with Jx0 , then x and x0 will be indi�erent groups.Let us �rst see why property (�) of the partitioning X1; : : : ; Xr satis�es thecondition of the lemma. Consider any z 2 J . Since bI is a cover of J , there issome I 2 bI containing z. Let x = support(I) and letXi be the subset containingx. Then, since Jx0 \ I = ; for all x0 6= x in Xi, x is the only element of Xi suchthat z 2 Jx.To construct a partitioning of support(bI) having property (�), consider thefollowing undirected (simple) graph G = (V;E).V = support(bI); andE = f fx; x0g j 9I 2 bI : support(I) = x and Jx0 \ I 6= ; g:Observe that property (�) is equivalent to that G is 6l�1 colorable. To showthis property of G, we �rst consider the following directed version G0 = (V;E0)of G, whereE0 = f (x; x0) j 9I 2 bI : support(I) = x and Jx0 \ I 6= ; g:Claim 5 Every vertex of G0 has an outdegree of at most 3` � 1.Proof. Notice �rst that every interval in I intersects with at most three inter-vals in bI, since otherwise, one can de�ne a cover of J that has less elements thanbI, contradicting the minimality of bI. Similarly, every interval in bI intersectswith at most two intervals in bI. On the other hand, each x 2 V has at least oneinterval in bI and thus at most `� 1 intervals not in bI. Therefore, Jx intersectswith at most 3(`� 1) + 2 = 3`� 1 intervals in bI. tu Claim 515

Claim 6 Every subgraph of G has a vertex with degree at most 6`� 2Proof. Consider any subgraph bG = (bV ; bE) of G. From Claim 5, it is clear thatbG has at most (3`� 1)jj bV jj edges; that is, the sum of the degrees of all verticesis at most 2(3`�1)jj bV jj. Hence, there is a vertex with degree at most 2(3`�1)= 6`� 2. tu Claim 6From Claim 6, we derive the crucial property of G.Claim 7 G is 6` � 1-colorable. That is, there exists a partition X1; : : : ; Xrof V , where r = 6` � 1, such that every Xi forms an independent set in G.Furthermore, some polynomial-time algorithm computes the partition from agiven G.Proof. We show by induction on the size of V that the simple greedy algorithmthat colors vertices in descending order of their degree needs at most 6` � 1colours. This clearly holds for jjV jj � 6`� 1. For larger V , let x be the vertexof G that is colored last by the algorithm and let bG be the subgraph of Gobtained by deleting x from G. Then, by Claim 6 , we can apply the inductionhypothesis to bG, that is, the algorithm needs at most 6`� 1 colors for bG. Now,since the degree of x is at most 6` � 2, the algorithm will �nd a color for x.tu Claim 7tuTheorem 3.3 can be extended to �Pb(n)-tt-reductions, for functions b, as longas b is poly-logarithmically bounded. That is, for b(n) � (logn)a, for somecontstant a, if there exists a P-selective set A that is �Pb(n)-tt-hard for NP, thenNP � DTIME(2nO(1=plog n)).AcknowledgmentsWe would like to thank M. Halld�orsson of Japan Advanced Institute of Techno-logy and J. Radhakrishnan of Tata Institute of Technology for letting us knowthat Claim 7 is provable. J. Radhakrishnan also helped us for simplifying theproof of the Combinatorial Lemma. A. Mochizuki of Tokyo Institute of Tech-nology pointed us some error in the earlier version of this paper.References[AA94] M. Agrawal and V. Arvind. Quasi-linear truth-table reductions toP-selective sets. Theoretical Computer Science 158 , 361-370, 1996.[AHH+93] V. Arvind, Y. Han, L. Hemachandra, J. K�obler, A. Lozano,M. Mundhenk, M. Ogiwara, U. Sch�oning, R. Silvestri, and T. Thier-auf. Reductions to sets of low information content. Recent Deve-lopments in Complexity Theory. Cambridge University Press, 1993.16

(Also available as Technical Report TR-417, University of Rochester,Department of Computer Science, Rochester, NY, April 1992.)[All86] E. Allender. The complexity of sparse sets in P. In Proceedings 1stStructure in Complexity Theory Conference, 1{11, IEEE ComputerSociety, 1986.[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I.EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1988).[BDG91] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity II.EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1991).[Bei88] R. Beigel. NP-hard sets are P-superterse unless R = NP. TechnicalReport 88-04, Department of Computer Science, The John HopkinsUniversity, 1988.[BKS95] R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Infor-mation and Computation 120(2), 304-314, 1995.[ESY84] S. Evan, A. Selman, and Y. Yacobi. The complexity of promiseproblems with applications to public-key cryptography. Informationand Control, 61:114{133, 1984.[HHO+93] L. Hemachandra, A. Hoene, M. Ogiwara, A. Selman, T. Thierauf,and J. Wang. Selectivity. In Proceedings of the 5th InternationalConference on Computation and Information, ICCI 93, IEEE, 55-59, 1993.[HOW92] L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard aresparse sets? In Proc. 7th Structure in Complexity Theory Confe-rence, IEEE 222�238, 1992.[HL94] S. Homer and L. Longpr�e. On Reductions of NP to Sparse Sets.Journal of Computer and System Sciences, 48:324{336, 1994.[JT95] B. Jenner and J. Tor�an. Computing functions with parallel queriesto NP. Theoretical Computer Science 141 , 175-193,1995.[Joc68] C. Jockusch. Semirecursive sets and positive reducibility. Transac-tions of the AMS, 131(2):420{436, 1968.[KL82] R. Karp, R. Lipton. Turing machines that take advice. L'Enseigne-ment Math�ematique, 28:191-209, 1982.[Ko83] K. Ko. On self-reducibility and weak P-selectivity. Journal of Com-puter and System Sciences, 26:209{221, 1983.17

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polyno-mial time reducibilities. Theoretical Computer Science, 1(2):103{124, 1975.[Mah82] S. Mahaney. Sparse complete sets for NP: solution of a conjecture ofBerman and Hartmanis. Journal of Computer and System Sciences25:130-143, 1982.[O94] M. Ogihara. Polynomial-time membership comparable sets. SIAMJournal on Computing, 24(5):1068{1081, 1995.[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Com-puting, 20(3):471{483, 1991.[Sal93] S. Saluja. Relativized limitations of the left set technique and closureclasses of sparse sets. In Proc. 8th Structure in Complexity TheoryConference, IEEE, 215�222, 1993.[Sch90] U. Sch�oning. The power of counting. In Complexity Theory Retro-spective (A. Selman Ed.), Springer-Verlag (1990), 204�223.[Sel79] A. Selman. P-selective sets, tally languages, and the behavior ofpolynomial time reducibilities on NP.Mathematical Systems Theory,13:55{65, 1979.[Sel82a] A. Selman. Analogues of semirecursive sets and e�ective reducibili-ties to the study of NP complexity. Information and Control, 52:36{51, 1982.[Sel82b] A. Selman. Reductions on NP and P-selective sets. Theoretical Com-puter Science, 19:287{304, 1982.[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Compu-ter Science 3:1�22, 1977.[Tod91] S. Toda. On polynomial-time truth-table reducibilities of intracta-ble sets to P-selective sets. Mathematical Systems Theory, 24:69{82,1991.[Tor93] J. Tor�an. Personal Communication.[Val76] L. Valiant. Relative complexity of checking and evaluating. Infor-mation Processing Letters, 5(1):20-23, 1976.[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-tions. Theoretical Computer Science 47:85�93, 1986.[Wat90] O. Watanabe. Unpublished note.18

