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Abstract

The complexity of deciding the winner of poset games was only known

to be somewhere between NC1 and PSPACE. We resolve this discrepancy

by showing that the problem is PSPACE-complete. To this end, we give a

reduction from Node Kayles.

The reduction yields a 3-level poset game. Hence the compexity of 2-

level games remains an interesting open question. We make some progress

and give a simple formula allowing one to compute the status of a type

of two-level poset game that we call parity-uniform in polynomial time.

This class includes signi�cantly more easily solvable two-level games than

was known previously. We also establish general equivalences between var-

ious two-level games. These equivalences imply that for any n, only �nitely

many two-level posets with n minimal elements need be considered, and

a similar result holds for two-level posets with n maximal elements.

1 Introduction

A partially ordered set, or poset, is a set of elements with a binary relation,

denoted �, indicating the ordering of elements that is re
exive, transitive, and

antisymmetric. A poset game is an impartial two-player game played over some

poset. Each turn, a player selects an element of the poset, removing it and all

elements greater than it. A player loses when faced with the empty poset.

Equivalently, the last player able to select an element wins. We will assume

that the poset is �nite, which ensures that the game will eventually end in such

a manner.

Poset games have been studied in various forms since a complete analysis

of the poset game Nim was given in 1901 by Bouton [Bou01]. Other poset
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games with explicit polynomial time strategies include von Neumann's Hack-

endot [�U80] and impartial Hackenbush on trees [BCG04]. The above games have

no induced subposet of cardinality four whose Hasse diagram forms an `N'. In

fact, Deuber & Thomass�e [DT96] have shown that all N-free poset games can

be solved in polynomial time.

However there are several other well-studied poset games played over speci�c

structures with unknown complexity [Fra00]. Perhaps the most popular is the

game of Chomp, which was introduced by Gale in 1974 and is played on the

cross product of two Nim stacks [Gal74]. Work by Byrnes [Byr03] shows that

certain Chomp positions exhibit periodic behavior, but a quick general solution

still does not exist. In Subset Takeaway [GN82], introduced by Gale in 1982,

the players take turns removing a set and all its supersets from a collection

of sets. In Shuh's Game of Divisors [Sch52], the players alternate removing a

divisor of n and its multiples. In fact, both Chomp and Subset Takeaway are

special cases of the Game of Divisors, with n the product of at most two primes

and n square-free, respectively.

In this paper, we discuss the complexity of deciding the winner of an ar-

bitrary �nite poset game, which has remained a longstanding question in the

attempt to classify the tractability of combinatorial games [Fra00, Fra04]. Let

PosetGame be the language consisting of poset games with a winning strategy

for the �rst player. Kalinich [Kal12] showed that PosetGame is at least as hard

as NC1 under AC0-reductions by creating a correspondence with Boolean cir-

cuits. Weighted poset games, which are a generalization of poset games, were

shown to be PSPACE-complete in [IT11]. That result, which uses a completely

di�erent technique than the one described in this paper, along with another

proof in [SW11], clearly show that PosetGame is in PSPACE. We show in Sec-

tion 3 that PosetGame is indeed PSPACE-complete. Our reduction is from the

language NodeKayles of instances of the two-player game Node Kayles with a

�rst-player win, shown to be PSPACE-complete by Schaefer [Sch78].

As we will see, the above reduction yields a 3-level poset game, i.e., a game

where the poset is the union of at most three antichains. Hence, the problem

remains PSPACE-complete even restricted to games played on posets with three

levels. It is therefore a natural question to ask if two-level poset games are easy,

as no hardness result is known for them. We also address this question here.

We prove in Section 4 that if a set of elements of a poset have exactly the

same set of neighbors in the poset, then only the parity of the set matters for

the status of the game. This implies that we only need consider a �nite number

of poset games with any given set of bottom elements, and similarly for a given

set of top elements. Also in Section 4, as a warm-up, we compute the Grundy

numbers (see De�nition 2.2) of some simple two-level poset games.

Fraenkel and Scheinerman [FS91] have solved some cases of a certain class

of poset games known as hypergraph games (poset of edges and vertices in

the hypergraph with containment order). The hypergraph games on P-uniform

hypergraphs correspond to a special class of two-level poset games. One of
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the cases of hypergraphs they have solved is P-uniform P-partite hypergraphs.

Their paper was the �rst one giving results applying speci�cally to two-level

poset games. In Section 5, we generalize their result to a signi�cantly larger

class of two-level poset games.

The hypergraph game on graphs is known as Graph Chomp. Graph Chomp

on bipartite graphs is a special case of the P-uniform P-partite hypergraph game,

and thus, is also subsumed by our result. Solutions for some speci�c families

for non-bipartite graphs are also known (see [O'S18] and references therein),

but for general graphs, its complexity is unknown.

The formulas for the Grundy numbers that we present in this paper are all

easily computed in polynomial time, in fact in TC0. Hence, these games are

solvable in polynomial time. Whether two-level poset games are easy in general

is still an open question.

2 Preliminaries

2.1 Basic definitions

We consider the two-player games Node Kayles and the poset game.

� In Node Kayles, we are given an undirected graph G = (V, E). The players

take turns removing a vertex v from the remaining graph. With v, also all

neighbors of v are removed. The player who makes the last move, leaving

an empty graph, wins. We let NodeKayles be the language of Node Kayles

games in which the �rst player has a winning strategy.

� In a poset game, we are given a set P and a partial order � on P. The

players take turns removing an element x 2 P from the remaining poset.

With x, all y � x are also removed. The player who makes the last move,

leaving an empty poset, wins. We let PosetGame be the language of poset

games in which the �rst player has a winning strategy.

We use directed acyclic graphs (Hasse diagrams) to represent partially or-

dered sets. The vertices of the graph are the elements of the poset, and y � x

if and only if vertex y is reachable from vertex x in the graph. In a slight abuse

of notation, we will call the set P in a poset game also a partial order or a

poset game.

The two games are examples of two-player impartial games. These are

games where allowed moves only depend on the current state of the game and

not on which player is playing. Note also that there is always a winner in both

games. That is, no draw is possible.

A game, or a position within a game, is called winning or an 9-game, if

there exists a winning strategy for the �rst player. Sometimes it is also called

an N-game because it is a win for the next player. Otherwise the game, or the

position, is called losing or a 8-game as any strategy of the �rst player will
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lose. Sometimes it is also called a P-game because it is a win for the previous

player. Below is the formal, recursive de�nition. For an impartial game G and

an allowed move x in G, let Gx denote the game obtained after making the

move x. Thus, for a poset game P and any x 2 P, Px will denote the induced

subposet

Px = {y 2 P | x 6� y} .

Definition 2.1. Let G be an impartial game.

� G is an 9-game i� there exists an allowed move x in G such that Gx
is a 8-game.

� G is a 8-game i� it is not an 9-game.

So for example for a poset game, ; is a 8-game, and the one-element poset

is an 9-game.

2.2 Constructing games and Grundy numbers

The basic theory of impartial combinatorial games is well-established, going

back (at least) to Sprague and Grundy [Spr36, Gru39], and can be found in

a number of books [BCG01, BCG04]; see also [FR15] for a survey using poset

games speci�cally. Here we brie
y review the relevant de�nitions and results

from that theory.

For impartial games G1 and G2, one de�nes the impartial game G1 + G2,

which we call the parallel union of G1 and G2, by putting them together side-

by-side. A valid move in this game is either a move in G1 or a move in G2.

A move in G1 is not supposed to a�ect G2 and vice versa. Note that for any

impartial game G, the parallel union G+G is a 8-game.

A classic result of Sprague and Grundy [Spr36, Gru39] allows us to analyze

G1 + G2 given information about G1 and G2, namely, their Grundy numbers

(g-numbers). Let N = {0, 1, 2, . . .} denote the set of natural numbers.

Definition 2.2. The Grundy number (or g-number) g(G) of an impartial

game G is given by the following recursive formula:

g(G) = min(N \ {g(Gx) | x is an allowed move in G}) .

We call the set {g(Gx) | x is an allowed move in G} the g-set of the game G.

Notice that according to the de�nition, for a poset game on the empty poset ;,

g(;) = 0. More generally, if Cn is a chain, i.e., a linearly ordered set of n points,

then the Grundy number of the corresponding poset game will be g(Cn) = n

and g-set(Cn) = {0, . . . , n− 1}. Clearly, the number n of nodes of a poset game

is an upper bound on its g-number.

Figure 1 shows the computation of the g-number of a particular poset from

its game tree. The following easy criterion was proved by Grundy [Gru39].
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Figure 1: Computation of the g-number of a poset with its game tree. The

numbers in the circles show the g-numbers for the corresponding games.

Observation 2.3 ([Gru39]). An impartial game G is an 9-game if and only

if g(G) 6= 0.

The Sprague-Grundy theorem relates g(G1 + G2) with g(G1) and g(G2)

for any impartial games G1 and G2. For natural numbers α and β, let α � β

denote the natural number whose binary representation is the bitwise XOR of

the binary representations of α and β.

Theorem 2.4 ([Spr36, Gru39]). g(G1 +G2) = g(G1)� g(G2).

Corollary 2.5. g(G1) = g(G2) ⇐⇒ g(G1+G2) = 0 ⇐⇒ G1 +G2 is a 8-game.

Computing the g-number of a poset game is polynomial-time equivalent to

�nding its status: Finding the status from the g-number is trivial by Obser-

vation 2.3, above. For the other direction, by the Sprague-Grundy theorem,

given a �nite poset P with n points, g(P) is the unique g 2 {0, . . . , n} such that

(P + Cg) is a 8-game. Hence, our focus will be to compute the g-number of a

given poset.

A poset P has k levels i� it can be partitioned into k antichains but not

into k − 1 antichains. As mentioned earlier, for three-level posets, �nding the

status is PSPACE-hard. So, a natural question is whether two-level posets are

easy. Starting in Section 4 we will give explicit formulas for the g-number for

some speci�c classes of two-level posets.

3 PosetGame is PSPACE-complete

Soltys and Wilson [SW11] showed that PosetGame is in PSPACE. We show that

it is in fact complete.
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Theorem 3.1. PosetGame is PSPACE-complete.

We prove the theorem in the rest of this section. To show PSPACE-hardness,

we will give a reduction from NodeKayles to PosetGame. The reduction is a

composition of two functions, ψ and ϕ that we will present �rst. Finally we

show that when the two functions are applied in succession, they reduce an

instance of NodeKayles into an instance of PosetGame such that the winning

player is preserved.

Let G = (V, E) be an undirected graph, where V is the set of vertices and E

is the set of edges. We will use Kn to denote the complete graph on n vertices.

ψ(G) =

{
G+ K2 + K2, if |E| is odd,

G+ K2 + K4, if |E| is even.

Figure 2 gives an example of the de�nition of ψ.

ψ

ψ

Figure 2: Examples of the ψ-construction. Above for |E| odd, below for |E|

even.

We summarize the crucial properties of the construction.

Lemma 3.2. Let G be a graph.

(i) The edge cardinality of ψ(G) is always odd.

(ii) For every vertex of ψ(G), there is an edge in ψ(G) that is not incident

to it.

(iii) G and ψ(G) have the same Grundy-number, i.e., g(G) = g(ψ(G)).

Proof. The �rst two items are obvious. We show the third item.

Note that g(Kn) = 1 for all n � 1. Therefore by Theorem 2.4,

g(ψ(G)) = g(G)� 1� 1 = g(G).

Next, we de�ne the crucial mapping ϕ from graphs to posets. The �nal

reduction from NodeKayles to PosetGame will then be the composition ϕ �ψ.
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Let G = (V, E) be a graph. The elements of the poset ϕ(G) can be parti-

tioned into three levels, ϕ(G) = A[B[C with disjoint levels A, B, and C from

lowest to highest. That is, for any a 2 A, b 2 B, and c 2 C, b 6� a, c 6� b, and

c 6� a. Furthermore, any two elements on the same level are incomparable.

The elements are de�ned as follows:

� The elements of C are the edges of G. That is, C = E.

� The elements of B are the vertices of G. That is, B = V.

� The elements of A are copies of the edges of G. For notation, we denote

the copy of edge e by γ(e). Then A = {γ(e) | e 2 E }.

For each edge e = (v1, v2) and b 2 B, the � relationship of the poset ϕ(G) is

as follows:

� b � e i� b = v1 or b = v2. That is, e is greater than its endpoints in B.

� γ(e) � b i� b 6= v1 and b 6= v2. That is, γ(e) is less than all the elements

in B except the endpoints of e.

Figure 3 shows an example of mapping ϕ.

ϕ

v1 v2

v3v4

v1 v2 v3 v4

(v1, v2) (v1, v3) (v3, v4)

γ((v3, v4)) γ((v1, v3)) γ((v1, v2))

Figure 3: Example of the ϕ-construction. On the left is an undirected graph G

for a Node Kayles game, on the right is ϕ(G), a Hasse Diagram for the resultant

poset game.

Figure 4 shows an example of the �nal reduction from G to the composi-

tion ϕ(ψ(G)).

Figure 4: Example of a full reduction from G via ψ(G) to ϕ(ψ(G))

For the following lemma, assume that two players, Alice and Bob, are play-

ing the poset game on ϕ(ψ(g)). They take turns choosing elements from this
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poset. This lemma will be used to show that the player who �rst chooses an

element from A or C or chooses a neighbor of a vertex already chosen, loses.

Lemma 3.3. Let G = (V, E) be a graph and e = (v1, v2) be an arbitrary edge

in ψ(G). Assume in the poset game ϕ(ψ(G)), no moves in A or C have

yet been chosen.

1. If both v1 and v2 have been chosen, then γ(e) is a winning move.

2. If exactly one of v1 and v2 has been chosen, then γ(e) is a losing

move.

3. If neither v1 nor v2 has been chosen, then both e and γ(e) are losing

moves.

Proof. For (1): Because ψ(G) is a graph with an odd number of edges, choos-

ing γ(e) leaves an even number of incomparable points in A and nothing else.

For (2): First notice that e has already been removed from the poset because

both v1 � e and v2 � e. Because γ(e) 6� v1 and γ(e) 6� v2, choosing γ(e) leaves

a single point (either v1 or v2) in B. Thus, the next player can win by choosing

the lone element in B, leaving an even number of incomparable points in A.

For (3): Assume that either player, say Alice, chooses γ(e), which results

in an even number of incomparable points in A, v1 and v2 in B, and e in C.

Bob can then respond by choosing e. If Alice responds with v1, then Bob can

respond with v2 (and vice versa), resulting in an even number of points in A,

which is a win for Bob.

If, however, Alice responds with a point a 2 A, there are three cases:

a � v1 and a � v2, a � v1 and a 6� v2, or a � v2 and a 6� v1. Note that, by

construction, there is no point a such that a 6� v1 and a 6� v2. That is, the only

point that is not less than both v1 and v2 is γ(e), which has already been taken

by assumption. So �rst assume that a � v1 and a � v2. This would leave an

odd number of elements in A, resulting in a win for Bob. Consider then that

a � v1 and a 6� v2 or a � v2 and a 6� v1. Without loss of generality we can

assume a � v1 and a 6� v2. By Lemma 3.2(ii), there exists an edge e2 that is

not incident to v2. By construction, γ(e2) � v2. Thus, Bob can choose γ(e2),

leaving only an even number of elements in A, resulting in a win for Bob.

If Alice had initially chosen e instead of γ(e), then Bob could have responded

with γ(e), which leads to the same game as played as above, which was a win

for Bob. Thus e is a losing move as well.

Now we combine the lemmas to �nally prove Theorem 3.1. We will argue

inductively that Nodes Kayles for G is a winning game i� the poset game

on ϕ(ψ(G)) is a winning game. Note that ϕ(ψ(G)) is computable in polynomial

time.

The idea behind the construction is that both players are forced to play

elements in B until two elements v1 and v2 representing adjacent vertices e =
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Mi Wi

i bottom nodes

Ni

i top and bottom nodesi top nodes

Figure 5: The zig-zag posets Mi, Wi, and Ni.

(v1, v2) in ψ(G) have been chosen. At this point the next player can win by

choosing the element γ(e) in A.

Assume that the poset game played on ϕ(ψ(G)) has been played in the

prescribed manner so far. That is, no elements from A or C have yet been

chosen. Lemma 3.3 (1) ensures that choosing a vertex neighboring a vertex that

has already been chosen is a losing move. Lemma 3.3 (2) and (3) ensure that

choosing any point in A or C before two neighboring vertices have been chosen

is a losing move. Thus, a player has a winning strategy on ϕ(ψ(G)) i� that

player has a winning strategy on ψ(G), since there is an obvious correspondence

between the moves in ϕ(ψ(G)) and the moves in ψ(G). Lemma 3.2 (iii) ensures

that a player has a winning strategy on ψ(G) i� he has a winning strategy on G.

This �nishes the proof of Theorem 3.1.

4 Two-level posets

In the previous section, we proved that three-level poset games are hard. We

now consider the complexity of two-level poset games in the remaining two

sections. We show that some special classes of two-level poset games can be

decided in polynomial time.

A two-level poset game can be represented by a two-layer graph, say top

and bottom layers (both antichains), which partition the nodes into top nodes

and bottom nodes , respectively. Any edge in the Hasse diagram joins a bottom

node to a top node. Two nodes are comparable if and only if there is an edge

between them, and moreover, if they are comparable then the top node is

greater than the bottom node. Hence we can write G = (B, T, E), where B is

the set of bottom nodes, T is the set of top nodes, and E are the edges.

We �rst look at a particular class of two-level posets which just have a zig-

zag pattern as shown in Figure 5. We can classify them into three categories,

Mi,Wi, and Ni, depending on their starting and ending edge orientation. Here

i � 0 represents the number of bottom nodes, or top nodes in case of Mi. We

de�neM0 and W0 as a single node, and N0 as the empty set. Their g-numbers

follow a nice pattern which we give in the next theorem. This pattern was

found independently by Rogers [Rog12].

Theorem 4.1. The Grundy numbers of the zig-zag posets are given by the
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following formulas:

(1) g(Mi) = (i mod 2) + 1

(2) g(Ni) =

{
4b i3c+ 2 if i � 1 (mod 3),

4b i3c otherwise.

(3) g(Wi) = 1

Proof. We prove it by induction. The base cases are easy to verify.

For (1), let us construct the g-set for Mi for i > 1. Removing the �rst

or the last bottom node leads to Mi−1. So, ((i − 1) mod 2) + 1 2 g-set(Mi).

Removing any other node leads to two M-posets. When the two posets have a

di�erent parity of top nodes, the g-number of the combined poset is 1�2 = 3 by

Theorem 2.4. When they have the same parity of top nodes, the g-number is 0.

Note that removing a top node fromMi leads to twoM-posets of di�erent top

parity if and only if removing an inner bottom node leads to two M-posets of

the same top parity. Hence, both cases are covered, and thus 0, 3 2 g-set(Mi).

Hence, g(Mi) = (i mod 2) + 1.

For (2), the pattern given by the formula looks as follows

i 0 1 2 3 4 5 6 7 8 � � �

g(Ni) 0 2 0 4 6 4 8 10 8 � � �

We determine the g-set of Ni:

� Removing the leftmost bottom node from Ni leads to an Ni−1-poset, and

removing the leftmost top node leads to an Ni−1-poset with one node in

parallel. Hence, g(Ni−1), g(Ni−1)� 1 2 g-set(Ni).

� Let 2 � j � i.

– Removing the jth bottom node from left from Ni leads to an Ni−j-

poset to the right of this node, and a Mj−2-poset to its left.

– Removing the jth top node from left from Ni leads again to an Ni−j-

poset to the right of this node, whereas we get an Mj−1-poset to its

left.

From formula (1) of the theorem, setting k = i − j, we obtain g(Nk) �

1, g(Nk)� 2 2 g-set(Ni), for k = 0, 1, . . . , i− 2.

There are no other elements of g-set(Ni). Hence we get that g-set(Ni) =

{0, 1, . . . , 4b i3c− 1} [ Si, where

Si =


; for i � 0 (mod 3),

{4b i3c, 4b
i
3c+ 1} for i � 1 (mod 3),

{4b i3c+ 1, 4b
i
3c+ 2, 4b

i
3c+ 3} for i � 2 (mod 3).
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t top nodes

g = 2 (t mod 2)

Figure 6: A 2-level poset with 2 nodes at the bottom layer connected with all

the t nodes in the top layer. The g-number of the poset is 2 (t mod 2).

Hence, the g-number is as claimed in the theorem.

For (3), let us now construct the g-set for Wi. Removing any node from it

would give us one or two N-posets. There always exists a middle bottom or top

node whose removal will lead to the parallel union of two identical N-posets,

which has g-number 0. Since by (2), the g-number of N-posets is always even,

1 /2 g-set(Wi). Hence, g(Wi) = 1.

Now, let us look at another poset game. Figure 6 shows a particular class

of two-level poset games where there are 2 bottom nodes and t top nodes,

connected as a complete bipartite graph. One can show by induction that the

g-number of such a game is 2 � (t mod 2). So, the g-number or the status only

depends on the parity of the top nodes. Hence, if we remove all but t mod 2 of

the top nodes in the game shown in Figure 6, we get a game with the same g-

number. Our next theorem shows how we can do this reduction simultaneously

for several such patterns.

Let P = (B, T, E) be a two-level poset game. For nodes x 2 B and y 2 T we

de�ne the set of neighbor nodes as

Tx = { v 2 T | (x, v) 2 E }

By = { v 2 B | (v, y) 2 E }

Theorem 4.2. Let P = (B, T, E) be a two-level poset game and S � T be a

set of top nodes that all have the same set B0 of neighbors, i.e., By = B0
for all y 2 S. Construct P 0 from P by removing all but |S| mod 2 of the

nodes in S. Then g(P) = g(P 0).

Proof. By Corollary 2.5 it su�ces to show that g(P + P 0) = 0, i.e., P + P 0 is

a 8-game. We consider the case that we have removed only two nodes from S.

Then the claim follows by induction. Let us denote the two nodes removed

from P by α and β. We show that the second player has a winning strategy in

P + P 0.

If the �rst player plays anything other than α or β, the second player just

imitates the same move in the other game. If the �rst player removes α, the

second player plays β, and vice versa. Note that by our assumption, at the

�rst player's turn, either both nodes α and β are still there or none of them:

since Bα = Bβ = B0, any bottom node move will remove either both or none of

them. Hence, the second player is always the last to play.
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Theorem 4.2 tells us that for any two-level poset game we can assume that

it has the following \extensional" property: any two top nodes have a di�erent

set of neighbors in B. All other cases can be reduced to this one. Such a poset

is essentially a set system, that is, a collection {S1, . . . , St} of subsets of some

�nite domain B. In the poset, the bottom points form the domain, and each

top point corresponds to one of the sets Si, containing those bottom points less

than it. There are 22
n
many set systems on a domain of size n, and so there are

at most 22
n
many two-level posets to consider with n bottom elements. Many

of these are isomorphic, so the number of distinct posets is much fewer. For

example, of the 256 extensional posets with 3 bottom elements, there are 40

isomorphism types.

A similar theorem can be obtained for the bottom nodes too, but a slightly

weaker version. For any set S � B such that all nodes in S have the same set of

neighbors in T , we can remove all but one node from S, if jSj is odd, and obtain

an equivalent game. This is analogous to Theorem 4.2. However, if jSj � 2 is

even, then we can remove all but two nodes from S. It does not follow that the

cases jSj = 2 and jSj = 0 are equivalent. Therefore, jSj is either 0, 1 or 2.

Theorem 4.3. Let P = (B, T, E) be a two-level poset game and S � B, |S| � 3,

be a set of bottom nodes that all have the same set T0 of neighbors, i.e.,

Ty = T0 for all y 2 S. Construct P
0 from P by removing two nodes from S.

Then g(P) = g(P 0).

Proof. We show again that g(P+P 0) = 0. We will describe the winning strategy

for the second player.

The second player again just imitates the �rst player's moves in the other

game while she can. If the �rst player removes a node, say from S in P, then the

second player will remove a node from the corresponding set S 0 in P 0, or vice

versa. At some point after the second player moves we will have jSj = 2 in P,

and jS 0j = 0 in the corresponding set in P 0. By our assumption that jSj � 3

originally, we know that some node from S has already been removed, and so

the set T0 is also removed from both P and P 0 in some previous moves. Now if

the �rst player then removes a node from S, the second player just removes the

other node from S. As the set T0 was already removed, now the games P and P 0

are exactly same, and the second player can continue his imitating strategy. So

the second player is always the last player.

5 Parity-uniform games

In this section, we present our other main result, which computes the g-number

for a certain class of two-level games which we de�ne below.

Fraenkel & Scheinerman [FS91] have studied a related class of games called

hypergraph games. There, the game is a hypergraph, and a valid move is to

either remove a vertex and all hyper-edges containing it or remove a hyper-edge

and all hyper-edges containing it.
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A two-level poset can also be seen as a hypergraph, with bottom nodes

being the vertices and the top nodes being the hyper-edges. A valid move in

the poset game, however, would be a little di�erent from that in a hypergraph

game. Namely, a valid move is to either to remove a vertex and hyper-edges

incident on it or else to remove a hyper-edge. Fraenkel & Scheinerman gave

an explicit formula for the g-number for p-uniform, p-partite hypergraphs. A

p-uniform p-partite hypergraph has a p-partition of its vertices such that every

hyperedge is incident on exactly one vertex from each partition. This class

of hypergraphs correspond to two-level posets where the bottom layer has p

partitions and every top node is connected to exactly one node in each partition

of the bottom layer. For this class, the hypergraph game and the poset game

have the same rule for a valid move.

We generalize their result to a larger class of two-level posets de�ned as

follows:

Definition 5.1. We say that a two-level poset is parity-uniform if

(i) all top nodes have the same degree parity, and

(ii) there is a bipartition of the bottom nodes such that every top node

has an odd number of connections to at least one of the partitions.

Note that parity-uniformity is preserved under valid moves on the poset.

This class of posets is clearly a generalization of the uniform p-partite hyper-

graphs. Note that when every top node has odd degree, then the poset trivially

has property (ii) of De�nition 5.1: we just take (B, ;) as the bipartition. So

property (ii) is signi�cant only in the other case, when every top node has an

even degree, and in this case every top node has an odd number of connec-

tions to both partitions. The next theorem gives the g-number for this class of

posets.

Theorem 5.2. Let P = (B, T, E) be a parity-uniform, two-level poset with

every top node having degree parity p 2 {0, 1}. Let b = jBj mod 2 and

t = jT j mod 2. Then

g(P) = b � t (p� 2).

Proof. We prove the formula by induction on jPj. In the base case when jBj = 0

and jT j = 0, the formula is trivially true. As parity-uniformity is preserved

under a valid move in the poset, our inductive hypothesis is that the theorem

holds for the game P 0 that we get after a single move. We consider four inductive

cases, below. In each, we use b 0 and t 0 to denote the bottom and top parities

in P 0, respectively.

� b = 0 and t = 0. We need to show that g(P) = 0. If we remove a

bottom node from P to get P 0, then by the inductive hypothesis, we have

g(P 0) > 0, since b 0 = 1. If we remove a top node, then t 0 = 1 and b 0 = 0,

so g(P 0) � 2. Hence g(P) = 0.

13



� b = 1 and t = 0. We need to show that g(P) = 1. If we remove a top node,

then b 0 = 1 and t 0 = 1. By induction, g(P 0) � 2. If we remove a bottom

node with odd degree, we get a game P 0 with b 0 = 0 and t 0 = 1. So, again

g(P 0) � 2. If we remove a bottom node with even degree (assuming for

the moment that one exists), then b 0 = 0 and t 0 = 0, and by induction,

g(P 0) = 0. Hence g(P) = 1.

We claim that there always exists a bottom node with even degree. We

note that jEj � pt � 0 (mod 2). As there are an odd number of bottom

nodes, and the sum of their degrees should be even, there must be at least

one bottom node with even degree.

In the next two cases, t = 1. Also, there is a subset S � B of the bottom nodes

such that every top node has an odd number of connections to S. Therefore,

the number of edges incident on S, jE(S)j � t � 1 � 1 (mod 2). Thus there

must be a node in S with odd degree.

� b = 0 and t = 1. If we remove a top node, then b 0 = 0 and t 0 = 0. Hence

g(P 0) = 0. If we remove a bottom node with odd degree, which always

exists, then b 0 = 1 and t 0 = 0. So, by induction, g(P 0) = 1. Now we

consider two subcases:

1. p = 0. If there is a bottom node with even degree, removing it would

lead to b 0 = 1 and t 0 = 1, and thus g(P 0) = 3 by induction. Hence,

g(P) = 2.

2. p = 1. The total number of edges jEj � tp � 1 (mod 2). So there

must be odd number of bottom nodes with odd degree. And as

b = 0, there is a bottom node with even degree. Removing it would

lead to b 0 = 1 and t 0 = 1, and thus g(P 0) = 2 by induction. Hence

g(P) = 3.

� b = 1 and t = 1. If we remove a top node then b 0 = 1 and t 0 = 0. So,

g(P 0) = 1. If we remove a bottom node with odd degree, which always

exists, we get b 0 = 0 and t 0 = 0, and thus g(P 0) = 0. Again we consider

two subcases:

1. p = 1. If there is a bottom node of even degree, removing it would

lead to b 0 = 0, t 0 = 1 and g(P 0) = 3. Hence, g(P) = 2.

2. p = 0. The total number of edges jEj � tp � 0 (mod 2). As b = 1,

there must be a bottom node of even degree. Removing it would

lead to b 0 = 0, t 0 = 1, and g(P 0) = 2. Hence g(P) = 3.

As already mentioned above, when every top node has odd degree, then the

game is parity-uniform. Hence, with the same notation as in Theorem 5.2, we

get the following special case:
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Corollary 5.3. Let P = (B, T, E) be a two-level poset with every top node

having odd degree. Then

g(P) = b � 3t.

6 Discussion

By the reduction presented in the proof of Theorem 3.1, it follows that deciding

the winner of a �nite poset game with any height k � 3 is PSPACE-complete. In

contrast, determining the winner of single-level poset games is trivially obtained

by considering the parity of the poset elements.

We have given an explicit formula for the g-numbers of some classes of two-

level posets. As a consequence, we can determine in polynomial time whether

these games are winning games. For general two-level posets, the question is

still open. A natural extension of our work would be to weaken the hypotheses

of Theorem 5.2 and still get an easy formula for the g-number.

We conjecture that two-level poset games can be solved in polynomial time,

and consequently, that three levels are necessary for a reduction from PSPACE.

But as long as there is no proof for this conjecture, one should also look at

the other side of the fence, as it were, and look for a reduction from a NP- or

PSPACE-complete language to two-level posets.

This work has also spawned a new PSPACE-complete game on sets invented

by Fenner and Fortnow (see [For12]). Given a collection of �nite sets S1, . . . , Sk,

each player takes turns picking a non-empty set Si, removing the elements of

Si from all the sets Sj. The player who empties all the sets wins. To reduce a

poset game into an instance of set-game, simply take the sets as the upper cones

of the poset. That is, each set consists of an element and all elements greater

than it. However, if the cardinality of the sets is bounded, the complexity is

still open.
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