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Abstract

Graph I[somorphism is the prime example of a computational problem with a wide difference
between the best known lower and upper bounds on its complexity. The gap between the known
upper and lower bounds continues to be very significant for many subclasses of graphs as well.

We bridge the gap for a natural and important class of graphs, namely planar graphs, by
presenting a log-space upper bound which matches the known log-space hardness. In fact, we
show a stronger result that planar graph canonization is in log-space.

1 Introduction

The graph isomorphism problem, GI, is to decide whether there is a bijection between the vertices
of two graphs which preserves the adjacency relations. The wide gap between the known lower and
upper bounds has kept alive the research interest in GI.

The problem is clearly in NP. It is also in the, intuitively weak, counting class SPP [AKO06].
This is the current frontier of our knowledge with respect to upper bounds.

Not much is known with respect to lower bounds. GI is unlikely to be NP-hard, because
otherwise, the polynomial-time hierarchy collapses to its second level. This result was proved in
the context of interactive proofs in a series of papers [GMW91, GS89, Bab85, BHZ87|. Note that
it is not even known whether GI is P-hard. The best we know is that GI is hard for DET [Tor04],
the class of problems NC'-reducible to the determinant, defined by Cook [Co085].

*Preliminary versions appeared in [DLN08] and [DLN'09].
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Known results: While this enormous gap has motivated a study of isomorphism in general
graphs, it has also induced research in isomorphism restricted to special cases of graphs where this
gap can be reduced. We mention some of the known results.

e Tournament graphs are an example of directed graphs where the DET lower bound is pre-
served [Wag07], while there is a quasi-polynomial time upper bound [BL83|.

e Lindell [Lin92] showed that tree i<somorphism can be solved in log-space. It is also hard for
log-space [JKMT03]. Hence lower and upper bounds match in this case.

e For interval graphs, the isomorphism problem is in log-space [KKLV11].

e For graphs of bounded treewidth, Bodlaender [Bod90] showed that the isomorphism problem
can be solved in polynomial time. Grohe and Verbitsky [GV06] improved the bound to TC',
and Das, T'éran, and Wagner [DTW12] to LogCFL. Finally, Elberfeld and Schweitzer [ES17]
showed that it is in log-space, where it is complete.

In this paper we consider planar graph isomorphism. Weinberg [Wei66] presented an O(n?)
algorithm for testing isomorphism of 3-connected planar graphs. Hopcroft and Tarjan [HT72b]
extended this to general planar graphs, improving the time complexity to O(nlogn). Hopcroft
and Wong [HW74] further improved this to linear time. Kukluk, Holder, and Cook [KHC04] gave
an O(n?) algorithm for planar graph isomorphism, which is suitable for practical applications.

The parallel complexity of planar graph isomorphism was first considered by Miller and
Reif [MR91]. They showed that it is in AC>. Then Gazit and Reif [GR98] improved the upper
bound to AC', see also [Ver07].

In the context of 3-connected planar graph isomorphism, Thierauf and Wagner [TW10] pre-
sented a new upper bound of ULNcoUL, making use of the machinery developed for the reachability
problem [RA00] and specifically for planar reachability [ABCT09, BTV09]. They also show that
the problem is L-hard under AC°-reductions.

There have been several more recent results. The most notable one is a quasi-polynomial time
algorithm for isomorphism of all graphs by Babai [Bab16]. Elberfeld and Kawarbayashi [EK14]
extended our result from planar graphs to bounded-genus graphs. An interesting result for planar
graphs is by Kiefer et al. [KPS17], where they show that the Weisfeiler-Leman dimension of planar
graphs is at most 3. The logspace isomorphism test for interval graphs has been extended to
Helly circular-arc graphs by Kobler et al. [KKV13]; another extension in this direction is due to
Chandoo [Chal6].

Our results: In the current work we show that planar graph isomorphism is in log-space. This
improves and extends the result in [TW10]. As it is known that planar graph isomorphism is
hard for log-space, our result implies that planar graph isomorphism is log-space complete. Hence
we finally settle the complexity of the problem in terms of complexity classes. In fact, we show a
stronger result: we give a log-space algorithm for the planar graph canonization problem. That is,
we present a function f computable in log-space, that maps all planar graphs from an isomorphism
class to one member of the class. Thereby we also solve the canonical labeling problem in log-
space, where one has to compute an isomorphism between a planar graph G and its canon f(G).



Proof outline: Let G be the given connected planar graph we want to canonize. As a high-level
description of our algorithm, we follow Hopcroft and Tarjan [HT72b] and decompose the graph G.
The differences come with the log-space implementation of the various steps.

In more detail, we start by computing the biconnected components of G from which we get the
biconnected component tree of G. Then we refine each biconnected component into triconnected
components and compute the triconnected component tree. The actual coding to get a canon for G
starts with the 3-connected components. Our algorithm uses the notion of universal exploration
sequences from [Kou02] and [Rei08]. Then we work our way up to the triconnected and biconnected
component trees, and finally get a canonization of G. Thereby we adapt Lindell’s algorithm for
tree canonization. However, we have to make significant modifications to the algorithm. In more
detail, our algorithm consists of the following steps on input of a connected planar graph G. All
steps can be accomplished in log-space.

1. Decompose G into its biconnected components and construct its biconnected component
tree ([ADKO8], cf. [TW14]).

2. Decompose the biconnected planar components into their triconnected components and con-
struct the triconnected component trees (Section 4.1).

3. Solve the isomorphism problem for the triconnected planar components (Section 3). In fact,
we give a canonization for these graphs.

4. Compute a canonization of biconnected planar graphs by using their triconnected component
trees and the results from the previous step (Section 4).

5. Compute a canon for G by using the biconnected component tree and the results from the
previous step (Section 5).

In the last two steps we adapt Lindell’s algorithm [Lin92] for tree canonization.

Note that, without loss of generality we can assume that the given graph G is connected [Rei08].
If a given graph, say H, is not connected, we compute its connected components in log-space, and
canonize each of these components with the above algorithm. Then we put the canons of the
connected components of H in lexicographically increasing order. This obviously gives a canon
for H.

The paper is organized as follows. After some preliminaries in Section 2, we start to explain the
canonization of 3-connected graphs in Section 3. In Section 4 and 5, we push this up to biconnected
and connected graphs, respectively.

Subsequent work: The log-space bound presented here has been extended afterwards to the
class of of K33-minor free graphs and the class of Ks-minor free graphs [DNTWO09]. The previous
known upper bound for these classes was polynomial time [Pon91].



2 Definitions and Notation

Space bounded Turing machines and related complexity classes. A log-space bounded
Turing machine is a deterministic Turing machine with a read-only input tape and a separate work
tape. On inputs of length n, the machine may use O(logn) cells of the work tape. By L we
denote the class of languages decidable by log-space bounded Turing machines. NL is the class of
languages computable by nondeterministic logspace bounded Turing machines. UL is the subclass
of NL where the nondeterministic Turing machines have to be unambiguous, i.e. there exists at
most one accepting computation path.

We also use log-space bounded Turing machines to compute functions. Then the machine
additionally has a write-only output tape. The output tape is not counted for the space used
by the machine. That is, the function computed by a log-space bounded Turing machine can be
polynomially long.

An important property of log-space computable functions is that they are closed under compo-
sition. That is, given two functions f,g : Z* — X*, where X is an input alphabet, if f,g € L then
fogisalsoin L (see [LM73]). Our isomorphism algorithm will compose constantly many log-space
functions as a subroutine. Hence, the overall algorithm will thereby stay in log-space.

Lexicographic order and rank. Let A be a set with a total order <. Then we extend < to

tuples of elements of A in a lexicographic manner. That is, for ay,...,ax,by,...,bx € A we write
(ary...,ax) < (by,...,by) if there is an i € {1,...,k} such that aj = b; forj = 1,...,i—1, and
a; < bj.

For a list L = (x1,%x2,...,%n) of elements, the rank of x; is i, the position of x; in L.

Graphs. We assume some familiarity with commonly used graph theoretic notions and standard
graph theoretic arguments, see for example [Wes00|. Here we define the notions that are crucial
for this paper. We will assume that all the graphs are undirected unless stated otherwise. A graph
is regular, if all vertices have the same degree. For degree d, we also say that G is d-regular.

Two graphs G; = (Vi,Eq) and G, = (V,, E2) are said to be isomorphic, Gi = G, for short, if
there is a bijection ¢ : Vi — V; such that for all edges (u,v) € E;

(wv) €B1 = (d(u),d(v)) € Ea.

Graph isomorphism (GI) is the problem of deciding whether two given graphs are isomorphic.

Let G be a class of graphs. Let f: G — {0,1}* be a function such that for all G;H € G we
have G = H & f(G) = f(H). Then we say that f computes a complete tnvariant for G. In case
that f(G) is itself a graph such that G = f(G) then we call f a canonization of G, and f(G) the
canon of G.

A graph G is called planar if it can be drawn in the plane in such a way that no edges cross
each other, except at their endpoints. Such a drawing of G is called a planar embedding. A planar
embedding of G divides the plane into regions. Each such region is called a face. For a more
rigorous definition see for example [MT01].

For U C V let G(U) be the induced subgraph of G on U. A graph G = (V,E) is connected if
there is a path between any two vertices in G.



Let S C V with |S| = k. We call S a k-separating set, if G(V —S) is not connected. For u,v € V
we say that S separates u from v in G,if ue S, v €S, or u and v are in different components
of G—S. A k-separating set is called articulation point (or cut vertez) for k = 1, separating pair
for k = 2. A graph G on more than two vertices is k-connected if it contains no (k — 1)-separating
set. Hence a T-connected graph is simply a connected graph. A 2-connected graph is also called
biconnected. Note however, that triconnected will not be used as a synonym for 3-connected.
Due to the outcome of the graph decomposition algorithm, a triconnected graph will be either
a 3-connected graph, a cycle, or a 3-bond. A 3-bond is a multi-graph with two vertices that are
connected by three edges.

Let S be a k-separating set in a k-connected graph G. Let G’ be a connected component
in G(V—S). A split graph or a split component of S in G is the induced subgraph of G on
vertices V(G') U S, where we add virtual edges between all pairs of vertices in S. Note that the
vertices of a separating set S can occur in several split graphs of G.

A crucial ingredient in many log-space graph algorithms is the reachability algorithm by Rein-
gold [Rei08].

Theorem 2.1. [Rei08] Undirected s-t-Connectivity s in L.

Below we give some graph theoretic problems for which a log-space upper bound is known due
to Theorem 2.1.

1. Graph connectivity. Given a graph G, one has to decide whether G is connected. In the
enumeration version of the problem one has to compute all the connected components of G.

To decide whether G is connected, cycle through all pairs of vertices of G and check reacha-
bility for each pair. To compute the connected component of a vertex v, cycle through all the
vertices of G and output the reachable ones. Clearly, this can be implemented in log-space
with the reachability test as a subroutine.

2. Separating set. Given a graph G = (V,E) and a set S C V, one has to decide whether S is a
separating set in G. In the enumeration version of the problem one has to compute all the
separating sets of a fixed size k.

Recall that S is a separating set if G — S is not connected. Hence we have a reduction to the
connectivity problem. To solve the enumeration version for a constant k, a logspace machine
can cycle through all size k subsets of vertices and output the separating ones. In particular,
we can enumerate all articulation points and separating pairs in log-space.

Let d(u,v) be the distance between vertices u and v in G. The eccentricity ¢(v) of v is the
maximum distance of v to any other vertex,

e(v) = maxd(v,u).
uev
The minimum eccentricity over all the vertices in G is called the radius of G. The vertices of G that
have the eccentricity equal to the radius of the graph form the center of G. In other words, vertices
in the center minimize the maximal distance to the other vertices in the graph. For example, if G is



a tree of odd diameter, then the center consists of a single node, namely the midpoint of a longest
path in the tree. Moreover, because distances in a tree can be computed in log-space, also the
center node of a tree can be computed in log-space.

Let E, be the set of edges incident on v. A permutation p, on E, that has only one cycle is
called a rotation. A rotation system for a graph G is a set p of rotations,

p={py|VvEYV and p, is a rotation on E, }.

A rotation system p encodes an embedding of graph G on an orientable surface by describing a
circular ordering of the edges around each vertex. If the orientable surface has genus zero, i.e. it is
a sphere, then the rotation system is called a planar rotation system.

Conversely, a graph embedded on a plane uniquely defines a cyclic order of edges incident on
any vertex. The set of all cyclic orders gives a rotation system for the planar graph, which is a
planar rotation system by definition. All embeddings which give rise to the same rotation system
are said to be equivalent and their equivalence class is called a combinatorial embedding, see for
example [MTO1, Section 4.1].

Allender and Mahajan [AMO04] showed that a planar rotation system can be computed in log-
space.

Theorem 2.2. [AM04] Let G be a graph. In log-space one can check whether G is planar and
compute a planar rotation system in this case.

"' ={p;'|v € V] Note that if p is a planar

~1 corresponds to the mirror symmetric

Let o' be the set of inverse rotations of p, i.e. p~
rotation system then this holds for p~' as well. Namely, p
embedding of G.

It follows from work of Whitney [Whi33] that in the case of planar 3-connected graphs, there
exist only two planar rotation systems namely some planar rotation system p and its inverse p~'.
This is a crucial property in the isomorphism test of Weinberg [Wei66] and all the other follow-up
works. We also use this property in our algorithm for planar 3-connected graphs in order to obtain

a log-space upper bound.

Universal Exploration Sequences (UXS). Let G = (V,E) be a d-regular graph. The edges

around any vertex v can be numbered 0,1,...,d — 1 in an arbitrary, bijective way. A sequence
Tt T € {0,1,...,d — 1}* together with a starting edge ey = (vo,v1) € E defines a walk
Vo, V1,...,Vk in G as follows: for 1 <1i <Xk, if e;_1 = (vi_1,Vvi) is the s-th edge of v;, let e; = (vi, vi11)

be the (s + 7;)™ edge of vi modulo d.

A sequence TiT2...T¢ € {0,1,...d — 1}* is a (n,d)-universal ezploration sequence (UXS)
for d-regular graphs of size < n, if for every connected d-regular graph on < m vertices, any
numbering of its edges, and any starting edge, the walk obtained visits all the vertices of the graph.

Universal exploration sequence play a crucial role in Reingold’s result that undirected reacha-
bility is in log-space. We use it in our log-space algorithm for testing isomorphism of 3-connected
planar graphs.

Theorem 2.3. [Rei08] There erists a log-space algorithm that takes as input (1™,1¢) and
produces an (n, d)-universal exploration sequence.



3 Canonization of 3-Connected Planar Graphs

In this section, we give a log-space algorithm for the canonization of 3-connected planar graph.
This improves the UL N coUL bound given by Thierauf and Wagner [TW10] for 3-connected planar
graph isomorphism. Since the problem is also L-hard [TW10] this settles the complexity of the
problem in terms of complexity classes.

Theorem 3.1. The canonization of 3-connected planar graphs is in log-space.

The algorithm in [TW10] constructs a canon for a given 3-connected planar graph. This is
done by first computing a spanning tree for the graph. Then, by traversing the spanning tree,
the algorithm visits all the edges in a certain order. For the computation of the spanning tree the
algorithm computes distances between vertices of the graph. This is achieved by using the planar
reachability test of Bourke, Tewari and Vinodchandran [BTV09]. All parts of the algorithm work
in log-space, except for the planar reachability test which is in UL N coUL. Therefore this is the
overall complexity bound.

In our approach we essentially replace the spanning tree in the above algorithm by a universal
exploration sequence. Since such a sequence can be computed in log-space by Theorem 2.3, this
will put the problem in L.

Note that universal exploration sequences are defined for regular graphs. Therefore our first
step is to transform a given graph G into a 3-regular graph in such a way that

e a planar graph stays planar and
e two graphs are isomorphic if and only if they are isomorphic after this preprocessing step.

Note that every vertex has degree > 3 because G is 3-connected. The following standard construc-
tion 3-REGULAR-COLOR reduces the degree of vertices to exactly three. For later use, we also
2-color the edges in the resulting graph.

Note that the resulting graph G’ is 3-regular and planar, if G is planar. If G has n vertices
and m edges, then G’ has 2m vertices and 3m edges.

Moreover, G’ is also 3-connected. An easy way to see this is via Steinitz’s theorem. It states that
planar 3-connected graphs are precisely the skeletons of 3-dimensional convex polyhedra. For G/,
we replace every vertex of the convex polyhedron for G by a (small enough) cyclic face such that
the resulting polyhedral is still convex. Therefore, G’ is also planar and 3-connected. It follows
that also G’ has only two possible embeddings, namely the ones inherited from G.

In the following lemma, we give an elementary proof where we do not use planarity. For non-
planar G, we do not have a planar rotation system according to which we put the new edges. In
this case, we use an arbitrary rotation system.

Lemma 3.2. Let G be a 3-connected graph and G' be the 3-reqular graph computed by algo-
rithm 3-REGULAR-COLOR(G). Then G' is 3-connected.

Proof. Let u,v be two vertices in G. Since G is 3-connected, there are 3 vertex-disjoint paths
P1,P2,P3 from u to vin G. In G’, vertices u,v are replaced by cycles. The paths p;,p2,p3 can
be transformed to vertex-disjoint paths pj,pj,p; in G’. These paths start in vertices uj,uj, uj



Algorithm 3.1 3-REGULAR-COLOR(G)
Input: A 3-connected graph G = (V,E).
Output: A colored 3-regular graph G' = (V/,E’).

1: Replace a vertex v € V of degree d, > 3 by a cycle (v; ,...,vév) on d, new vertices. This
defines vertices V' and part of the edges in E’. We give color 1 to the cycle edges.

2: Fix a rotation p, of the edges around v, for every v € V. In case that G is planar, we use a
planar rotation.

3: For every edge (u,v) € E,

e let u be the i-th neighbor according to p, of vin G
e let v be the j-th neighbor according to py, of uin G

Then we put the new edge (u]-’ ,v/) which replaces the old edge (u,v). These edges get color 2.
This completes the definition of E'.
4: Output the resulting graph G' = (V',E’).

from the cycle corresponding to u, and end in vertices v{,v3,v; from the cycle corresponding to v,
respectively.

Let u' and v’ be vertices from the cycles corresponding to u and v, respectively. We show that
there are 3 vertex-disjoint paths from u’ to v/ in G’. For this, we want to extend paths pi,pj,p;
to connect u’ and v'. We consider u'. The case of v’ is similar.

1. If u’ is one of uj,u}, us3, say uy, then we can extend p;, p; on the cycle to reach u’ and stay
vertex-disjoint.

2. If u' is different from wuy, uj, uj, then we use the non-cycle edge that stems from G and go to
a neighbor w' of u’. Vertex w’ is on the cycle corresponding to a vertex w in G. Since G is
3-connected, there is a path p from w to vin G. Again there is a path p’ in G’ corresponding
to p.

We construct a new path p that starts at u’ and goes via w’ to the staring point of p’. Then
we follow p’ until we intersect the first time with one of p{,p;, p3, say p;. Then P continues
on p; until we reach v{. When we consider paths P, p;,p; instead of p{,p;,p3, then we are
in case 1.

This shows that vertices u’, v’ from different cycles are connected by 3 vertex-disjoint paths in G'.
In case that u’,v' are on the same cycle corresponding to one vertex of G, we can use two paths
from the cycle and one path via some neighbor vertex of u’ to v'. O

In order to maintain the isomorphism property, we have to avoid potential isomorphisms that
map new edges from the cycles to the original edges. This is the reason why we also colored the
edges. We summarize:



Lemma 3.3. Gwen two 3-connected planar graphs G and H, let G' and H' be the colored
3-regular graphs computed by 3-REGULAR-COLOR. Then G = H if and only if G' = H’, where
the isomorphism between G' and H' has to respect the colors of the edges.

Note that the Lemma crucially depends on the unique embedding of the graph.

Before we show how to get a canon for graph G, we compute a complete invariant as an
intermediate step. The procedure Copg(G', p, up,vo) described in Algorithm 3.2 computes a code
for G’ with respect to a planar rotation system p, a starting vertex v, and a starting edge (up, vo).

Algorithm 3.2 Copg(G’, p,up, Vo)

Input: A 3-regular graph G’ with N vertices and colored edges, a planar rotation system p,
and vertices uy and vy such that vy is a neighbor of .
Output: A code of G’ with respect to p, vertex 1y and edge (up, Vo).

1: Construct a (N, 3)-universal exploration sequence U.

2: Traverse G’ according to U and p, starting from uy along edge (1o, Vo). Thereby we construct
a list L of nodes traversed, L = (up,vo,wWo, ... ).

3: Relabel the vertices occurring in L according to their first occurrence in the sequence. Let L'
be the resulting list. For example, 1y and vy get label 1 and 2, respectively, and therefore L’
starts as L' = (1,2, ... ).

4: Given L and L', compute the relabeling function 7t that maps the label of a node in L’ to its
label in L. For example 7t(1) = up and 7t(2) = vy.

5: Output the N x N adjacency matrix A = (a;j) of G’ with respect to the new node labels. That
is, for i,j € {1,..., N}, let

Qij =

_Je, if (m(i),7(j)) is an edge in G’ of color c,
0, otherwise.

The five steps of the algorithm can be seen as the composition of five functions. We argue
that each of these functions is in log-space. Then it follows that the overall algorithm works in
log-space. Step 1 is in log-space by Theorem 2.3. In step 2, we only have to store local information
to walk through G'.

Step 3 requires to compute the rank of each vertex in the list L. For a vertex v occurring in L
this amounts to searching in [ to the left of the current position for the first occurrence of v. Then
we have to count the number of different vertices in L to the left of the first occurrence of v. This
can be done in log-space. A more detailed outline can be found in [TW10].

In Step 4 we determine the position of node 1 in L’ and the node v; at the same position in L.
Then 7t(i) = v;. Step 5 is again trivial when one has access to 7.

Definition 3.4. The code og: of a 3-reqular graph G’ is the lezicographic minimum of the
outputs of CoDE(G', p,ug,Vvy) for the two choices of a planar rotation system p and all choices
of up € V and a neighbor vop € V of uy.



The following lemma states that the code og: of G’ computed so far is a complete invariant for
the class of 3-connected planar graphs.

Lemma 3.5. Let G' and H' be 3-regular planar graphs and og: and oy be the codes of G’
and H', respectively. Then
G'=H' = 0Gg/’ = OH' .

Proof. If G’ = H/’, then there is an isomorphism ¢ from G’ to H'. Let pg+ be the planar rotations
system, uy a vertex and (ug,vo) the starting edge which lead to the minimum code og/. Let pp-
be the rotations system of H' induced by pg/ and ¢. Let 0 = Cobpe(H/, pyr, @(uo), @(vo)).

We prove that og: = o: let w be a vertex that occurs at position ¢ in the list Lg/ computed
in step 2 in CoDE(G’, pyry U, vo). Then @(w) will occur at position £ in the list L+ computed in
step 2 in CopE(H’, pyr, @ (W), ©(vo)). This is because the oriented graphs are isomorphic, and the
same UXS is used for their traversal. Hence, when a vertex w occurs the first time Lg/, @(w) will
occur the first time in [}/ at the same position. Moreover, by induction, the number of different
vertices to the left of w in Lg/ will be the same as the number of different vertices to the left
of @(w) in L. Hence, in step 3 in CoDE(G', p1y/, up, Vo) vertex w will get the same name, say j, as
vertex @(w) in step 3 in Cope(H', pyr, ©(up), ©(vo)). Therefore, in step 4, the relabeling function
for G’ will map 7g/(j) = w, and the relabeling function for H’ will map 7ty/(j) = @(w). So we will
get the same output in step 5. We conclude that oG = o.

Clearly o is also the minimum of all the possible codes for H', because otherwise we could switch
the roles of G’ and H' in the above argument and would obtain a code for G’ smaller than og:.
Therefore we have also oy = 0. Hence og: = oy.

For the reverse direction, let og: = o = 0. The labels of vertices in o are just a relabeling of
the vertices of G’ and H'. These relabelings are some permutations, say 7 and 7r;. Then n{l oM
is an isomorphism between G’ and H'. O

To prove Theorem 3.1 we show how to construct a canon for G from the code o' for G’. Recall
that algorithm 3-REGULAR-COLOR replaces a vertex v of degree d in G by a cycle (vq,...,v}) in G’
and also colors the edges. In the code oG/, each node in the cycle gets a new label. We assign to v
the minimum label among the new labels of (vi,...,v}) in G'. To do so, we start at one of the
vertices, say vj, and traverse color 1 edges until we get back to v{. Thereby we can find out the
minimum label. Let 7t(v) be the label assigned to v.

We are not quite done yet. Recall that G’ has 2m vertices. Hence the labels 7t(v) we assign
to the vertices of G are in the range m(v) € {1,2,...,2m}. But G has n vertices and we want
the assignment to map to {1,2,...,n}. To do so, we convert 7t into a mapping 7’ such that 7t'(v)
is the rank of 7t(v) in the ordered m-labeling sequence. Then we have 7t'(v) € {1,2,...,n}. The
construction of 7t and 7’ can be done in log-space.

As canon of G we define a coding of the adjacency matrix of G, say o, where vertices are rela-
beled according to 7t’. Then o codes a graph which is isomorphic to G by construction. Moreover,
for every graph H isomorphic to G, we will get the same code o for H. This is because the relabeling
functions 7t and 7’ depend only on the code og/, which is the same for H by Lemma 3.5. Hence
our construction gives a canonization of 3-connected planar graphs. This concludes the proof of
Theorem 3.1.
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4 Canonization of Biconnected Planar Graphs

In this section, we present an algorithm that given a planar biconnected graph outputs its canon
in logspace.

Theorem 4.1. The canonization of biconnected planar graphs is in log-space.

The proof is presented in the following five subsections. In Section 4.1 we first show how to de-
compose a biconnected planar graph G into its triconnected components. From these components
we construct the triconnected component tree of G.

In Section 4.2 we give a brief overview of a log-space algorithm for tree canonization, which was
developed by Lindell [Lin92]. The core of Lindell’s algorithm is to come up with a total order on
trees such that two trees are isomorphic if and only if they are equal with respect to this order.

In Section 4.3, we define an 2somorphism order on the triconnected component trees similar to
Lindell’s order on trees. The isomorphism order we compute has the property that two biconnected
graphs will be isomorphic if and only of they are equal with respect to the isomorphism order. This
yields an isomorphism test. We analyze its space complexity in Section 4.4.

Finally, based on the isomorphism order, we develop our canonization procedure in Section 4.5.

4.1 Decomposition of a Biconnected Graph into Triconnected Components

Graph decomposition goes back to Hopcroft and Tarjan [HT73], who presented a linear-time algo-
rithm to compute such a decomposition, and Cunningham and Edmonds [CE80]. These algorithms
are sequential. With respect to parallel algorithms, Miller and Ramachandran [MR92] presented
a decomposition algorithm on a CRCW-PRAM with O(log2 n) parallel time and using a linear
number of processors. In this section, we show that a biconnected graph can be decomposed into
its triconnected components in log-space.

The algorithm presented below was developed in [DNTWO09]'. We present the entire algorithm
here for the sake of completeness.

Definition 4.2. Let G = (V,E) be a biconnected graph. A separating pair {a,b} s called
3-connected if there are three vertez-disjoint paths between a and b in G.

The triconnected components of G are the split graphs we obtain from G by splitting G
successwvely along all 3-connected separating pairs, in any order. If a separating pair {a,b} is
connected by an edge in G, then we also define a 3-bond for{a, b} as a triconnected component,
1.e., a multigraph with two vertices {a,b} and three edges between them.

We decompose a biconnected graph only along separating pairs which are connected by at least
three disjoint paths. By only splitting a graph along 3-connected separating pairs, we avoid the
decompositions of cycles. Therefore, we get three types of triconnected components of a biconnected
graph: 3-connected components, cycle components, and 3-bonds.

Definition 4.2 leads to the same triconnected components as in [HT'73]. The decomposition is
unique, i.e., independent of the order in which the separating pairs in the definition are consid-
ered [Mac37], see also [HT'72a, CE80].

!The first log-space version of this problem appeared in the conference version of the current work [DLN'09].
This was subsequently simplified in the work of [DNTWO09]
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Lemma 4.3. The 3-connected separating pairs and the triconnected components of a bicon-
nected graph can be computed in log-space.

Proof. In Section 2 we argued that we can compute all separating pairs of G in logspace. To
determine whether a separating pair {a, b} is 3-connected, we cycle over all pairs of vertices u,v
different from a and b and check whether the removal of u,v keeps a reachable from b. Clearly,
this can be accomplished in log-space.

It remains to compute the vertices of a triconnected component. T'wo vertices u,v € V belong to
the same 3-connected component or cycle component, if no 3-connected separating pair separates u
from v. This property can again be checked by solving several reachability problems. Hence we
can collect the vertices of each such component in log-space. O

The triconnected components of a biconnected graph are the nodes of the triconnected com-
ponent tree.

Definition 4.4. Let G be a biconnected graph. The triconnected component tree 7 of G s the
following graph. There 1s a node for each triconnected component and for each 3-connected
separating pair of G. There is an edge in T between the node for triconnected component C
and the node for a separating pair {a,b}, if a,b belong to C.

Gwen a triconnected component tree T, we use graph(7) to denote the corresponding
biconnected graph represented by it.

Note that graph 7 is connected, because G is biconnected, and acyclic. This also implies that 7
is a tree. Each path in 7 is an alternating path of separating pairs and triconnected components.
All the leaves of 7 are triconnected components. Hence, a path between two leaves always contains
an odd number of nodes and therefore 7 has a unique center node.

By Lemma 4.3, we can compute the nodes of the component tree in logspace. We show that we
can also traverse the component tree in logspace. Here, by traversal we mean a way of systematically
visiting every vertex of the tree. For example, in classical graph theory, we study many different
tree traversals such as preorder, inorder and postorder traversals. It is known that tree traversal
can be performed in logspace. Unlike in a tree, the nodes of the component tress are themselves
graphs. We show that, in spite of this, we can perform its traversal in logspace.

Lemma 4.5. The triconnected component tree of a biconnected graph G can be computed and
traversed in logspace.

Proof. The traversal proceeds as a depth-first search. Assume that a separating pair is fixed as
the root node of the component tree, We show how to navigate locally in the component tree, i.e.,
for a current node how to compute its parent, first child, and next sibling. We explore the tree
starting at the root. Thereby we store the following information on the tape.

e We always store the root node, i.e., the two vertices of the root separating pair.
e When the current node is separating pair {aop, bo}, we just store it.

e When the current node is a 3-connected component C with parent separating pair {ao, bo},
then we store ag, by and an arbitrary vertex v # ap, bo from C.
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In the last item, the vertex v that we store serves as a representative for C. As a choice for v take
the first vertex of C that is computed by the construction algorithm of Lemma 4.3. Note that v
and ap, by together with the root node identify C uniquely.

The traversal continues by exploring the subtrees at the separating pairs in C, different
from {ap,bp}. Let {a;,b;} be the current separating pair in C. We compute a representative
vertex for the first 3-connected split component of {a;, b;} different from C. Then we erase {ap, bo}
and the representative vertex for C from the tape and recursively traverse the subtrees at {a;, b1}

When we return from the subtrees at {a;, b}, we recompute {ag, bo} and C, the parent of {a;, by }.
This is done by computing the path from the root node to C in the component tree. That is, we
start at the root node and look for the child component that contains C via reachability queries.
Then we iterate the search until we reach C, where we always store the current parent node.

The tree traversal continues with the next sibling of C in the tree. That is, we compute the
next articulation point in C after {a;, b} with respect to the order on the separating pairs. Then
we delete {a;, b1} from the work tape. If C does not have a next sibling, we return to the parent
of C. O

: o« e e (el

Figure 4.1: The decomposition of a biconnected planar graph G. Its triconnected components are
G1,...,Gy4 and the corresponding triconnected component tree is T. In G, the pairs {a, b} and {c, d}
are 3-connected separating pairs. The inseparable triples are {a,b,c}, {b,c,d}, {a,c,d}, {a,b,d},
{a, b, f}, and {c, d, e}. Hence the triconnected components are the induced graphs G; on{a, b, f}, G,
on {a,b,c,d}, and G4 on {c,d,e}. Since the 3-connected separating pair {c,d} is connected by an
edge in G, we also get {c, d} as triple-bond G3. The virtual edges corresponding to the 3-connected
separating pairs are drawn with dashed lines.

4.2 Overview of Lindell’s Algorithm for Tree Canonization

We summarize the crucial ingredients of Lindell [Lin92] log-space algorithm for tree canonization.
We will then adapt Lindell’s technique to triconnected component trees.

Lindell’s algorithm is based on an order relation < for rooted trees defined below. The order
relation has the property that two trees S and T are isomorphic if and only if they are equal with
respect to the order, denoted by S = T. Because of this property it is called a canonical order.
Clearly, an algorithm that decides the order can be used as an isomorphism test. Lindell showed
how to extend such an algorithm to compute a canon for a tree in log-space.

13



The order < on rooted trees is defined as follows.

Definition 4.6. Let S and T be two trees with root s and t, and let #s and #t be the number
of children of s and t, respectively. Then S < T 1f

1.

2.

3.

IS| < [T, or
IS| = |T| but #s < #t, or

IS| = |T| and #s = #t =k, but (S1,...,S¢) < (Th,..., k) lexicographically, where it is
inductwely assumed that S1 < --- < Sy and Ty < --- < T are the ordered subtrees of S
and T rooted at the k children of s and t, respectively.

The comparisons in steps 1 and 2 can be made in log-space. Lindell proved that even the third
step can be performed in log-space using two-pronged depth-first search, and cross-comparing
only a child of S with a child of T. This is briefly described below:

e Partition the k children of s in S into blocks according to their sizes, i.e., the number of nodes

in the subtree rooted at the child. Let N7 < Ny < --- < Ny be the occurring sizes, for some
{ <k, and let k; be the number of children in block 1, i.e., that have size N;. It follows that
Ziki =k and ZikiNi =n-—1.

Doing the same for t in T, we get corresponding numbers N; < Nj; < ---Nj and
ki, ky...,kp.o If € # 0’ then we know that the two are not isomorphic. Otherwise, we
compare the two block structures as follows.

~ IfN; <N/ then S<T.
— If Ny > Ny, then S > T.
— IfN; =N/ and k; > k! then S < T.
— If Ny = Nj and kg > kj then S > T.

If Ny = Nj and k; = k{ then we consider the next blocks similarly. This process is continued
until a difference in the block structure is detected, or all the children of s and t are exhausted.

Let the children of s and t have the same block structure. Then compare the children in each
block recursively as follows:

Case 1: k =0. Hence s and t have no children. They are isomorphic as all one-node trees
are isomorphic. We conclude that S =T.

Case 2: k = 1. Recursively consider the grand-children of s and t.

Case 3: k > 2. For each of the subtrees S; compute its order profile. The order profile
consists of three counters, c., ¢~ and c—. These counters indicate the number of subtrees in
the block of S; that are respectively smaller than, greater than, or equal to S;. The counters
are computed by making pairwise cross-comparisons.
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Note that isomorphic subtrees in corresponding blocks have the same order profile. Therefore,
it suffices to check that each such order profile occurs the same number of times in each
block in S and T. To perform this check, compare the different order profiles of every block
in lexicographic order. The subtrees in the block i of S and T, which is currently being
considered, with a count c. = 0 form the first isomorphism class. The size of this isomorphism
class is compared across the trees by comparing the values of the c_-variables. If these
values match then both trees have the same number of minimal children. Note that the
lexicographical next larger order profile has the current value of c. + c— as its value for the
c.-counter.

This way, one can loop through all the order profiles. If a difference in the order profiles of
the subtrees of S and T is found then the lexicographical smaller order profile defines the
smaller tree.

The last order profile considered is the one with c. 4+ c— = k for the current counters. If this
point is passed without uncovering an inequality then the trees must be isomorphic and it
follows that S=T.

We analyze the space complexity. Note that in case 2 with just one child, we need no space for
the recursive call. In case 3, for each new block, the work-tape allocated for the former computations
can be reused. Since ) ; kiN; < n, the following recursion equation for the space complexity S(n)
holds,

S(n) = m?.X{S(Ni) + O(logki)} < miax{ S(kl) + O(log ki)},
1
where ki > 2 for all i. It follows that S(n) = O(logn).

Lindell defines the canon of a rooted tree T as the infix coding of the tree over the three letter
alphabet {*, [,]}, which in turn can be coded over {0, 1}. The canon of a tree T with just one vertex
is ¢(T) = x. The canon of a tree T with subtrees Ty < T, <--- < Txis ¢(T) = [c(T1)c(T2) - - - c(Ti)].

If we have given a tree T without a specified root, then we try all the vertices of T as the root.
The vertex that leads the smallest tree with respect to the order on rooted trees is used as the root
to define the canon of T.

4.3 Isomorphism Order of Triconnected Component Trees

In this section, we start with two triconnected component trees and give a log-space test for isomor-
phism of the biconnected graphs represented by them. Recall from Definition 4.4 that a triconnected
component tree T that represents a biconnected graph G consists of nodes corresponding to the
triconnected components and 3-connected separating pairs of G. See Figure 4.1 for an example.
The rough idea is to come up with an order on the triconnected component trees, as in Lindell’s
algorithm for isomorphism of trees. Clearly, a major difference to Lindell’s setting is that the nodes
of the trees are now separating pairs or triconnected components. By using Lindell’s algorithm
in conjunction with the algorithm from Section 3, we canonize the 3-connected component nodes
of the tree. We call this the isomorphism order. We ensure that the isomorphism order has the
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property that two triconnected component trees have the same order if and only if the biconnected
graphs represented by them are isomorphic.

To define the order, we also compare the size of the tree. We first define the size of a triconnected
component tree.

Definition 4.7. For a triconnected component tree T, the size of an individual component
node C of T s the number nc of vertices in C. The size of the tree T, denoted by |T|, s the
sum of the sizes of its component nodes.

Note that the vertices of a separating pair are counted in every component where they oc-
cur. Therefore the size of T is at least as large as the number of vertices in graph(T), the graph
corresponding to the triconnected component tree T.

We describe a procedure for computing an isomorphism order given two triconnected component
trees S and T of two biconnected planar graphs G and H, respectively. We root S and T at separating
pair nodes s = {a,b} and t = {a’,b’}, respectively, which are chosen arbitrarily. As Lindell, we
define the final order of G and H based on the separating pairs as roots that lead to the smallest
trees. The rooted trees are denoted as Sy, and T,/ pr. They have separating pair nodes at odd
levels and triconnected component nodes at even levels. Figure 4.2 shows two trees to be compared.

Siap)

Figure 4.2: Triconnected component trees.

We define the isomorphism order <t for S(,u) and T,y by first comparing their sizes, then
the number of children of the root nodes s and t. These two steps are similar to Lindell’s algorithm.
If we find equality in the first two steps, then, in the third step we make recursive comparisons of
the subtrees of Si, ) and T, . However, here it does not suffice to compare the order profiles of
the subtrees in the different size classes as in Lindell’s algorithm. We need a further comparison
step to ensure that G and H are indeed isomorphic.

To see this, assume that s and t have two children each, G, G, and Hy, H, such that G; = H;
and G, = H,. Still we cannot conclude that G and H are isomorphic because it is possible that the
isomorphism between G; and H; maps a to a’ and b to b/, but the isomorphism between G, and H,
maps a to b’ and b to a’. Then these two isomorphisms cannot be extended to an isomorphism
between G and H. For an example see Figure 4.3 of Page 20.
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To handle this, we use the notion of an orientation of a separating pair. A separating pair gets
an orientation from subtrees rooted at its children. Also, every subtree rooted at a triconnected
component node gives an orientation to the parent separating pair. If the orientation is consistent,
then we define S, vy =T Tjq/p/y and we will show that G and H are isomorphic in this case.

The sequential algorithm by Hopcroft and Tarjan [HT73] uses depth-first-search for the decom-
position. They also consider the direction in which an edge is traversed by the search. Thereby
the orientation issue is handled implicitly.

In the following two subsections we give the details of the isomorphism order between two
triconnected component trees depending on the type of the root node.

4.3.1 Isomorphism order of two subtrees rooted at triconnected components

We consider the isomorphism order of two subtrees Sg, and THj rooted at triconnected component
nodes G; and Hj, respectively. We first consider the easy cases.

e G; and Hj are of different types. Gi and H; can be either 3-bonds or cycles or 3-connected
components. If the types of G; and H; are different, we immediately detect an inequality. We
define a canonical order among subtrees rooted at triconnected components in this ascending
order: 3-bond, cycle, 3-connected component, such that e.g. Sg; <r Ty, if Gi is a 3-bond and
H;j is a cycle.

e Gi and H; are 3-bonds. In this case, S, and Ty are leaves, since they cannot be decomposed
further into smaller components, and we define Sg, =7 THj.

In case where G; and H; are cycles or 3-connected components, we construct the canons of G;
and H; and compare them lexicographically.

e To canonize a cycle, we traverse it starting from the virtual edge that corresponds to its
parent, and then traversing the entire cycle along the edges encountered. There are two
possible traversals depending on which direction of the starting edge is chosen. Thus, a cycle
has two candidates for a canon.

e To canonize a 3-connected component Gj, we use the log-space algorithm from Section 3.
Besides Gj, the algorithm gets as input a starting edge and a combinatorial embedding p
of Gi. We always take the virtual edge {a, b} corresponding to G;’s parent as the starting
edge. Then there are two choices for the direction of this edge, (a,b) or (b,a). Further, a
3-connected graph has two planar rotation systems [Whi33]. Hence, there are four possible
candidates for the canon of G;j.

In the latter two cases, we start the canonization of G; and H; in all the possible ways (two,
if they are cycles, and four, if they are 3-connected components), and compare these canons bit-
by-bit. Let Cy and C;, be two candidate canons to be compared. The base case is that G; and H;
are leaf nodes and therefore contain no further virtual edges. In this case we use the lexicographic
order between C4 and Cy. (For instance, if the whole graph is simply a cycle or a 3-connected
component, then the algorithm terminates here.) If G; and H; contain virtual edges then these
edges are specially treated in the bitwise comparison of Cy and Ch:
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e If a virtual edge is traversed in the construction of one of the canons C4 or Cy, but not in the
other, then we define the one without the virtual edge to be the smaller canon.

e If C4 and Cy, encounter virtual edges {u, v} and {u’,v’} corresponding to a child of G; and Hj,
respectively, we need to recursively compare the subtrees rooted at {u,v} and {u’,v'}.

— If we find in the recursion that one of the subtrees is smaller than the other, then the
canon with the smaller subtree is defined to be the smaller canon.

— If we find that the canons of the subtrees rooted at {u,v} and {u’,v'} are equal, then we
look at the orientations given to {u,v} and {u’,v’} by their children. This orientation,
called the reference orientation, is defined below in Section 4.3.2. If one of the canons
traverses the virtual edge in the direction of its reference orientation but the other one
not, then the one with the reference direction is defined to be the smaller canon.

We eliminate the candidate canons which were found to be the larger in at least one of the
comparisons. In the end, the candidate that is not eliminated is the canon. If we have the same
canons for both G; and H; then we define Sg;, =7 THj. The construction of the canons also defines
an isomorphism between the subgraphs described by Sg, and Ty, i.e. graph(Sg;) = graph(Ty;).
For a single triconnected component this follows from the algorithm of Section 3. If the trees
contain several components, then our definition of Sg; =r Tny; guarantees that we can combine the
isomorphisms of the components to an isomorphism between graph(Sg;) and graph(Ty;).

Observe, that we do not need to compare the sizes and the degree of the root nodes of Sg,
and Ty, in an intermediate step, as it is done in Lindell’s algorithm for subtrees. This is because
the degree of the root node G; is encoded as the number of virtual edges in G;. The size of Sg; is
checked by the length of the minimal canons for G; and when we compare the sizes of the children
of the root node G; with those of H;.

4.3.2 Isomorphism order of two subtrees rooted at separating pairs

We consider the isomorphism order of two subtrees S, p, and T, p/ rooted at separating pairs
{a,b} and {a’,b’}, respectively. Let (Gi,...,Gy) be the children of the root {a,b} of S}, and
(SGyy---5SG, ) be the subtrees rooted at (Gy,...,Gy). Similarly let (Hy,...,Hy) be the children of
the root {a’, b’} of Tjq/ v and (Tw,, ..., Th,) be the subtrees rooted at (Hy,...,Hy).

The first three steps of the isomorphism order are performed similar to that of Lindell [Lin92]
maintaining the order profiles. We first order the subtrees, say Sg, <t --- <r Sg, and Ty, <r
- <t Ty, and verify that Sg, = Ty, for all i. If we find an inequality then the one with the
smallest index i defines the order between S(. ) and T/ . Now assume that Sg, = Ty, for all i.
Inductively, the corresponding split components are isomorphic, i.e. graph(Sg,) = graph(Ty,) for
all 1.

An additional step involves a comparison of the orientations given by the subtrees Sg, and Ty,
to {a,b} and {a’, b'}, respectively.

Definition 4.8 (Orientation). The orientation given to the parent separating pair {a, b} of S(G;) s
the direction {a,b} which leads to the canon of S(Gi), respectively. If the canons are obtained
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for both choices of directions of the edge, we say that Sg, @s symmetric about their parent
separating pair, and thus does not give an orientation.

The orientation given to {a,b} by two subtrees might be different. Our next step is to extract
one orientation from the orientations of all subtrees as the reference orientation for separating
pair {a, b}.

Definition 4.9 (Reference Orientation). Let Iy <t --- <t I, be a partition of (Sg,,...,Sg,) nto
classes of =r-equal subtrees, for some p < k.

e For each isomorphism class I;, the orientation counter is a pair O; = (cj_’, c]f_), where cj_’
15 the number of subtrees of I; which gives one orientation, say (a,b), and ch_ 15 the
number of subtrees from I which give the other orientation, (b,a). The counters are
ordered such that cj_> > c]f_ . Then the orientation given to {a, b} by isomorphism class I;

is the one from the larger counter, t.e. ¢, 1if ¢;° # ¢ .

If cj_’ = ch_ , that s if each component in this class is symmetric about {a,b} then no
orientation s given to {a,b} by this class, and the class is said to be symmetric about
{a,b}. Note that in an isomorphism class, either all or none of the components are
symmetric about the parent.

e The reference orientation of {a,b} is defined as the orientation given to {a,b} by the
smallest non-symmetric isomorphism class. If all isomorphism classes are symmetric
about {a, b}, then we say that {a,b} has no reference orientation.

For Tyq/pn we similarly partition (Ty,,...,Tw,) into isomorphism classes Ij < --- <t I{,. It
follows that I; and Ij’ contain the same number of subtrees for every j. Let Oj’ = (dj_> , d}_ ) be the
corresponding orientation counters for the isomorphism classes Ij’ .

Now we compare the orientation counters O; and O].’ for j = 1,...,p. If they are all pairwise
equal, then the graphs G and H are isomorphic and we define S( v} =1 Tja’p/). Otherwise, let j be
the smallest index such that O; # Oj. Then we define S{qv} <t Tia/ b1 if Oj is lexicographically
smaller than Oj’ , and Tqr v <t S{qp) Otherwise. For an example, see Figure 4.3.

4.3.3 Summary and correctness

We summarize the isomorphism order of two triconnected component trees S and T defined in the
previous subsections. Let s ={a,b} and t ={a’, b’} be the roots of S and T, and let #s and #t be
the number of children of s and t, respectively. Then we have S < T if:

1. |S| < [T, or
2. S| = |T| but #s < #t, or

3. IS| = ITl, #s = #t =k, but (Sg,,...,S¢,.) <t (TH;,..., Th,) lexicographically, where we
assume that Sg, <t --- <t Sg, and Ty, <t --- <t Ty, are the ordered subtrees of S
and T, respectively. To compute the order between the subtrees Sg, and Ty, we compare
lexicographically the canons of G; and H; and recursively the subtrees rooted at the children
of G; and H;. Note, that these children are again separating pair nodes.
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Figure 4.3: The graphs G and H have the same triconnected component trees but are not
isomorphic. In S(,y), the 3-bonds form one isomorphism class Iy and the other two components
form the second isomorphism class 1, as they all are pairwise isomorphic. The non-isomorphism
is detected by comparing the directions given to the parent separating pair. We have p = 2
isomorphism classes and for the orientation counters we have O7 = O] = (0,0), whereas O; =
(2,0) and O5 = (1,1) and hence Oj is lexicographically smaller than O,. Therefore we have

T{a’,b n <T S{a,b}-

4. |S| = [T|, #s = #t =Xk, (Sg;»---»Sc) =1 (Thyy .-+, THy), but (Oq,...,0,) < (O{,...,O{,)
lexicographically, where O; and Oj’ are the orientation counters of the j'" isomorphism
classes I; and Ij of all the Sg,’s and the Ty,’s.

We say that S and T are equal according to the isomorphism order, denoted by S = T, if
neither S <7 T nor T <t S holds.

The following theorem shows the correctness of the isomorphism order: two trees are =p-equal,
precisely when the underlying graphs are isomorphic.

Theorem 4.10. Let G and H be biconnected planar graphs with triconnected component
trees S and T, respectively. Then G and H are tsomorphic if and only if there is a choice of
separating pairs s,t in G and H such that S =1 T when rooted at s and t, respectively.

Proof. Assume that S =7 T. The argument is an induction on the depth of the trees that follows
the inductive definition of the isomorphism order. The induction goes from depth d 4+ 2 to d. If
the grandchildren of separating pairs, say s and t, are =y-equal up to step 4, then we compare the
children of s and t. If they are equal then we can extend the =p-equality to the separating pairs s
and t.

When subtrees are rooted at separating pair nodes, the comparison describes an order on the
subtrees which correspond to split components of the separating pairs. The order describes an
isomorphism among the split components.

When subtrees are rooted at triconnected component nodes, say G; and Hj, the comparison
states equality if the components have the same canon, i.e. are isomorphic. By the induction
hypothesis we know that the children rooted at virtual edges of G; and H; are isomorphic. The
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equality in the comparisons inductively describes an isomorphism between the vertices in the
children of the root nodes.

Hence, the isomorphism between the children at any level can be extended to an isomorphism
between the corresponding subgraphs in G and H and therefore to G and H itself.

The reverse direction holds easily as well. Suppose G and H are isomorphic and there is an
isomorphism that maps the separating pair {a,b} of G to the separating pair {a’,b’} of H. One
needs to prove that Siqu =t Ta’py where these two are S and T rooted at {a,b} and {a’,b’}
respectively. One can prove this by induction on the depth of S, ) and T, p/. Note that such an
isomorphism maps separating pairs of G onto separating pairs of H. This isomorphism describes
a permutation on the split components of separating pairs, which means we have a permutation
on triconnected components, the children of the separating pairs. By induction hypothesis, the
children at depth d + 2 of two such triconnected components are isomorphic and equal according
to =r. One can combine this with the isomorphism of the triconnected components themselves
and the definition of =1 to conclude the proof of the reverse direction and of the theorem. O

4.4 Space Complexity of the Isomorphism Order Algorithm

We analyze the space complexity of the isomorphism order algorithm. The first two steps of the
isomorphism order algorithm can be computed in log-space as in Lindell’s algorithm [Lin92]. We
show that steps 3 and 4 can also be performed in log-space.

We use the algorithm from Section 3 to canonize a 3-connected component G; of size ng, in
space O(logng,). If the component is a 3-bond or a cycle, we use the ideas presented in Section 4.3.1
to canonize them again using O(log ng,) space.

Comparing two subtrees rooted at triconnected components. For this, we consider two
subtrees Sg; and Ty; with [Sg;| = [Tyy;| = N rooted at triconnected component nodes G; and H;,
respectively. The cases that G; and H; are of different types or are both 3-bonds are easy to
handle. Assume now that both are cycles or 3-connected components. Then we start constructing
and comparing all the possible canons of G; and H;. We eliminate the larger ones and make
recursive comparisons whenever the canons encounter virtual edges simultaneously. We can keep
track of the canons, which are not eliminated, in constant space.

Suppose we construct and compare two canons C4 and C;, and consider the moment when we
encounter virtual edges {a,b} and {a’,b’} in C4 and Cy, respectively. Now we recursively compare
the subtrees rooted at the separating pair nodes {a, b} and {a’,b’}. Note, that we cannot afford to
store the entire work-tape content. It suffices to store the information of

e the canons which are not eliminated,
e which canons encountered the virtual edges corresponding to {a,b} and {a’,b’}, and
e the direction in which the virtual edges {a, b} and {a’, b’} were encountered.

This takes altogether O(1) space.
When a recursive call is completed, we look at the work-tape and compute the canons C,
and Cj. Therefore, recompute the parent separating pair of the component, where the virtual
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edge {a, b} is contained. With a look on the bits stored on the work-tape, we can recompute the
canons C4 and C. Recompute for them, where {a, b} and {a’, b’} are encountered in the correct
direction of the edges and resume the computation from that point.

Although we only need O(1) space per recursion level, we cannot guarantee yet, that the
implementation of the algorithm described so far works in log-space. The problem is, that the
subtrees where we go into recursion might be of size > N/2 and in this case the recursion depth
can get too large. To get around this problem, we check whether G; and H; have a large child,
before starting the construction and comparison of their canons. A large child is a child which has
size > N/2. If we find a large child of G; and H; then we compare them a priori and store the result
of their recursive comparison. Because G; and H; can have at most one large child each, this needs
only O(1) additional bits. Now, whenever the virtual edges corresponding to the large children
from S, and Ty, are encountered simultaneously in a canon of G; and Hj, the stored result can be
used, thus avoiding a recursive call.

Comparing two subtrees rooted at separating pairs. Consider two subtrees S, ) and Tyq/ 1)
of size N, rooted at separating pair nodes {a, b} and {a’,b’}, respectively. We start comparing all
the subtrees Sg, and Ty, of Siqp) and Tyq/ vy, respectively. These subtrees are rooted at triconnected
components and we can use the implementation described above. Therefore, we store on the work-
tape the counters c.,c_,c~. If they turn out to be pairwise equal, we compute the orientation
counters O; and Oj’ of the isomorphism classes I; and I]-’ , for all j. The isomorphism classes are
computed via the order profiles of the subtrees, as in Lindell’s algorithm.

When we return from recursion, it is an easy task to find {a,b} and {a’,b’} again, since a
triconnected component has a unique parent, which always is a separating pair node. Since we
have the counters c.,c—_,c- and the orientation counters on the work-tape, we can proceed with
the next comparison.

Let k; be the number of subtrees in I;. The counters c.,c—,c. and the orientation counters
need altogether at most O(logk;) space. From the orientation counters we also get the reference
orientation of {a,b}. Let Nj be the size of the subtrees in I;. Then we have Nj < N/k;. This would
lead to a log-space implementation as in Lindell's algorithm except for the case that N;j is large,
ie. Nj > N/2.

We handle the case of large children as above: we recurse on large children a priori and store
the result in O(1) bits. Then we process the other subtrees of S, ) and Ty /. When we reach
the size-class of the large child, we know the reference orientation, if any. Now we use the stored
result to compare the orientations given by the large children to their respective parent, and return
the result accordingly.

As seen above, while comparing two trees of size N, the algorithm uses no space for making a
recursive call for a subtree of size larger than N/2, and it uses O(logk;) space if the subtrees are of
size at most N/k;, where k; > 2. Hence we get the same recurrence for the space S(N) as Lindell:

N
S(N) < max S(f) + O(log k;),
)

)

where k; > 2 for all j. Thus S(N) = O(log N). Note that the number n of nodes of G is in general
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smaller than N, because the separating pair nodes occur in all components split off by this pair.
But we certainly have n < N < O(n?) [HT73]. This proves the following theorem.

Theorem 4.11. The isomorphism order between two triconnected component trees of bicon-
nected planar graphs can be computed in log-space.

4.5 The Canon of a Biconnected Planar Graph

Once we know the order among the subtrees, it is straightforward to canonize the triconnected
component tree S. We traverse S in the tree isomorphism order as in Lindell’s algorithm, outputting
the canon of each of the nodes along with virtual edges and delimiters. That is, we output a [’
while going down a subtree, and ‘|’ while going up a subtree. We call this list of delimiters and
canons of components a canonical list of S.

We need to choose a separating pair as root for the tree. Since there is no distinguished
separating pair, we simply cycle through all of them. Since there are less than n? many separating
pairs, a log-space transducer can cycle through all of them and can determine the separating pair
which, when chosen as the root, leads to the lexicographically minimum canonical list of S. We
call this the tree-canon of S. We describe the canonization procedure for a fixed root, say {a, b}.

The canonization procedure has two steps. In the first step we compute the canonical list
for S;qp). In the second step we compute the canon for the biconnected planar graph from the
canonical list.

Canonical list of a subtree rooted at a separating pair. Consider a subtree S(,p rooted
at the separating pair node {a,b}. We start with computing the reference orientation of {a, b} and
output the edge in this direction. This can be done by comparing the children of the separating pair
node {a, b} according to their isomorphism order with the help of the oracle. Then we recursively
output the canonical lists of the subtrees of {a, b} according to the increasing isomorphism order.
Among isomorphic siblings, those which give the reference orientation to the parent are considered
before those which give the reverse orientation. We denote this canonical list of edges (S, a,b). If
the subtree rooted at {a,b} does not give any orientation to {a, b}, then take that orientation for
{a, b}, in which it is encountered during the construction of the above canon of its parent.

Assume now, the parent of S, is a triconnected component. In the symmetric case, Siqy)
does not give an orientation of {a,b} to its parent. Then take the reference orientation which is
given to the parent of all siblings.

Canonical list of a subtree rooted at a triconnected component. Consider the subtree Sg,
rooted at the triconnected component node G;. Let {a, b} be the parent separating pair of Sg, with
reference orientation (a,b). If G; is a 3-bond then output its canonical list 1(Gi, a,b) as (a,b).
If G; is a cycle then it has a unique canonical list with respect to the orientation (a,b), that is
l(Gi, a, b).

Now we consider the case that G; is a 3-connected component. Then G; has two possible canons
with respect to the orientation (a,b), one for each of the two embeddings. Query the oracle for the
embedding that leads to the lexicographically smaller canonical list and output it as 1(Gi, a,b). If
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we encounter a virtual edge {c,d} during the construction, we determine its reference orientation
with the help of the oracle and output it in this direction. If the children of the virtual edge do
not give an orientation, we output {c,d} in the direction in which it is encountered during the
construction of the canon for Gi. Finally, the children rooted at separating pair node {c,d} are
ordered with the canonical order procedure.

We give now an example. Consider the canonical list 1(S,a,b) of edges for the tree Si ) of
Figure 4.2 on page 16. Let s; be the edge connecting the vertices a; with b;. We also write for
short 1/(Si, s;) which is one of 1(S;, aj, b;) or 1(Si, by, a;). The direction of s; is as described above.

(S,a,b) = [(a,b) (Sg,,a,b) ... |(Sg,,a,b) ], where
1(SG1>a)b) = [1(61)a>b) 11(51)51) 1I(Sl1>311)]

l(SGk>aab) = [l(Gkaa>b) ll(slk>slk)]

Canon for the biconnected planar graph. This list is now almost the canon, except that the
names of the vertices are still the ones they have in G. Clearly, a canon must be independent of the
original names of the vertices. The final canon for S, 1) can be obtained by a log-space transducer
which relabels the vertices in the order of their first occurrence in this canonical list and outputs
the list using these new labels.

Note that the canonical list of edges contains virtual edges as well, which are not a part of G.
However, this is not a problem as the virtual edges can be distinguished from real edges because
of the presence of 3-bonds. To get the canon for G, remove these virtual edges and the delimiters
‘[" and ‘]’ in the canon for (). This is sufficient, because we describe here a bijective function f
which transforms an automorphism ¢ of Sy p) into an automorphism f(¢) for G with {a, b} fixed.
This completes the proof of Theorem 4.1.

5 Canonization of Planar Graphs

In this section we use all the machinery built so far to obtain our main result.
Theorem 5.1. The canonization of planar graphs is in log-space.

The proof of this is presented in the following subsections. In Section 5.1, we first define
the biconnected component tree of a connected planar graph and list some of its properties. In
Section 5.2, we define an isomorphism order for biconnected component trees. Two trees will
have the same order if and only if the planar graphs represented by them are isomorphic. The
computation of such an order gives a test for isomorphism of planar graphs. In Section 5.3 we
do a space analysis of our algorithm and show that isomorphism testing can be done in log-space
for planar graphs. Finally, in Section 5.4 we give a log-space canonization algorithm. This proves
Theorem 5.1.
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5.1 Biconnected Component Tree of a Planar Graph

Biconnected component trees are defined analogously to triconnected component trees. Recall from
Section 2 that when a graph is split along an articulation point a, each biconnected split component
contains a copy of a.

Definition 5.2. Let G be a connected graph. The biconnected component tree T of G s the
following graph. There 1s a node for each biconnected component and for each articulation
point of G. There 1s an edge in T between the node for biconnected component B and the
node for an articulation point a, if a occurs in B.

It is easy to see that the graph T obtained in Definition 5.2 is in fact a tree. This tree is unique,
i.e. independent of the order in which the articulation points are chosen to split graph G. The
biconnected component tree can be constructed in log-space: articulation points can be computed
in log-space as explained in Section 2. T'wo vertices are in the same biconnected component, if
they are not separated by an articulation point.

In the discussion below, we refer to a copy of an articulation point in a biconnected component B
as an articulation point in B. Although an articulation point a has at most one copy in each
of the biconnected components, the corresponding triconnected component trees can have many
copies of a, in case it belongs to a separating pair in the biconnected component.

Given a planar graph G, we root its biconnected component tree at an articulation point.
During the isomorphism ordering of two such trees S and T, we can fix the root of S arbitrarily and
make an equality test for all choices of roots for T, as in Lindell’s algorithm and as in Section 4.3.
As there are < mn articulation points, a log-space transducer can cycle through all of them for the
choice of the root for T. We state some properties of biconnected component trees.

Lemma 5.3. Let B be a biconnected component in the biconnected component tree S and
let T(B) be its triconnected component tree. Then the following holds.

1. S has a unique center.

2. If an articulation point a of S appears in a separating pair node s in T (B), then it
appears in all the triconnected component nodes which are adjacent to s in T(B).

3. If an articulation point a appears in two nodes C and D in T(B), it appears in all
the nodes that lie on the path between C and D in T(B). Hence, there is a unique
node A 1n T (B) that contains a which is nearest to the center of T(B). We call A the
triconnected component associated with a.

The proofs of the above properties follow easily through folklore graph theoretic arguments and

are omitted here.

5.2 Isomorphism Order for Biconnected Component Trees

In this section, we start with two biconnected component trees of connected planar graphs and
give a log-space test for isomorphism of the planar graphs represented by them. The idea is again
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to come up with an order on the biconnected component trees, similar to the case of triconnected
component trees. We call the resulting order the tsomorphism order for biconnected component
trees. We ensure that two biconnected component trees are equal with respect to this order if and
only if the planar graphs represented by them are isomorphic.

The size of a triconnected component tree was defined in Definition 4.7 on page 16. Here we
extend the definition to biconnected component trees.

Definition 5.4. Let B be a biconnected component node in a biconnected component tree S,
and let T (B) be the triconnected component tree of B. The size of B s defined as |T(B)|. The
size of an articulation point node in S s defined as 1. The size of S, denoted by |S|, s the
sum of the sizes of its component nodes

Note that the articulation points in the definition may be counted several times, namely in
every component they occur.

Let S and T be two biconnected component trees rooted at nodes s and t corresponding to
articulation points a and a’, and let #s and #t be the number of children of s and t, respectively.
We define S <g T if:

1. |S| < |T] or

2. |S|=|T| but #s < #t or

3. IS| = [T|, #s = #t = k, but (Sg,,...,SB,) <B (TB]:,...,TB{{) lexicographically, where we
assume that Sg, <p --- <p Sp, and TB]: <g - <p TB{( are the ordered subtrees of S and T,
respectively.

We postpone the definition of the order between the subtrees Sg, and TBj: in step 3 to Section 5.2.1
below.

We say that two biconnected component trees are equal according to the isomorphism order,
denoted by S =p T, if neither of S < T and T <p S holds.

Figure 5.1 illustrates the definition.

5.2.1 Outline of the algorithm for computing the isomorphism order

The steps 1 and 2 above are easy to implement in log-space, as done before. We now give the
details for step 3.

Assume that equality is found in step 1 and 2. The inductive ordering of the subtrees of S and T
proceeds exactly as in Lindell’s algorithm, by partitioning them into size-classes and comparing
the children in the same size-class recursively. The book-keeping required (e.g. the order profile of
a node, the number of nodes in a size-class that have been compared so far) is similar to that in
Lindell’s algorithm.

To compare two subtrees Sg and Ty, rooted at biconnected component nodes B and B’, re-
spectively, we start by constructing and comparing the canons of their triconnected component
trees 7(B) and 7(B'). To do so, we have to choose a separating pair as root in each of 7(B)
and 7(B').
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Figure 5.1: Comparison of the biconnected component trees S, and T,/ rooted at nodes for
articulation points a and a’. If the root nodes have the same number k of children, we compare
the nodes By,...,By of S, with the nodes Bji,..., B, of Tq.. Thereby, we recursively compare the
subtrees at the articulation nodes we find in these components.

For notation, we call it the outer algorithm when we do comparisons for the biconnected
component trees Sg and Tg/. The outer algorithm at this point invokes the inner algorithm, the
recursive comparison algorithm for 7(B) and 7 (B').

The inner algorithm may encounter several copies of articulation points a,a’, inside 7(B)
and 7 (B'), respectively. Figure 5.2 shows an example. We want to choose one of them where we
go into recursion.

Figure 5.2: A biconnected component tree Sg rooted at biconnected component B which has an
articulation point a as child, which occurs several times in the triconnected component tree 7 (B)
of B. In A and the other triconnected components the dashed edges are separating pairs.

Definition 5.5. The reference copy of an articulation point a in the rooted triconnected com-
ponent tree T(B) is the copy of point a which 1s closest to the root of T(B).

By Lemma 5.3, the reference copy is defined uniquely.

27



All but the reference copies of these articulation points are ignored by this algorithm. For the
reference copies, the current order profiles computed by the inner algorithm so far are stored in the
memory and the outer algorithm takes over for recursively comparing subtrees of a, a’. This switch
between inner and outer algorithm thus causes some bits of storage in the memory. The main task
is to limit the number of things that are stored, in order to get an overall log-space bound.

To bound the space, it is crucial to limit the choices of separating pair nodes of 7(B) and 7(B’)
which can be used as roots for these trees. For now, we will assume that the number of choices for
the root is at most k, and proceed with the description of the inner and outer algorithms. We will
give appropriate bounds on k in Section 5.2.2 below.

e For k possibilities of roots, one is fixed for 7(B) and the canonical ordering of it is compared
with that of 7(B’) according to <r, for all choices of k roots. This is then done for each
choice of the root of 7(B). The aim is to compare the minimum canonical codes of 7(B)
and 7 (B’) and return the result.

e The comparison of 7(B) and 7 (B’) for some choices of roots is now carried out using the iso-
morphism order procedure for triconnected component trees. During the comparison of 7 (B)
and 7 (B'), if a copy of an articulation point is encountered in a canonical code of a tricon-
nected component node C of 7(B), but not in that of the corresponding node C’ in 7(B'),
then that canonical code for C is considered to be larger and is eliminated. If copies of artic-
ulation points u and u’ are encountered simultaneously in nodes C and C’, and if they are
their reference copies, a recursive call to the isomorphism order procedure for biconnected
component trees (outer algorithm) is made, to compare the subtrees of Sg and Ty rooted at u
and u'. If the copies encountered are not the reference copies, then equality is assumed and
the inner algorithm proceeds. While making the recursive call, the current order profile of C
or C’ is stored along with the bit-vector for already eliminated canonical codes.

5.2.2 Limiting the number of possible choices for the root separating pair

Here we prove that the choices for the root nodes in triconnected component trees can be bounded
effectively.

Besides the parent a, let B have articulation points ai,...,a; for some integer 1 > 0, such
that q; is the root node of the subtree S, of S, (see Figure 5.1 on page 27). We partition
the subtrees S,,...,Sq, into classes Eq,...,E, of equal size subtrees, where size is according to
Definition 5.4. Let k; = |E;| be the number of subtrees in Ej. Let the order of the size classes
be such that k; < k; <--- <k,. All articulation points with their subtrees in size class E; are
colored with color j. Recall from Lemma 5.3 that articulation point a is associated with the unique
component A in 7 (B) that contains a and is nearest to the center Cy of 7(B).

To limit the number of potential root nodes for 7(B), we do a case analysis according to
properties of the center Cy of 7(B). In some of the cases, we succeed directly to give the desired
bound. In the remaining cases, we will show that the number of automorphisms of the center Cy is
small. This suffices for our purpose: in this case, for every edge as starting edge, we canonize the
component Cy separately, i.e. without going into recursion on the separating pairs and articulation
points of Cy. Thereby we construct the set of starting edges, say Eo, that lead to the minimum canon
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for Cp. Although there are polynomially many possible candidates for the canon, the minimum
ones are bounded by the number of automorphisms of Cy, which is small.

Now we take the first separating pair encountered in each of the candidate canons obtained
when starting from edges in S. We take this set of separating pairs as the potential root nodes
for 7(B), and hence, its cardinality is bounded by the number of automorphisms of Cj.

If B contains no separating pairs, i.e. B = Cyp, we cycle through the edges in S to compute the
canon of B.

We start our case analysis. Recall that articulation point a is the parent of B and Cj is the
center of the triconnected component tree 7(B).

e The center Cy of 7(B) is a separating pair. We choose this separating pair as the root
of 7(B). Thus we have only one choice for the root.

e (y is a triconnected component and a is not associated with Cy. Let a be associated
with a triconnected component A in 7 (B). We find the path from A to Cp in 7(B) and find
the separating pair closest to Cp on this path. This serves as the unique choice for the root

of T(B).

e (jp is a cycle and a is associated with Cy. Consider the virtual edges closest to a on
cycle Cp. There are at most two of them. We choose the separating pairs corresponding to
these virtual edges as the root candidates of 7(B). Thus we get at most two choices for the
root of 7(B).

e Cp is a 3-connected component and a is associated with Cy. We proceed with a case
analysis according to the number 1 of articulation points in B besides a.

Case I: 1 =0. B is aleaf node in S, it contains no articulation points besides a. We color a
with a distinct color. In this case we can cycle through all separating pairs as root for 7(B).

Case II: 1 = 1. If B has exactly one articulation point besides a, say a;, then we process
this child a priori and store the result. We color a and a; with distinct colors and proceed
with B as in case of a leaf node.

Case III: 1 > 2. We distinguish two sub-cases.

1. Some articulation point q; in class E; is not associated with Cy. Let a; be
associated with a triconnected component D # Cy. Find the path from D to Cy in 7(B)
and select the separating pair node closest to Co on this path. Thus a; uniquely defines
a separating pair. In the worst case, this may happen for every a; in E;. Therefore, we
get up to k; separating pairs as candidates for the root.

2. All articulation points in E; are associated with Cy,. We distinguish sub-cases
according to the size of E;.

(a) If ky > 2, then by Lemma 5.8 below, Cyp can have at most 2k; automorphisms.
Thus, we have at most 2k; ways of choosing the root of 7(B).
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(b) If k; =1, then we consider the next larger class of subtrees, E;. We handle the cases
for E; exactly as for E;. However, we do not need to proceed to E3, because we can
handle the case k; = k; = 1 directly.

i. Some articulation point a; in E; is not associated with Cy. We do
the same with a; as in sub-case III (1). We get up to k; separating pairs as
candidates for the root.

ii. All articulation points in E; are associated with C,.

If k; > 2, then we process the child in E; a priori and store the result. Similar
as in sub-case III (2a), we have at most 2k, ways of choosing the root of 7(B).

If ko = 1, then C has at least three vertices that are fixed by all its automor-
phisms i.e. a and the articulation point with its subtree in E; and that in E,.
We will show in Corollary 5.7 below that Cy has at most one non-trivial auto-
morphism in this case. Thus, we have at most two ways of choosing the root

of T(B).

Let N = |Sg|. We assume that all subtrees are of size < N/2 because otherwise such a subtree is
considered as large and processed a priori by the algorithm as opposed to going into the recursion
for it (see page 34 for details).

It remains to prove the bounds claimed above on the number of automorphism of the 3-
connected components. We use the following lemma that provides an automorphism preserving
embedding of a 3-connected planar graph on the 2-sphere.

Lemma 5.6. [Bab95] (P. Mani) Every 3-connected planar graph G can be embedded on the 2-
sphere as a convex polytope P such that the automorphism group of G is induced by the
automorphism group of the convez polytope P formed by the embedding.

The following corollary of the lemma justifies sub-case III (2b ii).

Corollary 5.7. Let G be a 3-connected planar graph with at least 3 colored vertices, each
having a distinct color. Then G has at most one non-trivial automorphism.

Proof. An automorphism of G has to fix all the colored vertices. Consider the embedding of G on
a 2-sphere from Lemma 5.6. The only possible symmetry is a reflection about the plane containing
the colored vertices, which leads to exactly one non-trivial automorphism. O

The following lemma gives a relation between the size of the smallest color class and the number
of automorphisms for a 3-connected planar graph with one distinctly colored vertex when the size
of the second largest color class is at least 2 as considered in subcase III (2a).

Lemma 5.8. Let G be a 3-connected planar graph with colors on its vertices such that one
vertez a s colored distinctly, and let k > 2 be the size of the smallest color class apart from
the one which contains a. Then G has < 2k automorphisms.

Proof. Point a is fixed, therefore the orientation preserving part of the automorphism group is
cyclic (see e.g. Lemma 3 in [AD04]) and extends as rotations to the sphere. By Lemma 5.6 this
implies that there are at most k such rotations. Thus if we add the rotation reversing part we get
an upper bound of 2k on the order of the automorphism group. U
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5.2.3 Summary and correctness of the isomorphism order

We argue that two biconnected component trees are equal for the isomorphism order for some
choice of the root, if and only if the corresponding graphs are isomorphic.

Theorem 5.9. Given two connected planar graphs G and H, and their biconnected component
trees S and T, then G = H if and only if there is a choice of articulation points a,a’ in G
and H such that S, = Tq'.

Proof. Assume that S =p Tq/. The argument is an induction on the depth of the trees that follows
the inductive definition of the isomorphism order. The induction goes from depth d+2 to d. If the
grandchildren of articulation points, say s and t, are =g-equal up to step 3, then we compare the
children of s and t. If they are equal, we can extend the =p-equality to the articulation points s
and t.

When subtrees are rooted at articulation point nodes, the comparison describes an order on the
subgraphs which correspond to split components of the articulation points. The order describes
an isomorphism among the split components.

When subtrees are rooted at biconnected component nodes, say B; and Bj’ , the comparison
states equality if the components have the same canon, i.e. are isomorphic (cf. Theorem 4.10) and
by induction hypothesis, we know that the children rooted at articulation points of B; and Bj’ are
isomorphic. The equality in the comparisons inductively describes an isomorphism between the
vertices in the children of the root nodes.

Hence, the isomorphism between the children at any level can be extended to an isomorphism
between the corresponding subgraphs in G and H and therefore to G and H itself.

The reverse direction holds easily as well. Suppose G and H are isomorphic and there is an
isomorphism between G and H that maps the articulation point a of G to the articulation point a’
of H. One needs to prove that the biconnected component trees S, of G and T, of H rooted
respectively at a and a’ will be =g. Again, we proceed by induction on the depth of S, and T,/. An
isomorphism maps articulation points of G to articulation points of H. Further, this isomorphism
describes a permutation of the split components of the articulation points. By induction hypothesis,
the children at depth d+2 of two such biconnected components are isomorphic and equal according
to =g. Thus, combined with the isomorphism of corresponding biconnected components and the
definition of =g, this yields the reverse direction and completes the proof. O

5.3 Space Complexity of the Isomorphism Order Algorithm

The space analysis of the isomorphism order algorithm is similar to that of Lindell’s algorithm. We
highlight the differences needed in the analysis first.

When we compare biconnected components B and B’ in the biconnected component tree then
a typical query is of the form (s, r), where s is the chosen root of the triconnected component tree
and 1 is the index of the edge in the canon, which is to be retrieved. If there are k choices for
the root for the triconnected component trees of B and B’, the base machine cycles through all
of them one by one, keeping track of the minimum canon. This takes O(log k) space. From the
discussion above, we know that the possible choices for the root can be restricted to O(k), and that
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the subtrees rooted at the children of B have size < |Sg|/k, when k > 2. Hence the comparison
of B and B’ can be done in log-space in this case.

We compare the triconnected component trees 7(B) and 7 (B’) according to B and B’. When
we compare triconnected components in 7 (B) and 7 (B’) then the algorithm asks oracle queries to
the triconnected planar graph canonization algorithm. The base machine retrieves edges in these
canons one by one from the oracle and compares them. Two edges (a,b) and (a’,b’) are compared
by first comparing a and a’. If both are articulation points, we check whether we reach them for
the first time, i.e., whether we are at the reference copies of a and a’. In this case, we compare the
biconnected subtrees S, and S, rooted at a and a’. If these are equal then we look, whether (a,b)
and (a’,b’) are separating pairs. If so, then we compare their triconnected subtrees. If these are
equal then we proceed with the next edge, e.g. (b, c), and continue in the same way.

Next we show that the position of the reference copy of an articulation point i.e. the compo-
nent A and the position in the canon for A, can be found again after recursion without storing any
extra information on the work-tape.

Lemma 5.10. The reference copy of an articulation point a in T (B) and a’ in T(B') for the
comparison of triconnected component trees T (B) with T(B') can be found in log-space.

Proof. To prove the lemma, we distinguish three cases for a in 7(B). Assume, that we have the
same situation for a’ in 7(B’). If not, then we found an inequality. We define now a unique
component A, where a is contained. We distinguish the following cases.

e Articulation point a occurs in the root separating pair of 7(B). That is, a occurs already at
the beginning of the comparisons for 7(B). Then we define A as the root separating pair.

e Articulation point a occurs in separating pairs other than the root of 7(B). Then a occurs
in all the component nodes, which contain such a separating pair. By the construction of
the tree, these nodes form a connected subtree of 7(B). Hence, one of these component
nodes is the closest to the root of 7(B). This component is always a triconnected component
node. Let A be this component. Note, that the comparison first compares a with a’ before
comparing the biconnected or triconnected subtrees, so we reach these copies first in the
comparison.

e Articulation point a does not occur in a separating pair. Then, a occurs in only one tricon-
nected component node in 7(B). Let A be this component.

In all except the first case, we find a in a triconnected component node A first. Let a’ be found
first in component node A’, accordingly. Assume, we start the comparison of A and A’. More
precisely, we start to compare the canons C of A and C’ of A’ bit for bit. We go into recursion if
and only if we reach the first edge in the canons which contain a and a’. Note, that C can contain
more than one edge with endpoint a. On all the other edges in C and C’ we do not go again into
recursion. It is easy to see, that we can recompute the first occurrence of A and A’. O

Comparing two subtrees rooted at separating pairs or triconnected components. We
go into recursion at separating pairs and triconnected components in 7 (B) and 7(B’). When we
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reach a reference copy of an articulation point in both trees, then we interrupt the comparison of B
with B’ and go into recursion as described before, i.e. we compare the corresponding articulation
point nodes, the children of B and B’. When we return from recursion, we proceed with the
comparison of 7(B) and 7 (B').

In this part we concentrate on the comparison of 7(B) and 7 (B’). We give an overview of
what is stored on the work-tape when we go into recursion at separating pairs and triconnected
components. Basically, the comparison is similar to that in Section 4.4. We summarize the changes.

e We use the size function according to Definition 5.4. That is, the size of a triconnected
subtree rooted at a node C in 7 (B) also includes the sizes of the biconnected subtrees rooted
at the reference articulation points which appear in the subtree of 7(B) rooted at C.

e For a root separating pair node, we store at most O(log k) bits on the work-tape, when we
have k candidates as root separating pairs for 7 (B). Hence, whenever we make recomputa-
tions in 7(B), we have to find the root separating pair node first. For this, we compute 7 (B)
in log-space and with the rules described above, we find the candidate edges in log-space.
With the bits on the work-tape, we know which of these candidate edges is the current root
separating pair. We proceed as in the case of non-root separating pair nodes described next.

e For a non-root separating pair node and triconnected component nodes, we store the same
on the work-tape as described in Section 4.4, i.e. the counters c.,c—_, c-, orientation counters
for separating pair nodes, and the information of the current canon for triconnected com-
ponent nodes. First, recompute the root separating pair node, then we can determine the
parent component node. With the information on the work-tape, we can proceed with the
computations as described in Section 4.4.

For the triconnected component trees 7(B) and 7 (B’), we get the same space-bounds as in the
previous section on page 22. That is, for the cross-comparison of the children of separating pair
nodes s of 7(B) and t of 7(B’) we use O(logk;) space when we go into recursion on subtrees of
size < N/k;, where N is the size of the subtree rooted at s and k; is the cardinality of the j-th
isomorphism class. For each such child (a triconnected component node), we use O(1) bits, when
we go into recursion. In the case we have large children (of size > N/2), we treat them a priori.
We will discuss this below.

When we consider the trees S, and S, rooted at articulation points a and a’ then we have
for the cross comparison of their children, say By,...,Bx and Bj,...,B, respectively, a similar
space analysis as in the case of separating pair nodes. That is, we use O(logk;) space when we
go into recursion on subtrees of size < N/k;, where N = [Sy| and k; is the cardinality of the j-th
isomorphism class. Large children (of size > N/2) are treated a priori. We will discuss this below.

When we compare biconnected components B; and B{, then we compute 7(B;) and 7(B]).
We have a set of separating pairs as candidates for the root of 7(B;). Recall, that for B, its
children are partitioned into size classes. Let k; be the number of elements of the smallest size
class with k; > 2, there are O(k;) separating pairs as roots for 7(B;). Except for the trivial cases,
the algorithm uses O(logk;) space when it starts to compare the trees 7/(B;) and 7 (B/).

Assume now that we compare 7(B;) and 7(B/). In particular, assume we compare triconnected
components A and A’ of these trees. We follow the canons of A and A’ as described above, until
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we reach articulation points, say a and a’. First, we recompute whether a and a’ already occurred
in the parent node. If not, then we recompute the canons of A and A’ and check, whether a and a’
occur for the first time. If so, then we store nothing and go into recursion.

When we return from recursion, we recompute the components A and A’ in 7(B) and 7(B').
On the work-tape there is information about which are the current and the unerased canons. We
run through the current canons and find the first occurrence of a and a’.

Large children. As in the case of biconnected graphs in Section 4.1, we deviate from the algo-
rithm described so far in the case that the recursion would lead to a large child. Large subtrees
are again treated a priori.

However, the notion of a large child is somewhat subtle here. We already defined the size of
biconnected component trees S, and Sg with an articulation point a or a biconnected component B
as root. A large child of such a tree of size N is a child of size > N/2.

Now consider 7 (B), the triconnected component tree of B. Let A be a triconnected component
and {u, v} be a separating pair in 7(B). We have not yet defined the subtrees Sp and S, ) rooted
at A and {u,v}, respectively, and this has to be done quite carefully.

Definition 5.11. Let B be a biconnected component and T (B) its triconnected component
tree. Let C be a node in T(B), i.e. a triconnected component node or a separating pair node.
The tree St rooted at C consists of the subtree of T(B) rooted at C (with respect to the root
of T(B)) and of the subtrees S, for all articulation points a that have a reference copy in the
subtree of T(B) rooted at C, ezcept those S, that are a large child of Sg. The size of S{. s the
sum of the sizes of its components.

Let N be the size of Si-. A large child of S{. 1s a subtree of C of size > N/2.

We already described above that an articulation point a may occur in several components of
a triconnected component tree. We said that we go into recursion to the biconnected component
tree S, only once, namely either when we reach the reference copy of a, or even before in the
following case: let a be an articulation point in the biconnected component B and let C be the
node in 7 (B) that contains the reference copy of a. Then it might be the case that S, is a large
child of Sg and of S{.. In this case we visit S, when we reach B, i.e. before we start to compute
the root for 7(B). Then, when we reach the reference copy of a in C, we first check whether
we already visited S,. In this case the comparison result (with some large child S,/ of B') is
already stored on the work-tape and we do not visit S, a second time. Note, if we would go into
recursion at the reference copy a second time then we cannot guarantee the log-space bound of
the transducer, because we already have written bits on the work-tape for B when we traverse the
child, the biconnected subtree S, for the second time. Otherwise, we visit S, at the reference copy
of a.

Consequently, we consider S, as a subtree only at the place where we go into recursion to S,.
Recall, that this is not a static property, because for example the position of the reference copy
depends on the chosen root of the tree, and we try several possibilities for the root. Figure 5.3
shows an example.

We summarize, the algorithm reaches a component a, B or C as above, it first checks whether the
corresponding tree Sq, S, or S¢ has a large child and treats it a priori. The result is stored with O(1)
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Figure 5.3: The triconnected component tree 7 (B) of the biconnected component B. The tri-
connected component A contains the reference copy of articulation point a. If S, is not a large
child of B, then the subtree Sa consists of the subtree of 7 (B) rooted at A and the subtree S,. In
contrast, S, is not part of the subtree S(, v because it does not contain the reference copy of a.

bits. In the case of triconnected components, we also store the orientation. We distinguish large
children as follows.

e Large children with respect to the biconnected component tree. These are children of node a
in Sq or B in Sg. These children are biconnected component nodes or articulation point
nodes. When comparing Sg with S/, then we go for large children into recursion before
computing the trees 7(B) and 7 (B’).

e Large children with respect to the triconnected component tree. These are children of node C
in S¢. These children are separating pair nodes, triconnected component nodes.

e Large children with respect to S, where C is a node in 7(B). These are children of node B
in Sg which are not large children of B. These children are articulation point nodes which
have a reference copy in C.

We analyze the comparison algorithm when it compares subtrees rooted at separating pairs
and subtrees rooted at articulation points. For the analysis, the recursion goes here from depth d
to d 4 2 of the trees. Observe, that large children are handled a priori at any level of the trees. We
set up the following recursion equation for the space requirement of our algorithm.

S(N) = max 5(%) + O(log k),
)

)

where k; > 2 (for all j) are the values mentioned above in the corresponding cases. Hence, S(N) =
O(log N).

For the explanation of the recursion equation it is helpful to imagine that we have two work-
tapes. We use the first work-tape when we go into recursion at articulation point nodes, and the
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second work-tape when we go into recursion at separating pair nodes. The total space needed is
the sum of the space of the two work-tapes.

e At an articulation point node, the value k; is the number of elements in the j-th size class
among the children By,...,By of the articulation point node. We store O(logk;) bits and
recursively consider subtrees of size < N/k;.

e At a separating pair node the value k; is the number of elements in the j-th isomorphism
class among the children Gy,..., Gy of the separating pair node. We store O(logk;) bits and
recursively consider subtrees of size < N/k;.

This finishes the complexity analysis. We get the following theorem.

Theorem 5.12. The isomorphism order between two planar graphs can be computed in log-
space.

5.4 The Canon of a Planar Graph

From Theorem 5.12, we know that the isomorphism order of biconnected component trees can be
computed in log-space. Using this algorithm, we show that the canon of a planar graph can be
output in log-space.

The canonization of planar graphs proceeds exactly as in the case of biconnected planar graphs.
A log-space procedure traverses the biconnected component tree and makes oracle queries to the
isomorphism order algorithm and outputs a canonical list of edges, along with delimiters to separate
the lists for siblings.

For an example, consider the canonical list 1(S,a) of edges for the tree S, of Figure 5.1 on
page 27. Let 1(Bi,a) be the canonical list of edges of the biconnected component B;, i.e. the
canonical list of 7(B;i) with a the parent articulation point. Let aj,...,a;, be the order of the
reference copies of articulation points as they occur in the canon of 7(B;). Then we get the
following canonical list for Sg.

(S,a) = [(a)(Sp,,a) ... USe,,a)], where
l(SBna) = [1(81)0—) ]'(Sana]) 1(5(11])0—11) ]
U(Se,a) = [UBx,a) USq,,ay)]

A log-space transducer then renames the vertices according to their first occurrence in this list,
to get the final canon for the biconnected component tree. This canon depends upon the choice
of the root of the biconnected component tree. Further log-space transducers cycle through all
the articulation points as roots to find the minimum canon among them, then rename the vertices
according to their first occurrence in the canon and finally, remove the virtual edges and delimiters
to obtain a canon for the planar graph. This proves Theorem 5.1.
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6 Conclusion

In this paper, we improve the known upper bound for isomorphism and canonization of planar
graphs from AC' to L. This implies L-completeness for this problem, thereby settling its complexity.
An interesting question is to extend it to other important classes of graphs.
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