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Abstract

Graph Isomorphism is the prime example of a omputational problem with a wide di�erene

between the best known lower and upper bounds on its omplexity. The gap between the known

upper and lower bounds ontinues to be very signi�ant for many sublasses of graphs as well.

We bridge the gap for a natural and important lass of graphs, namely planar graphs, by

presenting a log-spae upper bound whih mathes the known log-spae hardness. In fat, we

show a stronger result that planar graph anonization is in log-spae.

1 Introduction

The graph isomorphism problem, GI, is to deide whether there is a bijetion between the verties

of two graphs whih preserves the adjaeny relations. The wide gap between the known lower and

upper bounds has kept alive the researh interest in GI.

The problem is learly in NP. It is also in the, intuitively weak, ounting lass SPP [AK06℄.

This is the urrent frontier of our knowledge with respet to upper bounds.

Not muh is known with respet to lower bounds. GI is unlikely to be NP-hard, beause

otherwise, the polynomial-time hierarhy ollapses to its seond level. This result was proved in

the ontext of interative proofs in a series of papers [GMW91, GS89, Bab85, BHZ87℄. Note that

it is not even known whether GI is P-hard. The best we know is that GI is hard for DET [Tor04℄,

the lass of problems NC1
-reduible to the determinant, de�ned by Cook [Coo85℄.

∗
Preliminary versions appeared in [DLN08℄ and [DLN

+
09℄.

†
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Known results: While this enormous gap has motivated a study of isomorphism in general

graphs, it has also indued researh in isomorphism restrited to speial ases of graphs where this

gap an be redued. We mention some of the known results.

• Tournament graphs are an example of direted graphs where the DET lower bound is pre-

served [Wag07℄, while there is a quasi-polynomial time upper bound [BL83℄.

• Lindell [Lin92℄ showed that tree isomorphism an be solved in log-spae. It is also hard for

log-spae [JKMT03℄. Hene lower and upper bounds math in this ase.

• For interval graphs, the isomorphism problem is in log-spae [KKLV11℄.

• For graphs of bounded treewidth, Bodlaender [Bod90℄ showed that the isomorphism problem

an be solved in polynomial time. Grohe and Verbitsky [GV06℄ improved the bound to TC1
,

and Das, T�oran, and Wagner [DTW12℄ to LogCFL. Finally, Elberfeld and Shweitzer [ES17℄

showed that it is in log-spae, where it is omplete.

In this paper we onsider planar graph isomorphism. Weinberg [Wei66℄ presented an O(n2)

algorithm for testing isomorphism of 3-onneted planar graphs. Hoproft and Tarjan [HT72b℄

extended this to general planar graphs, improving the time omplexity to O(n log n). Hoproft

and Wong [HW74℄ further improved this to linear time. Kukluk, Holder, and Cook [KHC04℄ gave

an O(n2) algorithm for planar graph isomorphism, whih is suitable for pratial appliations.

The parallel omplexity of planar graph isomorphism was �rst onsidered by Miller and

Reif [MR91℄. They showed that it is in AC3
. Then Gazit and Reif [GR98℄ improved the upper

bound to AC1
, see also [Ver07℄.

In the ontext of 3-onneted planar graph isomorphism, Thierauf and Wagner [TW10℄ pre-

sented a new upper bound of UL\coUL, making use of the mahinery developed for the reahability

problem [RA00℄ and spei�ally for planar reahability [ABC

+
09, BTV09℄. They also show that

the problem is L-hard under AC0
-redutions.

There have been several more reent results. The most notable one is a quasi-polynomial time

algorithm for isomorphism of all graphs by Babai [Bab16℄. Elberfeld and Kawarbayashi [EK14℄

extended our result from planar graphs to bounded-genus graphs. An interesting result for planar

graphs is by Kiefer et al. [KPS17℄, where they show that the Weisfeiler-Leman dimension of planar

graphs is at most 3. The logspae isomorphism test for interval graphs has been extended to

Helly irular-ar graphs by K�obler et al. [KKV13℄; another extension in this diretion is due to

Chandoo [Cha16℄.

Our results: In the urrent work we show that planar graph isomorphism is in log-spae. This

improves and extends the result in [TW10℄. As it is known that planar graph isomorphism is

hard for log-spae, our result implies that planar graph isomorphism is log-spae omplete. Hene

we �nally settle the omplexity of the problem in terms of omplexity lasses. In fat, we show a

stronger result: we give a log-spae algorithm for the planar graph anonization problem. That is,

we present a funtion f omputable in log-spae, that maps all planar graphs from an isomorphism

lass to one member of the lass. Thereby we also solve the anonial labeling problem in log-

spae, where one has to ompute an isomorphism between a planar graph G and its anon f(G).
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Proof outline: Let G be the given onneted planar graph we want to anonize. As a high-level

desription of our algorithm, we follow Hoproft and Tarjan [HT72b℄ and deompose the graph G.

The di�erenes ome with the log-spae implementation of the various steps.

In more detail, we start by omputing the bionneted omponents of G from whih we get the

bionneted omponent tree of G. Then we re�ne eah bionneted omponent into trionneted

omponents and ompute the trionneted omponent tree. The atual oding to get a anon for G

starts with the 3-onneted omponents. Our algorithm uses the notion of universal exploration

sequenes from [Kou02℄ and [Rei08℄. Then we work our way up to the trionneted and bionneted

omponent trees, and �nally get a anonization of G. Thereby we adapt Lindell's algorithm for

tree anonization. However, we have to make signi�ant modi�ations to the algorithm. In more

detail, our algorithm onsists of the following steps on input of a onneted planar graph G. All

steps an be aomplished in log-spae.

1. Deompose G into its bionneted omponents and onstrut its bionneted omponent

tree ([ADK08℄, f. [TW14℄).

2. Deompose the bionneted planar omponents into their trionneted omponents and on-

strut the trionneted omponent trees (Setion 4.1).

3. Solve the isomorphism problem for the trionneted planar omponents (Setion 3). In fat,

we give a anonization for these graphs.

4. Compute a anonization of bionneted planar graphs by using their trionneted omponent

trees and the results from the previous step (Setion 4).

5. Compute a anon for G by using the bionneted omponent tree and the results from the

previous step (Setion 5).

In the last two steps we adapt Lindell's algorithm [Lin92℄ for tree anonization.

Note that, without loss of generality we an assume that the given graph G is onneted [Rei08℄.

If a given graph, say H, is not onneted, we ompute its onneted omponents in log-spae, and

anonize eah of these omponents with the above algorithm. Then we put the anons of the

onneted omponents of H in lexiographially inreasing order. This obviously gives a anon

for H.

The paper is organized as follows. After some preliminaries in Setion 2, we start to explain the

anonization of 3-onneted graphs in Setion 3. In Setion 4 and 5, we push this up to bionneted

and onneted graphs, respetively.

Subsequent work: The log-spae bound presented here has been extended afterwards to the

lass of of K3,3-minor free graphs and the lass of K5-minor free graphs [DNTW09℄. The previous

known upper bound for these lasses was polynomial time [Pon91℄.
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2 Definitions and Notation

Space bounded Turing machines and related complexity classes. A log-spae bounded

Turing mahine is a deterministi Turing mahine with a read-only input tape and a separate work

tape. On inputs of length n, the mahine may use O(log n) ells of the work tape. By L we

denote the lass of languages deidable by log-spae bounded Turing mahines. NL is the lass of

languages omputable by nondeterministi logspae bounded Turing mahines. UL is the sublass

of NL where the nondeterministi Turing mahines have to be unambiguous, i.e. there exists at

most one aepting omputation path.

We also use log-spae bounded Turing mahines to ompute funtions. Then the mahine

additionally has a write-only output tape. The output tape is not ounted for the spae used

by the mahine. That is, the funtion omputed by a log-spae bounded Turing mahine an be

polynomially long.

An important property of log-spae omputable funtions is that they are losed under ompo-

sition. That is, given two funtions f, g : Σ� → Σ�

, where Σ is an input alphabet, if f, g 2 L then

f Æg is also in L (see [LM73℄). Our isomorphism algorithm will ompose onstantly many log-spae

funtions as a subroutine. Hene, the overall algorithm will thereby stay in log-spae.

Lexicographic order and rank. Let A be a set with a total order <. Then we extend < to

tuples of elements of A in a lexiographi manner. That is, for a1, . . . , ak, b1, . . . , bk 2 A we write

(a1, . . . , ak) < (b1, . . . , bk) if there is an i 2 {1, . . . , k} suh that aj = bj for j = 1, . . . , i − 1, and

ai < bi.

For a list L = (x1, x2, . . . , xn) of elements, the rank of xi is i, the position of xi in L.

Graphs. We assume some familiarity with ommonly used graph theoreti notions and standard

graph theoreti arguments, see for example [Wes00℄. Here we de�ne the notions that are ruial

for this paper. We will assume that all the graphs are undireted unless stated otherwise. A graph

is regular, if all verties have the same degree. For degree d, we also say that G is d-regular.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphi, G1
∼= G2 for short, if

there is a bijetion φ : V1 → V2 suh that for all edges (u, v) 2 E1

(u, v) 2 E1 ⇐⇒ (φ(u), φ(v)) 2 E2.

Graph isomorphism (GI) is the problem of deiding whether two given graphs are isomorphi.

Let G be a lass of graphs. Let f : G → {0, 1}� be a funtion suh that for all G,H 2 G we

have G ∼= H ⇔ f(G) = f(H). Then we say that f omputes a omplete invariant for G. In ase

that f(G) is itself a graph suh that G ∼= f(G) then we all f a anonization of G, and f(G) the

anon of G.

A graph G is alled planar if it an be drawn in the plane in suh a way that no edges ross

eah other, exept at their endpoints. Suh a drawing of G is alled a planar embedding. A planar

embedding of G divides the plane into regions. Eah suh region is alled a fae. For a more

rigorous de�nition see for example [MT01℄.

For U � V let G(U) be the indued subgraph of G on U. A graph G = (V, E) is onneted if

there is a path between any two verties in G.
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Let S � V with |S| = k. We all S a k-separating set, if G(V−S) is not onneted. For u, v 2 V

we say that S separates u from v in G, if u 2 S, v 2 S, or u and v are in di�erent omponents

of G−S. A k-separating set is alled artiulation point (or ut vertex ) for k = 1, separating pair

for k = 2. A graph G on more than two verties is k-onneted if it ontains no (k− 1)-separating

set. Hene a 1-onneted graph is simply a onneted graph. A 2-onneted graph is also alled

bionneted. Note however, that trionneted will not be used as a synonym for 3-onneted.

Due to the outome of the graph deomposition algorithm, a trionneted graph will be either

a 3-onneted graph, a yle, or a 3-bond. A 3-bond is a multi-graph with two verties that are

onneted by three edges.

Let S be a k-separating set in a k-onneted graph G. Let G 0

be a onneted omponent

in G(V − S). A split graph or a split omponent of S in G is the indued subgraph of G on

verties V(G 0) [ S, where we add virtual edges between all pairs of verties in S. Note that the

verties of a separating set S an our in several split graphs of G.

A ruial ingredient in many log-spae graph algorithms is the reahability algorithm by Rein-

gold [Rei08℄.

Theorem 2.1. [Rei08℄ Undireted s-t-Connetivity is in L.

Below we give some graph theoreti problems for whih a log-spae upper bound is known due

to Theorem 2.1.

1. Graph onnetivity. Given a graph G, one has to deide whether G is onneted. In the

enumeration version of the problem one has to ompute all the onneted omponents of G.

To deide whether G is onneted, yle through all pairs of verties of G and hek reaha-

bility for eah pair. To ompute the onneted omponent of a vertex v, yle through all the

verties of G and output the reahable ones. Clearly, this an be implemented in log-spae

with the reahability test as a subroutine.

2. Separating set. Given a graph G = (V, E) and a set S � V , one has to deide whether S is a

separating set in G. In the enumeration version of the problem one has to ompute all the

separating sets of a �xed size k.

Reall that S is a separating set if G− S is not onneted. Hene we have a redution to the

onnetivity problem. To solve the enumeration version for a onstant k, a logspae mahine

an yle through all size k subsets of verties and output the separating ones. In partiular,

we an enumerate all artiulation points and separating pairs in log-spae.

Let d(u, v) be the distane between verties u and v in G. The eentriity ε(v) of v is the

maximum distane of v to any other vertex,

ε(v) = max

u2V
d(v, u).

The minimum eentriity over all the verties in G is alled the radius of G. The verties of G that

have the eentriity equal to the radius of the graph form the enter of G. In other words, verties

in the enter minimize the maximal distane to the other verties in the graph. For example, if G is
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a tree of odd diameter, then the enter onsists of a single node, namely the midpoint of a longest

path in the tree. Moreover, beause distanes in a tree an be omputed in log-spae, also the

enter node of a tree an be omputed in log-spae.

Let Ev be the set of edges inident on v. A permutation ρv on Ev that has only one yle is

alled a rotation. A rotation system for a graph G is a set ρ of rotations,

ρ = {ρv | v 2 V and ρv is a rotation on Ev }.

A rotation system ρ enodes an embedding of graph G on an orientable surfae by desribing a

irular ordering of the edges around eah vertex. If the orientable surfae has genus zero, i.e. it is

a sphere, then the rotation system is alled a planar rotation system.

Conversely, a graph embedded on a plane uniquely de�nes a yli order of edges inident on

any vertex. The set of all yli orders gives a rotation system for the planar graph, whih is a

planar rotation system by de�nition. All embeddings whih give rise to the same rotation system

are said to be equivalent and their equivalene lass is alled a ombinatorial embedding, see for

example [MT01, Setion 4.1℄.

Allender and Mahajan [AM04℄ showed that a planar rotation system an be omputed in log-

spae.

Theorem 2.2. [AM04℄ Let G be a graph. In log-spae one an hek whether G is planar and

ompute a planar rotation system in this ase.

Let ρ−1
be the set of inverse rotations of ρ, i.e. ρ−1 = {ρ−1

v | v 2 V }. Note that if ρ is a planar

rotation system then this holds for ρ−1
as well. Namely, ρ−1

orresponds to the mirror symmetri

embedding of G.

It follows from work of Whitney [Whi33℄ that in the ase of planar 3-onneted graphs, there

exist only two planar rotation systems namely some planar rotation system ρ and its inverse ρ−1
.

This is a ruial property in the isomorphism test of Weinberg [Wei66℄ and all the other follow-up

works. We also use this property in our algorithm for planar 3-onneted graphs in order to obtain

a log-spae upper bound.

Universal Exploration Sequences (UXS). Let G = (V, E) be a d-regular graph. The edges

around any vertex v an be numbered 0, 1, . . . , d − 1 in an arbitrary, bijetive way. A sequene

τ1τ2 � � � τk 2 {0, 1, . . . , d − 1}k together with a starting edge e0 = (v0, v1) 2 E de�nes a walk

v0, v1, . . . , vk in G as follows: for 1 � i � k, if ei−1 = (vi−1, vi) is the s-th edge of vi, let ei = (vi, vi+1)

be the (s+ τi)
th

edge of vi modulo d.

A sequene τ1τ2 . . . τk 2 {0, 1, . . . d − 1}k is a (n, d)-universal exploration sequene (UXS)

for d-regular graphs of size � n, if for every onneted d-regular graph on � n verties, any

numbering of its edges, and any starting edge, the walk obtained visits all the verties of the graph.

Universal exploration sequene play a ruial role in Reingold's result that undireted reaha-

bility is in log-spae. We use it in our log-spae algorithm for testing isomorphism of 3-onneted

planar graphs.

Theorem 2.3. [Rei08℄ There exists a log-spae algorithm that takes as input (1n, 1d) and

produes an (n, d)-universal exploration sequene.

6



3 Canonization of 3-Connected Planar Graphs

In this setion, we give a log-spae algorithm for the anonization of 3-onneted planar graph.

This improves the UL\ coUL bound given by Thierauf and Wagner [TW10℄ for 3-onneted planar

graph isomorphism. Sine the problem is also L-hard [TW10℄ this settles the omplexity of the

problem in terms of omplexity lasses.

Theorem 3.1. The anonization of 3-onneted planar graphs is in log-spae.

The algorithm in [TW10℄ onstruts a anon for a given 3-onneted planar graph. This is

done by �rst omputing a spanning tree for the graph. Then, by traversing the spanning tree,

the algorithm visits all the edges in a ertain order. For the omputation of the spanning tree the

algorithm omputes distanes between verties of the graph. This is ahieved by using the planar

reahability test of Bourke, Tewari and Vinodhandran [BTV09℄. All parts of the algorithm work

in log-spae, exept for the planar reahability test whih is in UL \ coUL. Therefore this is the

overall omplexity bound.

In our approah we essentially replae the spanning tree in the above algorithm by a universal

exploration sequene. Sine suh a sequene an be omputed in log-spae by Theorem 2.3, this

will put the problem in L.

Note that universal exploration sequenes are de�ned for regular graphs. Therefore our �rst

step is to transform a given graph G into a 3-regular graph in suh a way that

• a planar graph stays planar and

• two graphs are isomorphi if and only if they are isomorphi after this preproessing step.

Note that every vertex has degree � 3 beause G is 3-onneted. The following standard onstru-

tion 3-Regular-Color redues the degree of verties to exatly three. For later use, we also

2-olor the edges in the resulting graph.

Note that the resulting graph G 0

is 3-regular and planar, if G is planar. If G has n verties

and m edges, then G 0

has 2m verties and 3m edges.

Moreover, G 0

is also 3-onneted. An easy way to see this is via Steinitz's theorem. It states that

planar 3-onneted graphs are preisely the skeletons of 3-dimensional onvex polyhedra. For G 0

,

we replae every vertex of the onvex polyhedron for G by a (small enough) yli fae suh that

the resulting polyhedral is still onvex. Therefore, G 0

is also planar and 3-onneted. It follows

that also G 0

has only two possible embeddings, namely the ones inherited from G.

In the following lemma, we give an elementary proof where we do not use planarity. For non-

planar G, we do not have a planar rotation system aording to whih we put the new edges. In

this ase, we use an arbitrary rotation system.

Lemma 3.2. Let G be a 3-onneted graph and G 0

be the 3-regular graph omputed by algo-

rithm 3-Regular-Color(G). Then G 0

is 3-onneted.

Proof. Let u, v be two verties in G. Sine G is 3-onneted, there are 3 vertex-disjoint paths

p1, p2, p3 from u to v in G. In G 0

, verties u, v are replaed by yles. The paths p1, p2, p3 an

be transformed to vertex-disjoint paths p 0

1, p
0

2, p
0

3 in G 0

. These paths start in verties u 0

1, u
0

2, u
0

3
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Algorithm 3.1 3-Regular-Color(G)

Input: A 3-onneted graph G = (V, E).

Output: A olored 3-regular graph G 0 = (V 0, E 0).

1: Replae a vertex v 2 V of degree dv � 3 by a yle (v 0

1, . . . , v
0

dv
) on dv new verties. This

de�nes verties V 0

and part of the edges in E 0

. We give olor 1 to the yle edges.

2: Fix a rotation ρv of the edges around v, for every v 2 V . In ase that G is planar, we use a

planar rotation.

3: For every edge (u, v) 2 E,

• let u be the i-th neighbor aording to ρv of v in G

• let v be the j-th neighbor aording to ρu of u in G

Then we put the new edge (u 0

j , v
0

i) whih replaes the old edge (u, v). These edges get olor 2.

This ompletes the de�nition of E 0

.

4: Output the resulting graph G 0 = (V 0, E 0).

from the yle orresponding to u, and end in verties v 0

1, v
0

2, v
0

3 from the yle orresponding to v,

respetively.

Let u 0

and v 0

be verties from the yles orresponding to u and v, respetively. We show that

there are 3 vertex-disjoint paths from u 0

to v 0

in G 0

. For this, we want to extend paths p 0

1, p
0

2, p
0

3

to onnet u 0

and v 0

. We onsider u 0

. The ase of v 0

is similar.

1. If u 0

is one of u 0

1, u
0

2, u
0

3, say u 0

1, then we an extend p 0

2, p
0

3 on the yle to reah u 0

and stay

vertex-disjoint.

2. If u 0

is di�erent from u 0

1, u
0

2, u
0

3, then we use the non-yle edge that stems from G and go to

a neighbor w 0

of u 0

. Vertex w 0

is on the yle orresponding to a vertex w in G. Sine G is

3-onneted, there is a path p from w to v in G. Again there is a path p 0

in G 0

orresponding

to p.

We onstrut a new path

bp that starts at u 0

and goes via w 0

to the staring point of p 0

. Then

we follow p 0

until we interset the �rst time with one of p 0

1, p
0

2, p
0

3, say p 0

1. Then bp ontinues

on p 0

1 until we reah v 0

1. When we onsider paths

bp, p 0

2, p
0

3 instead of p 0

1, p
0

2, p
0

3, then we are

in ase 1.

This shows that verties u 0, v 0

from di�erent yles are onneted by 3 vertex-disjoint paths in G 0

.

In ase that u 0, v 0

are on the same yle orresponding to one vertex of G, we an use two paths

from the yle and one path via some neighbor vertex of u 0

to v 0

.

In order to maintain the isomorphism property, we have to avoid potential isomorphisms that

map new edges from the yles to the original edges. This is the reason why we also olored the

edges. We summarize:
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Lemma 3.3. Given two 3-onneted planar graphs G and H, let G 0

and H 0

be the olored

3-regular graphs omputed by 3-Regular-Color. Then G ∼= H if and only if G 0 ∼= H 0

, where

the isomorphism between G 0

and H 0

has to respet the olors of the edges.

Note that the Lemma ruially depends on the unique embedding of the graph.

Before we show how to get a anon for graph G, we ompute a omplete invariant as an

intermediate step. The proedure Code(G 0, ρ, u0, v0) desribed in Algorithm 3.2 omputes a ode

for G 0

with respet to a planar rotation system ρ, a starting vertex u0 and a starting edge (u0, v0).

Algorithm 3.2 Code(G 0, ρ, u0, v0)

Input: A 3-regular graph G 0

with N verties and olored edges, a planar rotation system ρ,

and verties u0 and v0 suh that v0 is a neighbor of u0.

Output: A ode of G 0

with respet to ρ, vertex u0 and edge (u0, v0).

1: Construt a (N, 3)-universal exploration sequene U.

2: Traverse G 0

aording to U and ρ, starting from u0 along edge (u0, v0). Thereby we onstrut

a list L of nodes traversed, L = (u0, v0,w0, . . . ) .

3: Relabel the verties ourring in L aording to their �rst ourrene in the sequene. Let L 0

be the resulting list. For example, u0 and v0 get label 1 and 2, respetively, and therefore L 0

starts as L 0 = (1, 2, . . . ) .

4: Given L and L 0

, ompute the relabeling funtion π that maps the label of a node in L 0

to its

label in L. For example π(1) = u0 and π(2) = v0.

5: Output the N�N adjaeny matrix A = (ai,j) of G
0

with respet to the new node labels. That

is, for i, j 2 {1, . . . ,N}, let

ai,j =

{
c, if (π(i), π(j)) is an edge in G 0

of olor c,

0, otherwise.

The �ve steps of the algorithm an be seen as the omposition of �ve funtions. We argue

that eah of these funtions is in log-spae. Then it follows that the overall algorithm works in

log-spae. Step 1 is in log-spae by Theorem 2.3. In step 2, we only have to store loal information

to walk through G 0

.

Step 3 requires to ompute the rank of eah vertex in the list L. For a vertex v ourring in L

this amounts to searhing in L to the left of the urrent position for the �rst ourrene of v. Then

we have to ount the number of di�erent verties in L to the left of the �rst ourrene of v. This

an be done in log-spae. A more detailed outline an be found in [TW10℄.

In Step 4 we determine the position of node i in L 0

and the node vi at the same position in L.

Then π(i) = vi. Step 5 is again trivial when one has aess to π.

Definition 3.4. The ode σG 0

of a 3-regular graph G 0

is the lexiographi minimum of the

outputs of Code(G 0, ρ, u0, v0) for the two hoies of a planar rotation system ρ and all hoies

of u0 2 V and a neighbor v0 2 V of u0.

9



The following lemma states that the ode σG 0

of G 0

omputed so far is a omplete invariant for

the lass of 3-onneted planar graphs.

Lemma 3.5. Let G 0

and H 0

be 3-regular planar graphs and σG 0

and σH 0

be the odes of G 0

and H 0

, respetively. Then

G 0 ∼= H 0 ⇐⇒ σG 0 = σH 0 .

Proof. If G 0 ∼= H 0

, then there is an isomorphism ϕ from G 0

to H 0

. Let ρG 0

be the planar rotations

system, u0 a vertex and (u0, v0) the starting edge whih lead to the minimum ode σG 0

. Let ρH 0

be the rotations system of H 0

indued by ρG 0

and ϕ. Let σ = Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)).

We prove that σG 0 = σ: let w be a vertex that ours at position ℓ in the list LG 0

omputed

in step 2 in Code(G 0, ρH 0 , u0, v0). Then ϕ(w) will our at position ℓ in the list LH 0

omputed in

step 2 in Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)). This is beause the oriented graphs are isomorphi, and the

same UXS is used for their traversal. Hene, when a vertex w ours the �rst time LG 0

, ϕ(w) will

our the �rst time in LH 0

at the same position. Moreover, by indution, the number of di�erent

verties to the left of w in LG 0

will be the same as the number of di�erent verties to the left

of ϕ(w) in LH 0

. Hene, in step 3 in Code(G 0, ρH 0 , u0, v0) vertex w will get the same name, say j, as

vertex ϕ(w) in step 3 in Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)). Therefore, in step 4, the relabeling funtion

for G 0

will map πG 0(j) = w, and the relabeling funtion for H 0

will map πH 0(j) = ϕ(w). So we will

get the same output in step 5. We onlude that σG 0 = σ.

Clearly σ is also the minimum of all the possible odes for H 0

, beause otherwise we ould swith

the roles of G 0

and H 0

in the above argument and would obtain a ode for G 0

smaller than σG 0

.

Therefore we have also σH 0 = σ. Hene σG 0 = σH 0

.

For the reverse diretion, let σG 0 = σH 0 = σ. The labels of verties in σ are just a relabeling of

the verties of G 0

and H 0

. These relabelings are some permutations, say π1 and π2. Then π−1
2 Æ π1

is an isomorphism between G 0

and H 0

.

To prove Theorem 3.1 we show how to onstrut a anon for G from the ode σG 0

for G 0

. Reall

that algorithm 3-Regular-Color replaes a vertex v of degree d in G by a yle (v 0

1, . . . , v
0

d) in G 0

and also olors the edges. In the ode σG 0

, eah node in the yle gets a new label. We assign to v

the minimum label among the new labels of (v 0

1, . . . , v
0

d) in G 0

. To do so, we start at one of the

verties, say v 0

1, and traverse olor 1 edges until we get bak to v 0

1. Thereby we an �nd out the

minimum label. Let π(v) be the label assigned to v.

We are not quite done yet. Reall that G 0

has 2m verties. Hene the labels π(v) we assign

to the verties of G are in the range π(v) 2 {1, 2, . . . , 2m}. But G has n verties and we want

the assignment to map to {1, 2, . . . , n}. To do so, we onvert π into a mapping π 0

suh that π 0(v)

is the rank of π(v) in the ordered π-labeling sequene. Then we have π 0(v) 2 {1, 2, . . . , n}. The

onstrution of π and π 0

an be done in log-spae.

As anon of G we de�ne a oding of the adjaeny matrix of G, say σ, where verties are rela-

beled aording to π 0

. Then σ odes a graph whih is isomorphi to G by onstrution. Moreover,

for every graph H isomorphi to G, we will get the same ode σ for H. This is beause the relabeling

funtions π and π 0

depend only on the ode σG 0

, whih is the same for H by Lemma 3.5. Hene

our onstrution gives a anonization of 3-onneted planar graphs. This onludes the proof of

Theorem 3.1.
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4 Canonization of Biconnected Planar Graphs

In this setion, we present an algorithm that given a planar bionneted graph outputs its anon

in logspae.

Theorem 4.1. The anonization of bionneted planar graphs is in log-spae.

The proof is presented in the following �ve subsetions. In Setion 4.1 we �rst show how to de-

ompose a bionneted planar graph G into its trionneted omponents. From these omponents

we onstrut the trionneted omponent tree of G.

In Setion 4.2 we give a brief overview of a log-spae algorithm for tree anonization, whih was

developed by Lindell [Lin92℄. The ore of Lindell's algorithm is to ome up with a total order on

trees suh that two trees are isomorphi if and only if they are equal with respet to this order.

In Setion 4.3, we de�ne an isomorphism order on the trionneted omponent trees similar to

Lindell's order on trees. The isomorphism order we ompute has the property that two bionneted

graphs will be isomorphi if and only of they are equal with respet to the isomorphism order. This

yields an isomorphism test. We analyze its spae omplexity in Setion 4.4.

Finally, based on the isomorphism order, we develop our anonization proedure in Setion 4.5.

4.1 Decomposition of a Biconnected Graph into Triconnected Components

Graph deomposition goes bak to Hoproft and Tarjan [HT73℄, who presented a linear-time algo-

rithm to ompute suh a deomposition, and Cunningham and Edmonds [CE80℄. These algorithms

are sequential. With respet to parallel algorithms, Miller and Ramahandran [MR92℄ presented

a deomposition algorithm on a CRCW-PRAM with O(log2 n) parallel time and using a linear

number of proessors. In this setion, we show that a bionneted graph an be deomposed into

its trionneted omponents in log-spae.

The algorithm presented below was developed in [DNTW09℄

1

. We present the entire algorithm

here for the sake of ompleteness.

Definition 4.2. Let G = (V, E) be a bionneted graph. A separating pair {a, b} is alled

3-onneted if there are three vertex-disjoint paths between a and b in G.

The trionneted omponents of G are the split graphs we obtain from G by splitting G

suessively along all 3-onneted separating pairs, in any order. If a separating pair {a, b} is

onneted by an edge in G, then we also de�ne a 3-bond for {a, b} as a trionneted omponent,

i.e., a multigraph with two verties {a, b} and three edges between them.

We deompose a bionneted graph only along separating pairs whih are onneted by at least

three disjoint paths. By only splitting a graph along 3-onneted separating pairs, we avoid the

deompositions of yles. Therefore, we get three types of trionneted omponents of a bionneted

graph: 3-onneted omponents, yle omponents, and 3-bonds.

De�nition 4.2 leads to the same trionneted omponents as in [HT73℄. The deomposition is

unique, i.e., independent of the order in whih the separating pairs in the de�nition are onsid-

ered [Ma37℄, see also [HT72a, CE80℄.

1

The �rst log-spae version of this problem appeared in the onferene version of the urrent work [DLN

+
09℄.

This was subsequently simpli�ed in the work of [DNTW09℄

11



Lemma 4.3. The 3-onneted separating pairs and the trionneted omponents of a bion-

neted graph an be omputed in log-spae.

Proof. In Setion 2 we argued that we an ompute all separating pairs of G in logspae. To

determine whether a separating pair {a, b} is 3-onneted, we yle over all pairs of verties u, v

di�erent from a and b and hek whether the removal of u, v keeps a reahable from b. Clearly,

this an be aomplished in log-spae.

It remains to ompute the verties of a trionneted omponent. Two verties u, v 2 V belong to

the same 3-onneted omponent or yle omponent, if no 3-onneted separating pair separates u

from v. This property an again be heked by solving several reahability problems. Hene we

an ollet the verties of eah suh omponent in log-spae.

The trionneted omponents of a bionneted graph are the nodes of the trionneted om-

ponent tree .

Definition 4.4. Let G be a bionneted graph. The trionneted omponent tree T of G is the

following graph. There is a node for eah trionneted omponent and for eah 3-onneted

separating pair of G. There is an edge in T between the node for trionneted omponent C

and the node for a separating pair {a, b}, if a, b belong to C.

Given a trionneted omponent tree T , we use graph(T ) to denote the orresponding

bionneted graph represented by it.

Note that graph T is onneted, beause G is bionneted, and ayli. This also implies that T

is a tree. Eah path in T is an alternating path of separating pairs and trionneted omponents.

All the leaves of T are trionneted omponents. Hene, a path between two leaves always ontains

an odd number of nodes and therefore T has a unique enter node.

By Lemma 4.3, we an ompute the nodes of the omponent tree in logspae. We show that we

an also traverse the omponent tree in logspae. Here, by traversal we mean a way of systematially

visiting every vertex of the tree. For example, in lassial graph theory, we study many di�erent

tree traversals suh as preorder, inorder and postorder traversals. It is known that tree traversal

an be performed in logspae. Unlike in a tree, the nodes of the omponent tress are themselves

graphs. We show that, in spite of this, we an perform its traversal in logspae.

Lemma 4.5. The trionneted omponent tree of a bionneted graph G an be omputed and

traversed in logspae.

Proof. The traversal proeeds as a depth-�rst searh. Assume that a separating pair is �xed as

the root node of the omponent tree, We show how to navigate loally in the omponent tree, i.e.,

for a urrent node how to ompute its parent, �rst hild, and next sibling. We explore the tree

starting at the root. Thereby we store the following information on the tape.

• We always store the root node, i.e., the two verties of the root separating pair.

• When the urrent node is separating pair {a0, b0}, we just store it.

• When the urrent node is a 3-onneted omponent C with parent separating pair {a0, b0},

then we store a0, b0 and an arbitrary vertex v 6= a0, b0 from C.

12



In the last item, the vertex v that we store serves as a representative for C. As a hoie for v take

the �rst vertex of C that is omputed by the onstrution algorithm of Lemma 4.3. Note that v

and a0, b0 together with the root node identify C uniquely.

The traversal ontinues by exploring the subtrees at the separating pairs in C, di�erent

from {a0, b0}. Let {a1, b1} be the urrent separating pair in C. We ompute a representative

vertex for the �rst 3-onneted split omponent of {a1, b1} di�erent from C. Then we erase {a0, b0}

and the representative vertex for C from the tape and reursively traverse the subtrees at {a1, b1}.

When we return from the subtrees at {a1, b1}, we reompute {a0, b0} and C, the parent of {a1, b1}.

This is done by omputing the path from the root node to C in the omponent tree. That is, we

start at the root node and look for the hild omponent that ontains C via reahability queries.

Then we iterate the searh until we reah C, where we always store the urrent parent node.

The tree traversal ontinues with the next sibling of C in the tree. That is, we ompute the

next artiulation point in C after {a1, b1} with respet to the order on the separating pairs. Then

we delete {a1, b1} from the work tape. If C does not have a next sibling, we return to the parent

of C.
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d

G4G2G3bG

G1 T

G3

c

Figure 4.1: The deomposition of a bionneted planar graph

bG. Its trionneted omponents are

G1, . . . , G4 and the orresponding trionneted omponent tree is T . In bG, the pairs {a, b} and {c, d}

are 3-onneted separating pairs. The inseparable triples are {a, b, c}, {b, c, d}, {a, c, d}, {a, b, d},

{a, b, f}, and {c, d, e}. Hene the trionneted omponents are the indued graphs G1 on {a, b, f}, G2

on {a, b, c, d}, and G4 on {c, d, e}. Sine the 3-onneted separating pair {c, d} is onneted by an

edge in

bG, we also get {c, d} as triple-bond G3. The virtual edges orresponding to the 3-onneted

separating pairs are drawn with dashed lines.

4.2 Overview of Lindell’s Algorithm for Tree Canonization

We summarize the ruial ingredients of Lindell [Lin92℄ log-spae algorithm for tree anonization.

We will then adapt Lindell's tehnique to trionneted omponent trees.

Lindell's algorithm is based on an order relation � for rooted trees de�ned below. The order

relation has the property that two trees S and T are isomorphi if and only if they are equal with

respet to the order, denoted by S � T . Beause of this property it is alled a anonial order.

Clearly, an algorithm that deides the order an be used as an isomorphism test. Lindell showed

how to extend suh an algorithm to ompute a anon for a tree in log-spae.
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The order < on rooted trees is de�ned as follows.

Definition 4.6. Let S and T be two trees with root s and t, and let #s and #t be the number

of hildren of s and t, respetively. Then S < T if

1. |S| < |T |, or

2. |S| = |T | but #s < #t, or

3. |S| = |T | and #s = #t = k, but (S1, . . . , Sk) < (T1, . . . , Tk) lexiographially, where it is

indutively assumed that S1 � � � � � Sk and T1 � � � � � Tk are the ordered subtrees of S

and T rooted at the k hildren of s and t, respetively.

The omparisons in steps 1 and 2 an be made in log-spae. Lindell proved that even the third

step an be performed in log-spae using two-pronged depth-�rst searh, and ross-omparing

only a hild of S with a hild of T . This is briey desribed below:

• Partition the k hildren of s in S into bloks aording to their sizes, i.e., the number of nodes

in the subtree rooted at the hild. Let N1 < N2 < � � � < Nℓ be the ourring sizes, for some

ℓ � k, and let ki be the number of hildren in blok i, i.e., that have size Ni. It follows that∑
i ki = k and

∑
i kiNi = n − 1.

Doing the same for t in T , we get orresponding numbers N 0

1 < N 0

2 < � � �N 0

ℓ 0

and

k 0

1, k 0

2, . . . , k
0

ℓ 0

. If ℓ 6= ℓ 0 then we know that the two are not isomorphi. Otherwise, we

ompare the two blok strutures as follows.

– If N1 < N 0

1, then S < T .

– If N1 > N 0

1, then S > T .

– If N1 = N 0

1 and k1 > k 0

1 then S < T .

– If N1 = N 0

1 and k1 > k 0

1 then S > T .

If N1 = N 0

1 and k1 = k 0

1 then we onsider the next bloks similarly. This proess is ontinued

until a di�erene in the blok struture is deteted, or all the hildren of s and t are exhausted.

• Let the hildren of s and t have the same blok struture. Then ompare the hildren in eah

blok reursively as follows:

Case 1: k = 0. Hene s and t have no hildren. They are isomorphi as all one-node trees

are isomorphi. We onlude that S � T .

Case 2: k = 1. Reursively onsider the grand-hildren of s and t.

Case 3: k � 2. For eah of the subtrees Sj ompute its order pro�le. The order pro�le

onsists of three ounters, c<, c> and c=. These ounters indiate the number of subtrees in

the blok of Sj that are respetively smaller than, greater than, or equal to Sj. The ounters

are omputed by making pairwise ross-omparisons.
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Note that isomorphi subtrees in orresponding bloks have the same order pro�le. Therefore,

it suÆes to hek that eah suh order pro�le ours the same number of times in eah

blok in S and T . To perform this hek, ompare the di�erent order pro�les of every blok

in lexiographi order. The subtrees in the blok i of S and T , whih is urrently being

onsidered, with a ount c< = 0 form the �rst isomorphism lass. The size of this isomorphism

lass is ompared aross the trees by omparing the values of the c=-variables. If these

values math then both trees have the same number of minimal hildren. Note that the

lexiographial next larger order pro�le has the urrent value of c< + c= as its value for the

c<-ounter.

This way, one an loop through all the order pro�les. If a di�erene in the order pro�les of

the subtrees of S and T is found then the lexiographial smaller order pro�le de�nes the

smaller tree.

The last order pro�le onsidered is the one with c< + c= = k for the urrent ounters. If this

point is passed without unovering an inequality then the trees must be isomorphi and it

follows that S � T .

We analyze the spae omplexity. Note that in ase 2 with just one hild, we need no spae for

the reursive all. In ase 3, for eah new blok, the work-tape alloated for the former omputations

an be reused. Sine

∑
i kiNi � n, the following reursion equation for the spae omplexity S(n)

holds,

S(n) = max

i
{S(Ni) +O(log ki)} � max

i
{ S

�

n

ki

�

+O(log ki)},

where ki � 2 for all i. It follows that S(n) = O(log n).

Lindell de�nes the anon of a rooted tree T as the in�x oding of the tree over the three letter

alphabet {�, [, ]}, whih in turn an be oded over {0, 1}. The anon of a tree T with just one vertex

is c(T) = �. The anon of a tree T with subtrees T1 � T2 � � � � � Tk is c(T) = [c(T1)c(T2) � � � c(Tk)].

If we have given a tree T without a spei�ed root, then we try all the verties of T as the root.

The vertex that leads the smallest tree with respet to the order on rooted trees is used as the root

to de�ne the anon of T .

4.3 Isomorphism Order of Triconnected Component Trees

In this setion, we start with two trionneted omponent trees and give a log-spae test for isomor-

phism of the bionneted graphs represented by them. Reall from De�nition 4.4 that a trionneted

omponent tree T that represents a bionneted graph G onsists of nodes orresponding to the

trionneted omponents and 3-onneted separating pairs of G. See Figure 4.1 for an example.

The rough idea is to ome up with an order on the trionneted omponent trees, as in Lindell's

algorithm for isomorphism of trees. Clearly, a major di�erene to Lindell's setting is that the nodes

of the trees are now separating pairs or trionneted omponents. By using Lindell's algorithm

in onjuntion with the algorithm from Setion 3, we anonize the 3-onneted omponent nodes

of the tree. We all this the isomorphism order. We ensure that the isomorphism order has the
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property that two trionneted omponent trees have the same order if and only if the bionneted

graphs represented by them are isomorphi.

To de�ne the order, we also ompare the size of the tree. We �rst de�ne the size of a trionneted

omponent tree.

Definition 4.7. For a trionneted omponent tree T , the size of an individual omponent

node C of T is the number nC of verties in C. The size of the tree T , denoted by |T |, is the

sum of the sizes of its omponent nodes.

Note that the verties of a separating pair are ounted in every omponent where they o-

ur. Therefore the size of T is at least as large as the number of verties in graph(T), the graph

orresponding to the trionneted omponent tree T .

We desribe a proedure for omputing an isomorphism order given two trionneted omponent

trees S and T of two bionneted planar graphs G and H, respetively. We root S and T at separating

pair nodes s = {a, b} and t = {a 0, b 0}, respetively, whih are hosen arbitrarily. As Lindell, we

de�ne the �nal order of G and H based on the separating pairs as roots that lead to the smallest

trees. The rooted trees are denoted as S{a,b} and T{a 0,b 0}. They have separating pair nodes at odd

levels and trionneted omponent nodes at even levels. Figure 4.2 shows two trees to be ompared.

ba
s

G1

. . .

. . .. . .

. . . Gk

s1

. . . . . .

. . .. . .

. . .

. . .

t
a 0 b 0

HkH1

t1slk tlksl1 tl1

S{a,b}

S1 Slk T1 Tlk

SG1
SGk

THk
TH1

T{a 0,b 0}

Figure 4.2: Trionneted omponent trees.

We de�ne the isomorphism order <
T

for S{a,b} and T{a 0,b 0} by �rst omparing their sizes, then

the number of hildren of the root nodes s and t. These two steps are similar to Lindell's algorithm.

If we �nd equality in the �rst two steps, then, in the third step we make reursive omparisons of

the subtrees of S{a,b} and T{a 0,b 0}. However, here it does not suÆe to ompare the order pro�les of

the subtrees in the di�erent size lasses as in Lindell's algorithm. We need a further omparison

step to ensure that G and H are indeed isomorphi.

To see this, assume that s and t have two hildren eah, G1, G2 and H1, H2 suh that G1
∼= H1

and G2
∼= H2. Still we annot onlude that G and H are isomorphi beause it is possible that the

isomorphism between G1 and H1 maps a to a 0

and b to b 0

, but the isomorphism between G2 and H2

maps a to b 0

and b to a 0

. Then these two isomorphisms annot be extended to an isomorphism

between G and H. For an example see Figure 4.3 of Page 20.
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To handle this, we use the notion of an orientation of a separating pair. A separating pair gets

an orientation from subtrees rooted at its hildren. Also, every subtree rooted at a trionneted

omponent node gives an orientation to the parent separating pair. If the orientation is onsistent,

then we de�ne S{a,b} �T

T{a 0,b 0} and we will show that G and H are isomorphi in this ase.

The sequential algorithm by Hoproft and Tarjan [HT73℄ uses depth-�rst-searh for the deom-

position. They also onsider the diretion in whih an edge is traversed by the searh. Thereby

the orientation issue is handled impliitly.

In the following two subsetions we give the details of the isomorphism order between two

trionneted omponent trees depending on the type of the root node.

4.3.1 Isomorphism order of two subtrees rooted at triconnected components

We onsider the isomorphism order of two subtrees SGi
and THj

rooted at trionneted omponent

nodes Gi and Hj, respetively. We �rst onsider the easy ases.

• Gi and Hj are of di�erent types. Gi and Hj an be either 3-bonds or yles or 3-onneted

omponents. If the types of Gi and Hj are di�erent, we immediately detet an inequality. We

de�ne a anonial order among subtrees rooted at trionneted omponents in this asending

order: 3-bond, yle, 3-onneted omponent, suh that e.g. SGi
<
T

THj
if Gi is a 3-bond and

Hj is a yle.

• Gi and Hj are 3-bonds. In this ase, SGi
and THj

are leaves, sine they annot be deomposed

further into smaller omponents, and we de�ne SGi
�

T

THj
.

In ase where Gi and Hj are yles or 3-onneted omponents, we onstrut the anons of Gi

and Hj and ompare them lexiographially.

• To anonize a yle, we traverse it starting from the virtual edge that orresponds to its

parent, and then traversing the entire yle along the edges enountered. There are two

possible traversals depending on whih diretion of the starting edge is hosen. Thus, a yle

has two andidates for a anon.

• To anonize a 3-onneted omponent Gi, we use the log-spae algorithm from Setion 3.

Besides Gi, the algorithm gets as input a starting edge and a ombinatorial embedding ρ

of Gi. We always take the virtual edge {a, b} orresponding to Gi's parent as the starting

edge. Then there are two hoies for the diretion of this edge, (a, b) or (b, a). Further, a

3-onneted graph has two planar rotation systems [Whi33℄. Hene, there are four possible

andidates for the anon of Gi.

In the latter two ases, we start the anonization of Gi and Hj in all the possible ways (two,

if they are yles, and four, if they are 3-onneted omponents), and ompare these anons bit-

by-bit. Let Cg and Ch be two andidate anons to be ompared. The base ase is that Gi and Hj

are leaf nodes and therefore ontain no further virtual edges. In this ase we use the lexiographi

order between Cg and Ch. (For instane, if the whole graph is simply a yle or a 3-onneted

omponent, then the algorithm terminates here.) If Gi and Hj ontain virtual edges then these

edges are speially treated in the bitwise omparison of Cg and Ch:
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• If a virtual edge is traversed in the onstrution of one of the anons Cg or Ch but not in the

other, then we de�ne the one without the virtual edge to be the smaller anon.

• If Cg and Ch enounter virtual edges {u, v} and {u 0, v 0} orresponding to a hild of Gi and Hj,

respetively, we need to reursively ompare the subtrees rooted at {u, v} and {u 0, v 0}.

– If we �nd in the reursion that one of the subtrees is smaller than the other, then the

anon with the smaller subtree is de�ned to be the smaller anon.

– If we �nd that the anons of the subtrees rooted at {u, v} and {u 0, v 0} are equal, then we

look at the orientations given to {u, v} and {u 0, v 0} by their hildren. This orientation,

alled the referene orientation, is de�ned below in Setion 4.3.2. If one of the anons

traverses the virtual edge in the diretion of its referene orientation but the other one

not, then the one with the referene diretion is de�ned to be the smaller anon.

We eliminate the andidate anons whih were found to be the larger in at least one of the

omparisons. In the end, the andidate that is not eliminated is the anon. If we have the same

anons for both Gi and Hj then we de�ne SGi
�

T

THj
. The onstrution of the anons also de�nes

an isomorphism between the subgraphs desribed by SGi
and THj

, i.e. graph(SGi
) ∼= graph(THj

).

For a single trionneted omponent this follows from the algorithm of Setion 3. If the trees

ontain several omponents, then our de�nition of SGi
�

T

THj
guarantees that we an ombine the

isomorphisms of the omponents to an isomorphism between graph(SGi
) and graph(THj

).

Observe, that we do not need to ompare the sizes and the degree of the root nodes of SGi

and THj
in an intermediate step, as it is done in Lindell's algorithm for subtrees. This is beause

the degree of the root node Gi is enoded as the number of virtual edges in Gi. The size of SGi
is

heked by the length of the minimal anons for Gi and when we ompare the sizes of the hildren

of the root node Gi with those of Hj.

4.3.2 Isomorphism order of two subtrees rooted at separating pairs

We onsider the isomorphism order of two subtrees S{a,b} and T{a 0,b 0} rooted at separating pairs

{a, b} and {a 0, b 0}, respetively. Let (G1, . . . , Gk) be the hildren of the root {a, b} of S{a,b}, and

(SG1
, . . . , SGk

) be the subtrees rooted at (G1, . . . , Gk). Similarly let (H1, . . . , Hk) be the hildren of

the root {a 0, b 0} of T{a 0,b 0} and (TH1
, . . . , THk

) be the subtrees rooted at (H1, . . . , Hk).

The �rst three steps of the isomorphism order are performed similar to that of Lindell [Lin92℄

maintaining the order pro�les. We �rst order the subtrees, say SG1
�

T

� � � �

T

SGk
and TH1

�

T

� � � �

T

THk
, and verify that SGi

�

T

THi
for all i. If we �nd an inequality then the one with the

smallest index i de�nes the order between S{a,b} and T{a 0,b 0}. Now assume that SGi
�

T

THi
for all i.

Indutively, the orresponding split omponents are isomorphi, i.e. graph(SGi
) ∼= graph(THi

) for

all i.

An additional step involves a omparison of the orientations given by the subtrees SGi
and THi

to {a, b} and {a 0, b 0}, respetively.

Definition 4.8 (Orientation). The orientation given to the parent separating pair {a, b} of S(Gi) is

the diretion {a, b} whih leads to the anon of S(Gi), respetively. If the anons are obtained
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for both hoies of diretions of the edge, we say that SGi
is symmetri about their parent

separating pair, and thus does not give an orientation.

The orientation given to {a, b} by two subtrees might be di�erent. Our next step is to extrat

one orientation from the orientations of all subtrees as the referene orientation for separating

pair {a, b}.

Definition 4.9 (Referene Orientation). Let I1 <T

� � � <
T

Ip be a partition of (SG1
, . . . , SGk

) into

lasses of �

T

-equal subtrees, for some p � k.

• For eah isomorphism lass Ij, the orientation ounter is a pair Oj = (c→j , c←j ), where c→j
is the number of subtrees of Ij whih gives one orientation, say (a, b), and c←j is the

number of subtrees from Ij whih give the other orientation, (b, a). The ounters are

ordered suh that c→j � c←j . Then the orientation given to {a, b} by isomorphism lass Ij
is the one from the larger ounter, i.e. c→j , if c→j 6= c←j .

If c→j = c←j , that is if eah omponent in this lass is symmetri about {a, b} then no

orientation is given to {a, b} by this lass, and the lass is said to be symmetri about

{a, b}. Note that in an isomorphism lass, either all or none of the omponents are

symmetri about the parent.

• The referene orientation of {a, b} is de�ned as the orientation given to {a, b} by the

smallest non-symmetri isomorphism lass. If all isomorphism lasses are symmetri

about {a, b}, then we say that {a, b} has no referene orientation.

For T{a 0,b 0} we similarly partition (TH1
, . . . , THk

) into isomorphism lasses I 01 <
T

� � � <
T

I 0p. It

follows that Ij and I 0j ontain the same number of subtrees for every j. Let O 0

j = (d→j , d←j ) be the

orresponding orientation ounters for the isomorphism lasses I 0j .

Now we ompare the orientation ounters Oj and O 0

j for j = 1, . . . , p. If they are all pairwise

equal, then the graphs G and H are isomorphi and we de�ne S{a,b} �T

T{a 0,b 0}. Otherwise, let j be

the smallest index suh that Oj 6= O 0

j . Then we de�ne S{a,b} <T

T{a 0,b 0} if Oj is lexiographially

smaller than O 0

j , and T{a 0,b 0} <T

S{a,b} otherwise. For an example, see Figure 4.3.

4.3.3 Summary and correctness

We summarize the isomorphism order of two trionneted omponent trees S and T de�ned in the

previous subsetions. Let s = {a, b} and t = {a 0, b 0} be the roots of S and T , and let #s and #t be

the number of hildren of s and t, respetively. Then we have S <
T

T if:

1. |S| < |T |, or

2. |S| = |T | but #s < #t, or

3. |S| = |T |, #s = #t = k, but (SG1
, . . . , SGk

) <
T

(TH1
, . . . , THk

) lexiographially, where we

assume that SG1
�

T

� � � �

T

SGk
and TH1

�

T

� � � �

T

THk
are the ordered subtrees of S

and T , respetively. To ompute the order between the subtrees SGi
and THi

we ompare

lexiographially the anons of Gi and Hi and reursively the subtrees rooted at the hildren

of Gi and Hi. Note, that these hildren are again separating pair nodes.
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Figure 4.3: The graphs G and H have the same trionneted omponent trees but are not

isomorphi. In S{a,b}, the 3-bonds form one isomorphism lass I1 and the other two omponents

form the seond isomorphism lass I2, as they all are pairwise isomorphi. The non-isomorphism

is deteted by omparing the diretions given to the parent separating pair. We have p = 2

isomorphism lasses and for the orientation ounters we have O1 = O 0

1 = (0, 0), whereas O2 =

(2, 0) and O 0

2 = (1, 1) and hene O 0

2 is lexiographially smaller than O2. Therefore we have

T{a 0,b 0} <T

S{a,b}.

4. |S| = |T |, #s = #t = k, (SG1
, . . . , SGk

) �
T

(TH1
, . . . , THk

), but (O1, . . . ,Op) < (O 0

1, . . . ,O
0

p)

lexiographially, where Oj and O 0

j are the orientation ounters of the jth isomorphism

lasses Ij and I 0j of all the SGi
's and the THi

's.

We say that S and T are equal aording to the isomorphism order , denoted by S �
T

T , if

neither S <
T

T nor T <
T

S holds.

The following theorem shows the orretness of the isomorphism order: two trees are �

T

-equal,

preisely when the underlying graphs are isomorphi.

Theorem 4.10. Let G and H be bionneted planar graphs with trionneted omponent

trees S and T , respetively. Then G and H are isomorphi if and only if there is a hoie of

separating pairs s, t in G and H suh that S �
T

T when rooted at s and t, respetively.

Proof. Assume that S �
T

T . The argument is an indution on the depth of the trees that follows

the indutive de�nition of the isomorphism order. The indution goes from depth d + 2 to d. If

the grandhildren of separating pairs, say s and t, are �
T

-equal up to step 4, then we ompare the

hildren of s and t. If they are equal then we an extend the �

T

-equality to the separating pairs s

and t.

When subtrees are rooted at separating pair nodes, the omparison desribes an order on the

subtrees whih orrespond to split omponents of the separating pairs. The order desribes an

isomorphism among the split omponents.

When subtrees are rooted at trionneted omponent nodes, say Gi and Hj, the omparison

states equality if the omponents have the same anon, i.e. are isomorphi. By the indution

hypothesis we know that the hildren rooted at virtual edges of Gi and Hj are isomorphi. The
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equality in the omparisons indutively desribes an isomorphism between the verties in the

hildren of the root nodes.

Hene, the isomorphism between the hildren at any level an be extended to an isomorphism

between the orresponding subgraphs in G and H and therefore to G and H itself.

The reverse diretion holds easily as well. Suppose G and H are isomorphi and there is an

isomorphism that maps the separating pair {a, b} of G to the separating pair {a 0, b 0} of H. One

needs to prove that S{a,b} �T

T{a 0,b 0} where these two are S and T rooted at {a, b} and {a 0, b 0}

respetively. One an prove this by indution on the depth of S{a,b} and T{a 0,b 0}. Note that suh an

isomorphism maps separating pairs of G onto separating pairs of H. This isomorphism desribes

a permutation on the split omponents of separating pairs, whih means we have a permutation

on trionneted omponents, the hildren of the separating pairs. By indution hypothesis, the

hildren at depth d + 2 of two suh trionneted omponents are isomorphi and equal aording

to �

T

. One an ombine this with the isomorphism of the trionneted omponents themselves

and the de�nition of �

T

to onlude the proof of the reverse diretion and of the theorem.

4.4 Space Complexity of the Isomorphism Order Algorithm

We analyze the spae omplexity of the isomorphism order algorithm. The �rst two steps of the

isomorphism order algorithm an be omputed in log-spae as in Lindell's algorithm [Lin92℄. We

show that steps 3 and 4 an also be performed in log-spae.

We use the algorithm from Setion 3 to anonize a 3-onneted omponent Gi of size nGi
in

spae O(lognGi
). If the omponent is a 3-bond or a yle, we use the ideas presented in Setion 4.3.1

to anonize them again using O(lognGi
) spae.

Comparing two subtrees rooted at triconnected components. For this, we onsider two

subtrees SGi
and THj

with |SGi
| = |THj

| = N rooted at trionneted omponent nodes Gi and Hj,

respetively. The ases that Gi and Hj are of di�erent types or are both 3-bonds are easy to

handle. Assume now that both are yles or 3-onneted omponents. Then we start onstruting

and omparing all the possible anons of Gi and Hj. We eliminate the larger ones and make

reursive omparisons whenever the anons enounter virtual edges simultaneously. We an keep

trak of the anons, whih are not eliminated, in onstant spae.

Suppose we onstrut and ompare two anons Cg and Ch and onsider the moment when we

enounter virtual edges {a, b} and {a 0, b 0} in Cg and Ch, respetively. Now we reursively ompare

the subtrees rooted at the separating pair nodes {a, b} and {a 0, b 0}. Note, that we annot a�ord to

store the entire work-tape ontent. It suÆes to store the information of

• the anons whih are not eliminated,

• whih anons enountered the virtual edges orresponding to {a, b} and {a 0, b 0}, and

• the diretion in whih the virtual edges {a, b} and {a 0, b 0} were enountered.

This takes altogether O(1) spae.

When a reursive all is ompleted, we look at the work-tape and ompute the anons Cg

and Ch. Therefore, reompute the parent separating pair of the omponent, where the virtual
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edge {a, b} is ontained. With a look on the bits stored on the work-tape, we an reompute the

anons Cg and Ch. Reompute for them, where {a, b} and {a 0, b 0} are enountered in the orret

diretion of the edges and resume the omputation from that point.

Although we only need O(1) spae per reursion level, we annot guarantee yet, that the

implementation of the algorithm desribed so far works in log-spae. The problem is, that the

subtrees where we go into reursion might be of size > N/2 and in this ase the reursion depth

an get too large. To get around this problem, we hek whether Gi and Hj have a large hild,

before starting the onstrution and omparison of their anons. A large hild is a hild whih has

size > N/2. If we �nd a large hild of Gi and Hj then we ompare them a priori and store the result

of their reursive omparison. Beause Gi and Hj an have at most one large hild eah, this needs

only O(1) additional bits. Now, whenever the virtual edges orresponding to the large hildren

from SGi
and THj

are enountered simultaneously in a anon of Gi and Hj, the stored result an be

used, thus avoiding a reursive all.

Comparing two subtrees rooted at separating pairs. Consider two subtrees S{a,b} and T{a 0,b 0}

of size N, rooted at separating pair nodes {a, b} and {a 0, b 0}, respetively. We start omparing all

the subtrees SGi
and THj

of S{a,b} and T{a 0,b 0}, respetively. These subtrees are rooted at trionneted

omponents and we an use the implementation desribed above. Therefore, we store on the work-

tape the ounters c<, c=, c>. If they turn out to be pairwise equal, we ompute the orientation

ounters Oj and O 0

j of the isomorphism lasses Ij and I 0j , for all j. The isomorphism lasses are

omputed via the order pro�les of the subtrees, as in Lindell's algorithm.

When we return from reursion, it is an easy task to �nd {a, b} and {a 0, b 0} again, sine a

trionneted omponent has a unique parent, whih always is a separating pair node. Sine we

have the ounters c<, c=, c> and the orientation ounters on the work-tape, we an proeed with

the next omparison.

Let kj be the number of subtrees in Ij. The ounters c<, c=, c> and the orientation ounters

need altogether at most O(log kj) spae. From the orientation ounters we also get the referene

orientation of {a, b}. Let Nj be the size of the subtrees in Ij. Then we have Nj � N/kj. This would

lead to a log-spae implementation as in Lindell's algorithm exept for the ase that Nj is large,

i.e. Nj > N/2.

We handle the ase of large hildren as above: we reurse on large hildren a priori and store

the result in O(1) bits. Then we proess the other subtrees of S{a,b} and T{a 0,b 0}. When we reah

the size-lass of the large hild, we know the referene orientation, if any. Now we use the stored

result to ompare the orientations given by the large hildren to their respetive parent, and return

the result aordingly.

As seen above, while omparing two trees of size N, the algorithm uses no spae for making a

reursive all for a subtree of size larger than N/2, and it uses O(log kj) spae if the subtrees are of

size at most N/kj, where kj � 2. Hene we get the same reurrene for the spae S(N) as Lindell:

S(N) � max

j
S

 

N

kj

!

+O(log kj),

where kj � 2 for all j. Thus S(N) = O(logN). Note that the number n of nodes of G is in general
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smaller than N, beause the separating pair nodes our in all omponents split o� by this pair.

But we ertainly have n � N � O(n2) [HT73℄. This proves the following theorem.

Theorem 4.11. The isomorphism order between two trionneted omponent trees of bion-

neted planar graphs an be omputed in log-spae.

4.5 The Canon of a Biconnected Planar Graph

One we know the order among the subtrees, it is straightforward to anonize the trionneted

omponent tree S. We traverse S in the tree isomorphism order as in Lindell's algorithm, outputting

the anon of eah of the nodes along with virtual edges and delimiters. That is, we output a `['

while going down a subtree, and `℄' while going up a subtree. We all this list of delimiters and

anons of omponents a anonial list of S.

We need to hoose a separating pair as root for the tree. Sine there is no distinguished

separating pair, we simply yle through all of them. Sine there are less than n2
many separating

pairs, a log-spae transduer an yle through all of them and an determine the separating pair

whih, when hosen as the root, leads to the lexiographially minimum anonial list of S. We

all this the tree-anon of S. We desribe the anonization proedure for a �xed root, say {a, b}.

The anonization proedure has two steps. In the �rst step we ompute the anonial list

for S{a,b}. In the seond step we ompute the anon for the bionneted planar graph from the

anonial list.

Canonical list of a subtree rooted at a separating pair. Consider a subtree S{a,b} rooted

at the separating pair node {a, b}. We start with omputing the referene orientation of {a, b} and

output the edge in this diretion. This an be done by omparing the hildren of the separating pair

node {a, b} aording to their isomorphism order with the help of the orale. Then we reursively

output the anonial lists of the subtrees of {a, b} aording to the inreasing isomorphism order.

Among isomorphi siblings, those whih give the referene orientation to the parent are onsidered

before those whih give the reverse orientation. We denote this anonial list of edges l(S, a, b). If

the subtree rooted at {a, b} does not give any orientation to {a, b}, then take that orientation for

{a, b}, in whih it is enountered during the onstrution of the above anon of its parent.

Assume now, the parent of S{a,b} is a trionneted omponent. In the symmetri ase, S{a,b}
does not give an orientation of {a, b} to its parent. Then take the referene orientation whih is

given to the parent of all siblings.

Canonical list of a subtree rooted at a triconnected component. Consider the subtree SGi

rooted at the trionneted omponent node Gi. Let {a, b} be the parent separating pair of SGi
with

referene orientation (a, b). If Gi is a 3-bond then output its anonial list l(Gi, a, b) as (a, b).

If Gi is a yle then it has a unique anonial list with respet to the orientation (a, b), that is

l(Gi, a, b).

Now we onsider the ase that Gi is a 3-onneted omponent. Then Gi has two possible anons

with respet to the orientation (a, b), one for eah of the two embeddings. Query the orale for the

embedding that leads to the lexiographially smaller anonial list and output it as l(Gi, a, b). If
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we enounter a virtual edge {c, d} during the onstrution, we determine its referene orientation

with the help of the orale and output it in this diretion. If the hildren of the virtual edge do

not give an orientation, we output {c, d} in the diretion in whih it is enountered during the

onstrution of the anon for Gi. Finally, the hildren rooted at separating pair node {c, d} are

ordered with the anonial order proedure.

We give now an example. Consider the anonial list l(S, a, b) of edges for the tree S{a,b} of

Figure 4.2 on page 16. Let si be the edge onneting the verties ai with bi. We also write for

short l 0(Si, si) whih is one of l(Si, ai, bi) or l(Si, bi, ai). The diretion of si is as desribed above.

l(S, a, b) = [ (a, b) l(SG1
, a, b) . . . l(SGk

, a, b) ], where

l(SG1
, a, b) = [ l(G1, a, b) l

0(S1, s1) . . . l 0(Sl1 , sl1) ]

...

l(SGk
, a, b) = [ l(Gk, a, b) l

0(Slk , slk) ]

Canon for the biconnected planar graph. This list is now almost the anon, exept that the

names of the verties are still the ones they have in G. Clearly, a anon must be independent of the

original names of the verties. The �nal anon for S{a,b} an be obtained by a log-spae transduer

whih relabels the verties in the order of their �rst ourrene in this anonial list and outputs

the list using these new labels.

Note that the anonial list of edges ontains virtual edges as well, whih are not a part of G.

However, this is not a problem as the virtual edges an be distinguished from real edges beause

of the presene of 3-bonds. To get the anon for G, remove these virtual edges and the delimiters

`[' and `℄' in the anon for S{a,b}. This is suÆient, beause we desribe here a bijetive funtion f

whih transforms an automorphism φ of S{a,b} into an automorphism f(φ) for G with {a, b} �xed.

This ompletes the proof of Theorem 4.1.

5 Canonization of Planar Graphs

In this setion we use all the mahinery built so far to obtain our main result.

Theorem 5.1. The anonization of planar graphs is in log-spae.

The proof of this is presented in the following subsetions. In Setion 5.1, we �rst de�ne

the bionneted omponent tree of a onneted planar graph and list some of its properties. In

Setion 5.2, we de�ne an isomorphism order for bionneted omponent trees. Two trees will

have the same order if and only if the planar graphs represented by them are isomorphi. The

omputation of suh an order gives a test for isomorphism of planar graphs. In Setion 5.3 we

do a spae analysis of our algorithm and show that isomorphism testing an be done in log-spae

for planar graphs. Finally, in Setion 5.4 we give a log-spae anonization algorithm. This proves

Theorem 5.1.
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5.1 Biconnected Component Tree of a Planar Graph

Bionneted omponent trees are de�ned analogously to trionneted omponent trees. Reall from

Setion 2 that when a graph is split along an artiulation point a, eah bionneted split omponent

ontains a opy of a.

Definition 5.2. Let G be a onneted graph. The bionneted omponent tree T of G is the

following graph. There is a node for eah bionneted omponent and for eah artiulation

point of G. There is an edge in T between the node for bionneted omponent B and the

node for an artiulation point a, if a ours in B.

It is easy to see that the graph T obtained in De�nition 5.2 is in fat a tree. This tree is unique,

i.e. independent of the order in whih the artiulation points are hosen to split graph G. The

bionneted omponent tree an be onstruted in log-spae: artiulation points an be omputed

in log-spae as explained in Setion 2. Two verties are in the same bionneted omponent, if

they are not separated by an artiulation point.

In the disussion below, we refer to a opy of an artiulation point in a bionneted omponent B

as an artiulation point in B. Although an artiulation point a has at most one opy in eah

of the bionneted omponents, the orresponding trionneted omponent trees an have many

opies of a, in ase it belongs to a separating pair in the bionneted omponent.

Given a planar graph G, we root its bionneted omponent tree at an artiulation point.

During the isomorphism ordering of two suh trees S and T , we an �x the root of S arbitrarily and

make an equality test for all hoies of roots for T , as in Lindell's algorithm and as in Setion 4.3.

As there are � n artiulation points, a log-spae transduer an yle through all of them for the

hoie of the root for T . We state some properties of bionneted omponent trees.

Lemma 5.3. Let B be a bionneted omponent in the bionneted omponent tree S and

let T (B) be its trionneted omponent tree. Then the following holds.

1. S has a unique enter.

2. If an artiulation point a of S appears in a separating pair node s in T (B), then it

appears in all the trionneted omponent nodes whih are adjaent to s in T (B).

3. If an artiulation point a appears in two nodes C and D in T (B), it appears in all

the nodes that lie on the path between C and D in T (B). Hene, there is a unique

node A in T (B) that ontains a whih is nearest to the enter of T (B). We all A the

trionneted omponent assoiated with a.

The proofs of the above properties follow easily through folklore graph theoreti arguments and

are omitted here.

5.2 Isomorphism Order for Biconnected Component Trees

In this setion, we start with two bionneted omponent trees of onneted planar graphs and

give a log-spae test for isomorphism of the planar graphs represented by them. The idea is again
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to ome up with an order on the bionneted omponent trees, similar to the ase of trionneted

omponent trees. We all the resulting order the isomorphism order for bionneted omponent

trees. We ensure that two bionneted omponent trees are equal with respet to this order if and

only if the planar graphs represented by them are isomorphi.

The size of a trionneted omponent tree was de�ned in De�nition 4.7 on page 16. Here we

extend the de�nition to bionneted omponent trees.

Definition 5.4. Let B be a bionneted omponent node in a bionneted omponent tree S,

and let T (B) be the trionneted omponent tree of B. The size of B is de�ned as |T (B)|. The

size of an artiulation point node in S is de�ned as 1. The size of S, denoted by |S|, is the

sum of the sizes of its omponent nodes

Note that the artiulation points in the de�nition may be ounted several times, namely in

every omponent they our.

Let S and T be two bionneted omponent trees rooted at nodes s and t orresponding to

artiulation points a and a 0

, and let #s and #t be the number of hildren of s and t, respetively.

We de�ne S <
B

T if:

1. |S| < |T | or

2. |S| = |T | but #s < #t or

3. |S| = |T |, #s = #t = k, but (SB1
, . . . , SBk

) <
B

(TB 0

1
, . . . , TB 0

k
) lexiographially, where we

assume that SB1
�

B

� � � �

B

SBk
and TB 0

1
�

B

� � � �

B

TB 0

k
are the ordered subtrees of S and T ,

respetively.

We postpone the de�nition of the order between the subtrees SBi
and TB 0

j
in step 3 to Setion 5.2.1

below.

We say that two bionneted omponent trees are equal aording to the isomorphism order,

denoted by S �
B

T , if neither of S <
B

T and T <
B

S holds.

Figure 5.1 illustrates the de�nition.

5.2.1 Outline of the algorithm for computing the isomorphism order

The steps 1 and 2 above are easy to implement in log-spae, as done before. We now give the

details for step 3.

Assume that equality is found in step 1 and 2. The indutive ordering of the subtrees of S and T

proeeds exatly as in Lindell's algorithm, by partitioning them into size-lasses and omparing

the hildren in the same size-lass reursively. The book-keeping required (e.g. the order pro�le of

a node, the number of nodes in a size-lass that have been ompared so far) is similar to that in

Lindell's algorithm.

To ompare two subtrees SB and TB 0

, rooted at bionneted omponent nodes B and B 0

, re-

spetively, we start by onstruting and omparing the anons of their trionneted omponent

trees T (B) and T (B 0). To do so, we have to hoose a separating pair as root in eah of T (B)

and T (B 0).
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Figure 5.1: Comparison of the bionneted omponent trees Sa and Ta 0

rooted at nodes for

artiulation points a and a 0

. If the root nodes have the same number k of hildren, we ompare

the nodes B1, . . . , Bk of Sa with the nodes B 0

1, . . . , B
0

k of Ta 0

. Thereby, we reursively ompare the

subtrees at the artiulation nodes we �nd in these omponents.

For notation, we all it the outer algorithm when we do omparisons for the bionneted

omponent trees SB and TB 0

. The outer algorithm at this point invokes the inner algorithm, the

reursive omparison algorithm for T (B) and T (B 0).

The inner algorithm may enounter several opies of artiulation points a, a 0

, inside T (B)

and T (B 0), respetively. Figure 5.2 shows an example. We want to hoose one of them where we

go into reursion.

a

SB

a

B

v

u

wu

u w

u

u v

b

b b

b

v

w

A

s

a a

Sa a

T (B)

Figure 5.2: A bionneted omponent tree SB rooted at bionneted omponent B whih has an

artiulation point a as hild, whih ours several times in the trionneted omponent tree T (B)

of B. In A and the other trionneted omponents the dashed edges are separating pairs.

Definition 5.5. The referene opy of an artiulation point a in the rooted trionneted om-

ponent tree T (B) is the opy of point a whih is losest to the root of T (B).

By Lemma 5.3, the referene opy is de�ned uniquely.
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All but the referene opies of these artiulation points are ignored by this algorithm. For the

referene opies, the urrent order pro�les omputed by the inner algorithm so far are stored in the

memory and the outer algorithm takes over for reursively omparing subtrees of a, a 0

. This swith

between inner and outer algorithm thus auses some bits of storage in the memory. The main task

is to limit the number of things that are stored, in order to get an overall log-spae bound.

To bound the spae, it is ruial to limit the hoies of separating pair nodes of T (B) and T (B 0)

whih an be used as roots for these trees. For now, we will assume that the number of hoies for

the root is at most κ, and proeed with the desription of the inner and outer algorithms. We will

give appropriate bounds on κ in Setion 5.2.2 below.

• For κ possibilities of roots, one is �xed for T (B) and the anonial ordering of it is ompared

with that of T (B 0) aording to <
T

, for all hoies of κ roots. This is then done for eah

hoie of the root of T (B). The aim is to ompare the minimum anonial odes of T (B)

and T (B 0) and return the result.

• The omparison of T (B) and T (B 0) for some hoies of roots is now arried out using the iso-

morphism order proedure for trionneted omponent trees. During the omparison of T (B)

and T (B 0), if a opy of an artiulation point is enountered in a anonial ode of a trion-

neted omponent node C of T (B), but not in that of the orresponding node C 0

in T (B 0),

then that anonial ode for C is onsidered to be larger and is eliminated. If opies of arti-

ulation points u and u 0

are enountered simultaneously in nodes C and C 0

, and if they are

their referene opies, a reursive all to the isomorphism order proedure for bionneted

omponent trees (outer algorithm) is made, to ompare the subtrees of SB and T 0

B rooted at u

and u 0

. If the opies enountered are not the referene opies, then equality is assumed and

the inner algorithm proeeds. While making the reursive all, the urrent order pro�le of C

or C 0

is stored along with the bit-vetor for already eliminated anonial odes.

5.2.2 Limiting the number of possible choices for the root separating pair

Here we prove that the hoies for the root nodes in trionneted omponent trees an be bounded

e�etively.

Besides the parent a, let B have artiulation points a1, . . . , al for some integer l � 0, suh

that aj is the root node of the subtree Saj
of Sa (see Figure 5.1 on page 27). We partition

the subtrees Sa1
, . . . , Sal

into lasses E1, . . . , Ep of equal size subtrees, where size is aording to

De�nition 5.4. Let kj = |Ej| be the number of subtrees in Ej. Let the order of the size lasses

be suh that k1 � k2 � � � � � kp. All artiulation points with their subtrees in size lass Ej are

olored with olor j. Reall from Lemma 5.3 that artiulation point a is assoiated with the unique

omponent A in T (B) that ontains a and is nearest to the enter C0 of T (B).

To limit the number of potential root nodes for T (B), we do a ase analysis aording to

properties of the enter C0 of T (B). In some of the ases, we sueed diretly to give the desired

bound. In the remaining ases, we will show that the number of automorphisms of the enter C0 is

small. This suÆes for our purpose: in this ase, for every edge as starting edge, we anonize the

omponent C0 separately, i.e. without going into reursion on the separating pairs and artiulation

points of C0. Thereby we onstrut the set of starting edges, say E0, that lead to the minimum anon
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for C0. Although there are polynomially many possible andidates for the anon, the minimum

ones are bounded by the number of automorphisms of C0, whih is small.

Now we take the �rst separating pair enountered in eah of the andidate anons obtained

when starting from edges in S. We take this set of separating pairs as the potential root nodes

for T (B), and hene, its ardinality is bounded by the number of automorphisms of C0.

If B ontains no separating pairs, i.e. B = C0, we yle through the edges in S to ompute the

anon of B.

We start our ase analysis. Reall that artiulation point a is the parent of B and C0 is the

enter of the trionneted omponent tree T (B).

• The center C0 of T (B) is a separating pair. We hoose this separating pair as the root

of T (B). Thus we have only one hoie for the root.

• C0 is a triconnected component and a is not associated with C0. Let a be assoiated

with a trionneted omponent A in T (B). We �nd the path from A to C0 in T (B) and �nd

the separating pair losest to C0 on this path. This serves as the unique hoie for the root

of T (B).

• C0 is a cycle and a is associated with C0. Consider the virtual edges losest to a on

yle C0. There are at most two of them. We hoose the separating pairs orresponding to

these virtual edges as the root andidates of T (B). Thus we get at most two hoies for the

root of T (B).

• C0 is a 3-connected component and a is associated with C0. We proeed with a ase

analysis aording to the number l of artiulation points in B besides a.

Case I: l = 0. B is a leaf node in Sa, it ontains no artiulation points besides a. We olor a

with a distint olor. In this ase we an yle through all separating pairs as root for T (B).

Case II: l = 1. If B has exatly one artiulation point besides a, say a1, then we proess

this hild a priori and store the result. We olor a and a1 with distint olors and proeed

with B as in ase of a leaf node.

Case III: l � 2. We distinguish two sub-ases.

1. Some articulation point aj in class E1 is not associated with C0. Let aj be

assoiated with a trionneted omponent D 6= C0. Find the path from D to C0 in T (B)

and selet the separating pair node losest to C0 on this path. Thus aj uniquely de�nes

a separating pair. In the worst ase, this may happen for every aj in E1. Therefore, we

get up to k1 separating pairs as andidates for the root.

2. All articulation points in E1 are associated with C0. We distinguish sub-ases

aording to the size of E1.

(a) If k1 � 2, then by Lemma 5.8 below, C0 an have at most 2k1 automorphisms.

Thus, we have at most 2k1 ways of hoosing the root of T (B).
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(b) If k1 = 1, then we onsider the next larger lass of subtrees, E2. We handle the ases

for E2 exatly as for E1. However, we do not need to proeed to E3, beause we an

handle the ase k1 = k2 = 1 diretly.

i. Some articulation point aj in E2 is not associated with C0. We do

the same with aj as in sub-ase III (1). We get up to k2 separating pairs as

andidates for the root.

ii. All articulation points in E2 are associated with C0.

If k2 � 2, then we proess the hild in E1 a priori and store the result. Similar

as in sub-ase III (2a), we have at most 2k2 ways of hoosing the root of T (B).

If k2 = 1, then C has at least three verties that are �xed by all its automor-

phisms i.e. a and the artiulation point with its subtree in E1 and that in E2.

We will show in Corollary 5.7 below that C0 has at most one non-trivial auto-

morphism in this ase. Thus, we have at most two ways of hoosing the root

of T (B).

Let N = |SB|. We assume that all subtrees are of size � N/2 beause otherwise suh a subtree is

onsidered as large and proessed a priori by the algorithm as opposed to going into the reursion

for it (see page 34 for details).

It remains to prove the bounds laimed above on the number of automorphism of the 3-

onneted omponents. We use the following lemma that provides an automorphism preserving

embedding of a 3-onneted planar graph on the 2-sphere.

Lemma 5.6. [Bab95℄ (P. Mani) Every 3-onneted planar graph G an be embedded on the 2-

sphere as a onvex polytope P suh that the automorphism group of G is indued by the

automorphism group of the onvex polytope P formed by the embedding.

The following orollary of the lemma justi�es sub-ase III (2b ii).

Corollary 5.7. Let G be a 3-onneted planar graph with at least 3 olored verties, eah

having a distint olor. Then G has at most one non-trivial automorphism.

Proof. An automorphism of G has to �x all the olored verties. Consider the embedding of G on

a 2-sphere from Lemma 5.6. The only possible symmetry is a reetion about the plane ontaining

the olored verties, whih leads to exatly one non-trivial automorphism.

The following lemma gives a relation between the size of the smallest olor lass and the number

of automorphisms for a 3-onneted planar graph with one distintly olored vertex when the size

of the seond largest olor lass is at least 2 as onsidered in subase III (2a).

Lemma 5.8. Let G be a 3-onneted planar graph with olors on its verties suh that one

vertex a is olored distintly, and let k � 2 be the size of the smallest olor lass apart from

the one whih ontains a. Then G has � 2k automorphisms.

Proof. Point a is �xed, therefore the orientation preserving part of the automorphism group is

yli (see e.g. Lemma 3 in [AD04℄) and extends as rotations to the sphere. By Lemma 5.6 this

implies that there are at most k suh rotations. Thus if we add the rotation reversing part we get

an upper bound of 2k on the order of the automorphism group.
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5.2.3 Summary and correctness of the isomorphism order

We argue that two bionneted omponent trees are equal for the isomorphism order for some

hoie of the root, if and only if the orresponding graphs are isomorphi.

Theorem 5.9. Given two onneted planar graphs G and H, and their bionneted omponent

trees S and T , then G ∼= H if and only if there is a hoie of artiulation points a, a 0

in G

and H suh that Sa �B

Ta 0

.

Proof. Assume that Sa �B

Ta 0

. The argument is an indution on the depth of the trees that follows

the indutive de�nition of the isomorphism order. The indution goes from depth d+2 to d. If the

grandhildren of artiulation points, say s and t, are �
B

-equal up to step 3, then we ompare the

hildren of s and t. If they are equal, we an extend the �

B

-equality to the artiulation points s

and t.

When subtrees are rooted at artiulation point nodes, the omparison desribes an order on the

subgraphs whih orrespond to split omponents of the artiulation points. The order desribes

an isomorphism among the split omponents.

When subtrees are rooted at bionneted omponent nodes, say Bi and B 0

j , the omparison

states equality if the omponents have the same anon, i.e. are isomorphi (f. Theorem 4.10) and

by indution hypothesis, we know that the hildren rooted at artiulation points of Bi and B 0

j are

isomorphi. The equality in the omparisons indutively desribes an isomorphism between the

verties in the hildren of the root nodes.

Hene, the isomorphism between the hildren at any level an be extended to an isomorphism

between the orresponding subgraphs in G and H and therefore to G and H itself.

The reverse diretion holds easily as well. Suppose G and H are isomorphi and there is an

isomorphism between G and H that maps the artiulation point a of G to the artiulation point a 0

of H. One needs to prove that the bionneted omponent trees Sa of G and Ta 0

of H rooted

respetively at a and a 0

will be �

B

. Again, we proeed by indution on the depth of Sa and Ta 0

. An

isomorphism maps artiulation points of G to artiulation points of H. Further, this isomorphism

desribes a permutation of the split omponents of the artiulation points. By indution hypothesis,

the hildren at depth d+2 of two suh bionneted omponents are isomorphi and equal aording

to �

B

. Thus, ombined with the isomorphism of orresponding bionneted omponents and the

de�nition of �

B

, this yields the reverse diretion and ompletes the proof.

5.3 Space Complexity of the Isomorphism Order Algorithm

The spae analysis of the isomorphism order algorithm is similar to that of Lindell's algorithm. We

highlight the di�erenes needed in the analysis �rst.

When we ompare bionneted omponents B and B 0

in the bionneted omponent tree then

a typial query is of the form (s, r), where s is the hosen root of the trionneted omponent tree

and r is the index of the edge in the anon, whih is to be retrieved. If there are k hoies for

the root for the trionneted omponent trees of B and B 0

, the base mahine yles through all

of them one by one, keeping trak of the minimum anon. This takes O(log k) spae. From the

disussion above, we know that the possible hoies for the root an be restrited to O(k), and that
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the subtrees rooted at the hildren of B have size � |SB|/k, when k � 2. Hene the omparison

of B and B 0

an be done in log-spae in this ase.

We ompare the trionneted omponent trees T (B) and T (B 0) aording to B and B 0

. When

we ompare trionneted omponents in T (B) and T (B 0) then the algorithm asks orale queries to

the trionneted planar graph anonization algorithm. The base mahine retrieves edges in these

anons one by one from the orale and ompares them. Two edges (a, b) and (a 0, b 0) are ompared

by �rst omparing a and a 0

. If both are artiulation points, we hek whether we reah them for

the �rst time, i.e., whether we are at the referene opies of a and a 0

. In this ase, we ompare the

bionneted subtrees Sa and Sa 0

rooted at a and a 0

. If these are equal then we look, whether (a, b)

and (a 0, b 0) are separating pairs. If so, then we ompare their trionneted subtrees. If these are

equal then we proeed with the next edge, e.g. (b, c), and ontinue in the same way.

Next we show that the position of the referene opy of an artiulation point i.e. the ompo-

nent A and the position in the anon for A, an be found again after reursion without storing any

extra information on the work-tape.

Lemma 5.10. The referene opy of an artiulation point a in T (B) and a 0

in T (B 0) for the

omparison of trionneted omponent trees T (B) with T (B 0) an be found in log-spae.

Proof. To prove the lemma, we distinguish three ases for a in T (B). Assume, that we have the

same situation for a 0

in T (B 0). If not, then we found an inequality. We de�ne now a unique

omponent A, where a is ontained. We distinguish the following ases.

• Artiulation point a ours in the root separating pair of T (B). That is, a ours already at

the beginning of the omparisons for T (B). Then we de�ne A as the root separating pair.

• Artiulation point a ours in separating pairs other than the root of T (B). Then a ours

in all the omponent nodes, whih ontain suh a separating pair. By the onstrution of

the tree, these nodes form a onneted subtree of T (B). Hene, one of these omponent

nodes is the losest to the root of T (B). This omponent is always a trionneted omponent

node. Let A be this omponent. Note, that the omparison �rst ompares a with a 0

before

omparing the bionneted or trionneted subtrees, so we reah these opies �rst in the

omparison.

• Artiulation point a does not our in a separating pair. Then, a ours in only one trion-

neted omponent node in T (B). Let A be this omponent.

In all exept the �rst ase, we �nd a in a trionneted omponent node A �rst. Let a 0

be found

�rst in omponent node A 0

, aordingly. Assume, we start the omparison of A and A 0

. More

preisely, we start to ompare the anons C of A and C 0

of A 0

bit for bit. We go into reursion if

and only if we reah the �rst edge in the anons whih ontain a and a 0

. Note, that C an ontain

more than one edge with endpoint a. On all the other edges in C and C 0

we do not go again into

reursion. It is easy to see, that we an reompute the �rst ourrene of A and A 0

.

Comparing two subtrees rooted at separating pairs or triconnected components. We

go into reursion at separating pairs and trionneted omponents in T (B) and T (B 0). When we

32



reah a referene opy of an artiulation point in both trees, then we interrupt the omparison of B

with B 0

and go into reursion as desribed before, i.e. we ompare the orresponding artiulation

point nodes, the hildren of B and B 0

. When we return from reursion, we proeed with the

omparison of T (B) and T (B 0).

In this part we onentrate on the omparison of T (B) and T (B 0). We give an overview of

what is stored on the work-tape when we go into reursion at separating pairs and trionneted

omponents. Basially, the omparison is similar to that in Setion 4.4. We summarize the hanges.

• We use the size funtion aording to De�nition 5.4. That is, the size of a trionneted

subtree rooted at a node C in T (B) also inludes the sizes of the bionneted subtrees rooted

at the referene artiulation points whih appear in the subtree of T (B) rooted at C.

• For a root separating pair node, we store at most O(log k) bits on the work-tape, when we

have k andidates as root separating pairs for T (B). Hene, whenever we make reomputa-

tions in T (B), we have to �nd the root separating pair node �rst. For this, we ompute T (B)

in log-spae and with the rules desribed above, we �nd the andidate edges in log-spae.

With the bits on the work-tape, we know whih of these andidate edges is the urrent root

separating pair. We proeed as in the ase of non-root separating pair nodes desribed next.

• For a non-root separating pair node and trionneted omponent nodes, we store the same

on the work-tape as desribed in Setion 4.4, i.e. the ounters c<, c=, c>, orientation ounters

for separating pair nodes, and the information of the urrent anon for trionneted om-

ponent nodes. First, reompute the root separating pair node, then we an determine the

parent omponent node. With the information on the work-tape, we an proeed with the

omputations as desribed in Setion 4.4.

For the trionneted omponent trees T (B) and T (B 0), we get the same spae-bounds as in the

previous setion on page 22. That is, for the ross-omparison of the hildren of separating pair

nodes s of T (B) and t of T (B 0) we use O(log kj) spae when we go into reursion on subtrees of

size � N/kj, where N is the size of the subtree rooted at s and kj is the ardinality of the j-th

isomorphism lass. For eah suh hild (a trionneted omponent node), we use O(1) bits, when

we go into reursion. In the ase we have large hildren (of size � N/2), we treat them a priori.

We will disuss this below.

When we onsider the trees Sa and Sa 0

rooted at artiulation points a and a 0

then we have

for the ross omparison of their hildren, say B1, . . . , Bk and B 0

1, . . . , B
0

k respetively, a similar

spae analysis as in the ase of separating pair nodes. That is, we use O(log kj) spae when we

go into reursion on subtrees of size � N/kj, where N = |Sa| and kj is the ardinality of the j-th

isomorphism lass. Large hildren (of size � N/2) are treated a priori. We will disuss this below.

When we ompare bionneted omponents Bi and B 0

i, then we ompute T (Bi) and T (B 0

i).

We have a set of separating pairs as andidates for the root of T (Bi). Reall, that for Bi, its

hildren are partitioned into size lasses. Let ki be the number of elements of the smallest size

lass with ki � 2, there are O(ki) separating pairs as roots for T (Bi). Exept for the trivial ases,

the algorithm uses O(log ki) spae when it starts to ompare the trees T (Bi) and T (B 0

i).

Assume now that we ompare T (Bi) and T (B 0

i). In partiular, assume we ompare trionneted

omponents A and A 0

of these trees. We follow the anons of A and A 0

as desribed above, until
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we reah artiulation points, say a and a 0

. First, we reompute whether a and a 0

already ourred

in the parent node. If not, then we reompute the anons of A and A 0

and hek, whether a and a 0

our for the �rst time. If so, then we store nothing and go into reursion.

When we return from reursion, we reompute the omponents A and A 0

in T (B) and T (B 0).

On the work-tape there is information about whih are the urrent and the unerased anons. We

run through the urrent anons and �nd the �rst ourrene of a and a 0

.

Large children. As in the ase of bionneted graphs in Setion 4.1, we deviate from the algo-

rithm desribed so far in the ase that the reursion would lead to a large hild. Large subtrees

are again treated a priori.

However, the notion of a large hild is somewhat subtle here. We already de�ned the size of

bionneted omponent trees Sa and SB with an artiulation point a or a bionneted omponent B

as root. A large hild of suh a tree of size N is a hild of size � N/2.

Now onsider T (B), the trionneted omponent tree of B. Let A be a trionneted omponent

and {u, v} be a separating pair in T (B). We have not yet de�ned the subtrees SA and S{u,v} rooted

at A and {u, v}, respetively, and this has to be done quite arefully.

Definition 5.11. Let B be a bionneted omponent and T (B) its trionneted omponent

tree. Let C be a node in T (B), i.e. a trionneted omponent node or a separating pair node.

The tree S�C rooted at C onsists of the subtree of T (B) rooted at C (with respet to the root

of T (B)) and of the subtrees Sa for all artiulation points a that have a referene opy in the

subtree of T (B) rooted at C, exept those Sa that are a large hild of SB. The size of S�C is the

sum of the sizes of its omponents.

Let N be the size of S�C. A large hild of S�C is a subtree of C of size � N/2.

We already desribed above that an artiulation point a may our in several omponents of

a trionneted omponent tree. We said that we go into reursion to the bionneted omponent

tree Sa only one, namely either when we reah the referene opy of a, or even before in the

following ase: let a be an artiulation point in the bionneted omponent B and let C be the

node in T (B) that ontains the referene opy of a. Then it might be the ase that Sa is a large

hild of SB and of S�C. In this ase we visit Sa when we reah B, i.e. before we start to ompute

the root for T (B). Then, when we reah the referene opy of a in C, we �rst hek whether

we already visited Sa. In this ase the omparison result (with some large hild Sa 0

of B 0

) is

already stored on the work-tape and we do not visit Sa a seond time. Note, if we would go into

reursion at the referene opy a seond time then we annot guarantee the log-spae bound of

the transduer, beause we already have written bits on the work-tape for B when we traverse the

hild, the bionneted subtree Sa for the seond time. Otherwise, we visit Sa at the referene opy

of a.

Consequently, we onsider Sa as a subtree only at the plae where we go into reursion to Sa.

Reall, that this is not a stati property, beause for example the position of the referene opy

depends on the hosen root of the tree, and we try several possibilities for the root. Figure 5.3

shows an example.

We summarize, the algorithm reahes a omponent a, B or C as above, it �rst heks whether the

orresponding tree Sa, SB, or S
�

C has a large hild and treats it a priori. The result is stored with O(1)
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Figure 5.3: The trionneted omponent tree T (B) of the bionneted omponent B. The tri-

onneted omponent A ontains the referene opy of artiulation point a. If Sa is not a large

hild of B, then the subtree SA onsists of the subtree of T (B) rooted at A and the subtree Sa. In

ontrast, Sa is not part of the subtree S{a,b} beause it does not ontain the referene opy of a.

bits. In the ase of trionneted omponents, we also store the orientation. We distinguish large

hildren as follows.

• Large hildren with respet to the bionneted omponent tree. These are hildren of node a

in Sa or B in SB. These hildren are bionneted omponent nodes or artiulation point

nodes. When omparing SB with SB 0

, then we go for large hildren into reursion before

omputing the trees T (B) and T (B 0).

• Large hildren with respet to the trionneted omponent tree. These are hildren of node C

in S�C. These hildren are separating pair nodes, trionneted omponent nodes.

• Large hildren with respet to S�C, where C is a node in T (B). These are hildren of node B

in SB whih are not large hildren of B. These hildren are artiulation point nodes whih

have a referene opy in C.

We analyze the omparison algorithm when it ompares subtrees rooted at separating pairs

and subtrees rooted at artiulation points. For the analysis, the reursion goes here from depth d

to d+ 2 of the trees. Observe, that large hildren are handled a priori at any level of the trees. We

set up the following reursion equation for the spae requirement of our algorithm.

S(N) = max

j
S

 

N

kj

!

+O(log kj),

where kj � 2 (for all j) are the values mentioned above in the orresponding ases. Hene, S(N) =

O(logN).

For the explanation of the reursion equation it is helpful to imagine that we have two work-

tapes. We use the �rst work-tape when we go into reursion at artiulation point nodes, and the
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seond work-tape when we go into reursion at separating pair nodes. The total spae needed is

the sum of the spae of the two work-tapes.

• At an artiulation point node, the value kj is the number of elements in the j-th size lass

among the hildren B1, . . . , Bk of the artiulation point node. We store O(log kj) bits and

reursively onsider subtrees of size � N/kj.

• At a separating pair node the value kj is the number of elements in the j-th isomorphism

lass among the hildren G1, . . . , Gk of the separating pair node. We store O(log kj) bits and

reursively onsider subtrees of size � N/kj.

This �nishes the omplexity analysis. We get the following theorem.

Theorem 5.12. The isomorphism order between two planar graphs an be omputed in log-

spae.

5.4 The Canon of a Planar Graph

From Theorem 5.12, we know that the isomorphism order of bionneted omponent trees an be

omputed in log-spae. Using this algorithm, we show that the anon of a planar graph an be

output in log-spae.

The anonization of planar graphs proeeds exatly as in the ase of bionneted planar graphs.

A log-spae proedure traverses the bionneted omponent tree and makes orale queries to the

isomorphism order algorithm and outputs a anonial list of edges, along with delimiters to separate

the lists for siblings.

For an example, onsider the anonial list l(S, a) of edges for the tree Sa of Figure 5.1 on

page 27. Let l(Bi, a) be the anonial list of edges of the bionneted omponent Bi, i.e. the

anonial list of T (Bi) with a the parent artiulation point. Let a1, . . . , al1 be the order of the

referene opies of artiulation points as they our in the anon of T (Bi). Then we get the

following anonial list for Sa.

l(S, a) = [ (a) l(SB1
, a) . . . l(SBk

, a) ], where

l(SB1
, a) = [ l(B1, a) l(Sa1

, a1) . . . l(Sal1
, al1) ]

...

l(SBk
, a) = [ l(Bk, a) l(Salk

, alk) ]

A log-spae transduer then renames the verties aording to their �rst ourrene in this list,

to get the �nal anon for the bionneted omponent tree. This anon depends upon the hoie

of the root of the bionneted omponent tree. Further log-spae transduers yle through all

the artiulation points as roots to �nd the minimum anon among them, then rename the verties

aording to their �rst ourrene in the anon and �nally, remove the virtual edges and delimiters

to obtain a anon for the planar graph. This proves Theorem 5.1.
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6 Conclusion

In this paper, we improve the known upper bound for isomorphism and anonization of planar

graphs from AC1
to L. This implies L-ompleteness for this problem, thereby settling its omplexity.

An interesting question is to extend it to other important lasses of graphs.
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