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Abstract

Graph Isomorphism is the prime example of a 
omputational problem with a wide di�eren
e

between the best known lower and upper bounds on its 
omplexity. The gap between the known

upper and lower bounds 
ontinues to be very signi�
ant for many sub
lasses of graphs as well.

We bridge the gap for a natural and important 
lass of graphs, namely planar graphs, by

presenting a log-spa
e upper bound whi
h mat
hes the known log-spa
e hardness. In fa
t, we

show a stronger result that planar graph 
anonization is in log-spa
e.

1 Introduction

The graph isomorphism problem, GI, is to de
ide whether there is a bije
tion between the verti
es

of two graphs whi
h preserves the adja
en
y relations. The wide gap between the known lower and

upper bounds has kept alive the resear
h interest in GI.

The problem is 
learly in NP. It is also in the, intuitively weak, 
ounting 
lass SPP [AK06℄.

This is the 
urrent frontier of our knowledge with respe
t to upper bounds.

Not mu
h is known with respe
t to lower bounds. GI is unlikely to be NP-hard, be
ause

otherwise, the polynomial-time hierar
hy 
ollapses to its se
ond level. This result was proved in

the 
ontext of intera
tive proofs in a series of papers [GMW91, GS89, Bab85, BHZ87℄. Note that

it is not even known whether GI is P-hard. The best we know is that GI is hard for DET [Tor04℄,

the 
lass of problems NC1
-redu
ible to the determinant, de�ned by Cook [Coo85℄.

∗
Preliminary versions appeared in [DLN08℄ and [DLN

+
09℄.

†
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Known results: While this enormous gap has motivated a study of isomorphism in general

graphs, it has also indu
ed resear
h in isomorphism restri
ted to spe
ial 
ases of graphs where this

gap 
an be redu
ed. We mention some of the known results.

• Tournament graphs are an example of dire
ted graphs where the DET lower bound is pre-

served [Wag07℄, while there is a quasi-polynomial time upper bound [BL83℄.

• Lindell [Lin92℄ showed that tree isomorphism 
an be solved in log-spa
e. It is also hard for

log-spa
e [JKMT03℄. Hen
e lower and upper bounds mat
h in this 
ase.

• For interval graphs, the isomorphism problem is in log-spa
e [KKLV11℄.

• For graphs of bounded treewidth, Bodlaender [Bod90℄ showed that the isomorphism problem


an be solved in polynomial time. Grohe and Verbitsky [GV06℄ improved the bound to TC1
,

and Das, T�oran, and Wagner [DTW12℄ to LogCFL. Finally, Elberfeld and S
hweitzer [ES17℄

showed that it is in log-spa
e, where it is 
omplete.

In this paper we 
onsider planar graph isomorphism. Weinberg [Wei66℄ presented an O(n2)

algorithm for testing isomorphism of 3-
onne
ted planar graphs. Hop
roft and Tarjan [HT72b℄

extended this to general planar graphs, improving the time 
omplexity to O(n log n). Hop
roft

and Wong [HW74℄ further improved this to linear time. Kukluk, Holder, and Cook [KHC04℄ gave

an O(n2) algorithm for planar graph isomorphism, whi
h is suitable for pra
ti
al appli
ations.

The parallel 
omplexity of planar graph isomorphism was �rst 
onsidered by Miller and

Reif [MR91℄. They showed that it is in AC3
. Then Gazit and Reif [GR98℄ improved the upper

bound to AC1
, see also [Ver07℄.

In the 
ontext of 3-
onne
ted planar graph isomorphism, Thierauf and Wagner [TW10℄ pre-

sented a new upper bound of UL\coUL, making use of the ma
hinery developed for the rea
hability

problem [RA00℄ and spe
i�
ally for planar rea
hability [ABC

+
09, BTV09℄. They also show that

the problem is L-hard under AC0
-redu
tions.

There have been several more re
ent results. The most notable one is a quasi-polynomial time

algorithm for isomorphism of all graphs by Babai [Bab16℄. Elberfeld and Kawarbayashi [EK14℄

extended our result from planar graphs to bounded-genus graphs. An interesting result for planar

graphs is by Kiefer et al. [KPS17℄, where they show that the Weisfeiler-Leman dimension of planar

graphs is at most 3. The logspa
e isomorphism test for interval graphs has been extended to

Helly 
ir
ular-ar
 graphs by K�obler et al. [KKV13℄; another extension in this dire
tion is due to

Chandoo [Cha16℄.

Our results: In the 
urrent work we show that planar graph isomorphism is in log-spa
e. This

improves and extends the result in [TW10℄. As it is known that planar graph isomorphism is

hard for log-spa
e, our result implies that planar graph isomorphism is log-spa
e 
omplete. Hen
e

we �nally settle the 
omplexity of the problem in terms of 
omplexity 
lasses. In fa
t, we show a

stronger result: we give a log-spa
e algorithm for the planar graph 
anonization problem. That is,

we present a fun
tion f 
omputable in log-spa
e, that maps all planar graphs from an isomorphism


lass to one member of the 
lass. Thereby we also solve the 
anoni
al labeling problem in log-

spa
e, where one has to 
ompute an isomorphism between a planar graph G and its 
anon f(G).
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Proof outline: Let G be the given 
onne
ted planar graph we want to 
anonize. As a high-level

des
ription of our algorithm, we follow Hop
roft and Tarjan [HT72b℄ and de
ompose the graph G.

The di�eren
es 
ome with the log-spa
e implementation of the various steps.

In more detail, we start by 
omputing the bi
onne
ted 
omponents of G from whi
h we get the

bi
onne
ted 
omponent tree of G. Then we re�ne ea
h bi
onne
ted 
omponent into tri
onne
ted


omponents and 
ompute the tri
onne
ted 
omponent tree. The a
tual 
oding to get a 
anon for G

starts with the 3-
onne
ted 
omponents. Our algorithm uses the notion of universal exploration

sequen
es from [Kou02℄ and [Rei08℄. Then we work our way up to the tri
onne
ted and bi
onne
ted


omponent trees, and �nally get a 
anonization of G. Thereby we adapt Lindell's algorithm for

tree 
anonization. However, we have to make signi�
ant modi�
ations to the algorithm. In more

detail, our algorithm 
onsists of the following steps on input of a 
onne
ted planar graph G. All

steps 
an be a

omplished in log-spa
e.

1. De
ompose G into its bi
onne
ted 
omponents and 
onstru
t its bi
onne
ted 
omponent

tree ([ADK08℄, 
f. [TW14℄).

2. De
ompose the bi
onne
ted planar 
omponents into their tri
onne
ted 
omponents and 
on-

stru
t the tri
onne
ted 
omponent trees (Se
tion 4.1).

3. Solve the isomorphism problem for the tri
onne
ted planar 
omponents (Se
tion 3). In fa
t,

we give a 
anonization for these graphs.

4. Compute a 
anonization of bi
onne
ted planar graphs by using their tri
onne
ted 
omponent

trees and the results from the previous step (Se
tion 4).

5. Compute a 
anon for G by using the bi
onne
ted 
omponent tree and the results from the

previous step (Se
tion 5).

In the last two steps we adapt Lindell's algorithm [Lin92℄ for tree 
anonization.

Note that, without loss of generality we 
an assume that the given graph G is 
onne
ted [Rei08℄.

If a given graph, say H, is not 
onne
ted, we 
ompute its 
onne
ted 
omponents in log-spa
e, and


anonize ea
h of these 
omponents with the above algorithm. Then we put the 
anons of the


onne
ted 
omponents of H in lexi
ographi
ally in
reasing order. This obviously gives a 
anon

for H.

The paper is organized as follows. After some preliminaries in Se
tion 2, we start to explain the


anonization of 3-
onne
ted graphs in Se
tion 3. In Se
tion 4 and 5, we push this up to bi
onne
ted

and 
onne
ted graphs, respe
tively.

Subsequent work: The log-spa
e bound presented here has been extended afterwards to the


lass of of K3,3-minor free graphs and the 
lass of K5-minor free graphs [DNTW09℄. The previous

known upper bound for these 
lasses was polynomial time [Pon91℄.

3



2 Definitions and Notation

Space bounded Turing machines and related complexity classes. A log-spa
e bounded

Turing ma
hine is a deterministi
 Turing ma
hine with a read-only input tape and a separate work

tape. On inputs of length n, the ma
hine may use O(log n) 
ells of the work tape. By L we

denote the 
lass of languages de
idable by log-spa
e bounded Turing ma
hines. NL is the 
lass of

languages 
omputable by nondeterministi
 logspa
e bounded Turing ma
hines. UL is the sub
lass

of NL where the nondeterministi
 Turing ma
hines have to be unambiguous, i.e. there exists at

most one a

epting 
omputation path.

We also use log-spa
e bounded Turing ma
hines to 
ompute fun
tions. Then the ma
hine

additionally has a write-only output tape. The output tape is not 
ounted for the spa
e used

by the ma
hine. That is, the fun
tion 
omputed by a log-spa
e bounded Turing ma
hine 
an be

polynomially long.

An important property of log-spa
e 
omputable fun
tions is that they are 
losed under 
ompo-

sition. That is, given two fun
tions f, g : Σ� → Σ�

, where Σ is an input alphabet, if f, g 2 L then

f Æg is also in L (see [LM73℄). Our isomorphism algorithm will 
ompose 
onstantly many log-spa
e

fun
tions as a subroutine. Hen
e, the overall algorithm will thereby stay in log-spa
e.

Lexicographic order and rank. Let A be a set with a total order <. Then we extend < to

tuples of elements of A in a lexi
ographi
 manner. That is, for a1, . . . , ak, b1, . . . , bk 2 A we write

(a1, . . . , ak) < (b1, . . . , bk) if there is an i 2 {1, . . . , k} su
h that aj = bj for j = 1, . . . , i − 1, and

ai < bi.

For a list L = (x1, x2, . . . , xn) of elements, the rank of xi is i, the position of xi in L.

Graphs. We assume some familiarity with 
ommonly used graph theoreti
 notions and standard

graph theoreti
 arguments, see for example [Wes00℄. Here we de�ne the notions that are 
ru
ial

for this paper. We will assume that all the graphs are undire
ted unless stated otherwise. A graph

is regular, if all verti
es have the same degree. For degree d, we also say that G is d-regular.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphi
, G1
∼= G2 for short, if

there is a bije
tion φ : V1 → V2 su
h that for all edges (u, v) 2 E1

(u, v) 2 E1 ⇐⇒ (φ(u), φ(v)) 2 E2.

Graph isomorphism (GI) is the problem of de
iding whether two given graphs are isomorphi
.

Let G be a 
lass of graphs. Let f : G → {0, 1}� be a fun
tion su
h that for all G,H 2 G we

have G ∼= H ⇔ f(G) = f(H). Then we say that f 
omputes a 
omplete invariant for G. In 
ase

that f(G) is itself a graph su
h that G ∼= f(G) then we 
all f a 
anonization of G, and f(G) the


anon of G.

A graph G is 
alled planar if it 
an be drawn in the plane in su
h a way that no edges 
ross

ea
h other, ex
ept at their endpoints. Su
h a drawing of G is 
alled a planar embedding. A planar

embedding of G divides the plane into regions. Ea
h su
h region is 
alled a fa
e. For a more

rigorous de�nition see for example [MT01℄.

For U � V let G(U) be the indu
ed subgraph of G on U. A graph G = (V, E) is 
onne
ted if

there is a path between any two verti
es in G.
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Let S � V with |S| = k. We 
all S a k-separating set, if G(V−S) is not 
onne
ted. For u, v 2 V

we say that S separates u from v in G, if u 2 S, v 2 S, or u and v are in di�erent 
omponents

of G−S. A k-separating set is 
alled arti
ulation point (or 
ut vertex ) for k = 1, separating pair

for k = 2. A graph G on more than two verti
es is k-
onne
ted if it 
ontains no (k− 1)-separating

set. Hen
e a 1-
onne
ted graph is simply a 
onne
ted graph. A 2-
onne
ted graph is also 
alled

bi
onne
ted. Note however, that tri
onne
ted will not be used as a synonym for 3-
onne
ted.

Due to the out
ome of the graph de
omposition algorithm, a tri
onne
ted graph will be either

a 3-
onne
ted graph, a 
y
le, or a 3-bond. A 3-bond is a multi-graph with two verti
es that are


onne
ted by three edges.

Let S be a k-separating set in a k-
onne
ted graph G. Let G 0

be a 
onne
ted 
omponent

in G(V − S). A split graph or a split 
omponent of S in G is the indu
ed subgraph of G on

verti
es V(G 0) [ S, where we add virtual edges between all pairs of verti
es in S. Note that the

verti
es of a separating set S 
an o

ur in several split graphs of G.

A 
ru
ial ingredient in many log-spa
e graph algorithms is the rea
hability algorithm by Rein-

gold [Rei08℄.

Theorem 2.1. [Rei08℄ Undire
ted s-t-Conne
tivity is in L.

Below we give some graph theoreti
 problems for whi
h a log-spa
e upper bound is known due

to Theorem 2.1.

1. Graph 
onne
tivity. Given a graph G, one has to de
ide whether G is 
onne
ted. In the

enumeration version of the problem one has to 
ompute all the 
onne
ted 
omponents of G.

To de
ide whether G is 
onne
ted, 
y
le through all pairs of verti
es of G and 
he
k rea
ha-

bility for ea
h pair. To 
ompute the 
onne
ted 
omponent of a vertex v, 
y
le through all the

verti
es of G and output the rea
hable ones. Clearly, this 
an be implemented in log-spa
e

with the rea
hability test as a subroutine.

2. Separating set. Given a graph G = (V, E) and a set S � V , one has to de
ide whether S is a

separating set in G. In the enumeration version of the problem one has to 
ompute all the

separating sets of a �xed size k.

Re
all that S is a separating set if G− S is not 
onne
ted. Hen
e we have a redu
tion to the


onne
tivity problem. To solve the enumeration version for a 
onstant k, a logspa
e ma
hine


an 
y
le through all size k subsets of verti
es and output the separating ones. In parti
ular,

we 
an enumerate all arti
ulation points and separating pairs in log-spa
e.

Let d(u, v) be the distan
e between verti
es u and v in G. The e

entri
ity ε(v) of v is the

maximum distan
e of v to any other vertex,

ε(v) = max

u2V
d(v, u).

The minimum e

entri
ity over all the verti
es in G is 
alled the radius of G. The verti
es of G that

have the e

entri
ity equal to the radius of the graph form the 
enter of G. In other words, verti
es

in the 
enter minimize the maximal distan
e to the other verti
es in the graph. For example, if G is
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a tree of odd diameter, then the 
enter 
onsists of a single node, namely the midpoint of a longest

path in the tree. Moreover, be
ause distan
es in a tree 
an be 
omputed in log-spa
e, also the


enter node of a tree 
an be 
omputed in log-spa
e.

Let Ev be the set of edges in
ident on v. A permutation ρv on Ev that has only one 
y
le is


alled a rotation. A rotation system for a graph G is a set ρ of rotations,

ρ = {ρv | v 2 V and ρv is a rotation on Ev }.

A rotation system ρ en
odes an embedding of graph G on an orientable surfa
e by des
ribing a


ir
ular ordering of the edges around ea
h vertex. If the orientable surfa
e has genus zero, i.e. it is

a sphere, then the rotation system is 
alled a planar rotation system.

Conversely, a graph embedded on a plane uniquely de�nes a 
y
li
 order of edges in
ident on

any vertex. The set of all 
y
li
 orders gives a rotation system for the planar graph, whi
h is a

planar rotation system by de�nition. All embeddings whi
h give rise to the same rotation system

are said to be equivalent and their equivalen
e 
lass is 
alled a 
ombinatorial embedding, see for

example [MT01, Se
tion 4.1℄.

Allender and Mahajan [AM04℄ showed that a planar rotation system 
an be 
omputed in log-

spa
e.

Theorem 2.2. [AM04℄ Let G be a graph. In log-spa
e one 
an 
he
k whether G is planar and


ompute a planar rotation system in this 
ase.

Let ρ−1
be the set of inverse rotations of ρ, i.e. ρ−1 = {ρ−1

v | v 2 V }. Note that if ρ is a planar

rotation system then this holds for ρ−1
as well. Namely, ρ−1


orresponds to the mirror symmetri


embedding of G.

It follows from work of Whitney [Whi33℄ that in the 
ase of planar 3-
onne
ted graphs, there

exist only two planar rotation systems namely some planar rotation system ρ and its inverse ρ−1
.

This is a 
ru
ial property in the isomorphism test of Weinberg [Wei66℄ and all the other follow-up

works. We also use this property in our algorithm for planar 3-
onne
ted graphs in order to obtain

a log-spa
e upper bound.

Universal Exploration Sequences (UXS). Let G = (V, E) be a d-regular graph. The edges

around any vertex v 
an be numbered 0, 1, . . . , d − 1 in an arbitrary, bije
tive way. A sequen
e

τ1τ2 � � � τk 2 {0, 1, . . . , d − 1}k together with a starting edge e0 = (v0, v1) 2 E de�nes a walk

v0, v1, . . . , vk in G as follows: for 1 � i � k, if ei−1 = (vi−1, vi) is the s-th edge of vi, let ei = (vi, vi+1)

be the (s+ τi)
th

edge of vi modulo d.

A sequen
e τ1τ2 . . . τk 2 {0, 1, . . . d − 1}k is a (n, d)-universal exploration sequen
e (UXS)

for d-regular graphs of size � n, if for every 
onne
ted d-regular graph on � n verti
es, any

numbering of its edges, and any starting edge, the walk obtained visits all the verti
es of the graph.

Universal exploration sequen
e play a 
ru
ial role in Reingold's result that undire
ted rea
ha-

bility is in log-spa
e. We use it in our log-spa
e algorithm for testing isomorphism of 3-
onne
ted

planar graphs.

Theorem 2.3. [Rei08℄ There exists a log-spa
e algorithm that takes as input (1n, 1d) and

produ
es an (n, d)-universal exploration sequen
e.
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3 Canonization of 3-Connected Planar Graphs

In this se
tion, we give a log-spa
e algorithm for the 
anonization of 3-
onne
ted planar graph.

This improves the UL\ coUL bound given by Thierauf and Wagner [TW10℄ for 3-
onne
ted planar

graph isomorphism. Sin
e the problem is also L-hard [TW10℄ this settles the 
omplexity of the

problem in terms of 
omplexity 
lasses.

Theorem 3.1. The 
anonization of 3-
onne
ted planar graphs is in log-spa
e.

The algorithm in [TW10℄ 
onstru
ts a 
anon for a given 3-
onne
ted planar graph. This is

done by �rst 
omputing a spanning tree for the graph. Then, by traversing the spanning tree,

the algorithm visits all the edges in a 
ertain order. For the 
omputation of the spanning tree the

algorithm 
omputes distan
es between verti
es of the graph. This is a
hieved by using the planar

rea
hability test of Bourke, Tewari and Vinod
handran [BTV09℄. All parts of the algorithm work

in log-spa
e, ex
ept for the planar rea
hability test whi
h is in UL \ coUL. Therefore this is the

overall 
omplexity bound.

In our approa
h we essentially repla
e the spanning tree in the above algorithm by a universal

exploration sequen
e. Sin
e su
h a sequen
e 
an be 
omputed in log-spa
e by Theorem 2.3, this

will put the problem in L.

Note that universal exploration sequen
es are de�ned for regular graphs. Therefore our �rst

step is to transform a given graph G into a 3-regular graph in su
h a way that

• a planar graph stays planar and

• two graphs are isomorphi
 if and only if they are isomorphi
 after this prepro
essing step.

Note that every vertex has degree � 3 be
ause G is 3-
onne
ted. The following standard 
onstru
-

tion 3-Regular-Color redu
es the degree of verti
es to exa
tly three. For later use, we also

2-
olor the edges in the resulting graph.

Note that the resulting graph G 0

is 3-regular and planar, if G is planar. If G has n verti
es

and m edges, then G 0

has 2m verti
es and 3m edges.

Moreover, G 0

is also 3-
onne
ted. An easy way to see this is via Steinitz's theorem. It states that

planar 3-
onne
ted graphs are pre
isely the skeletons of 3-dimensional 
onvex polyhedra. For G 0

,

we repla
e every vertex of the 
onvex polyhedron for G by a (small enough) 
y
li
 fa
e su
h that

the resulting polyhedral is still 
onvex. Therefore, G 0

is also planar and 3-
onne
ted. It follows

that also G 0

has only two possible embeddings, namely the ones inherited from G.

In the following lemma, we give an elementary proof where we do not use planarity. For non-

planar G, we do not have a planar rotation system a

ording to whi
h we put the new edges. In

this 
ase, we use an arbitrary rotation system.

Lemma 3.2. Let G be a 3-
onne
ted graph and G 0

be the 3-regular graph 
omputed by algo-

rithm 3-Regular-Color(G). Then G 0

is 3-
onne
ted.

Proof. Let u, v be two verti
es in G. Sin
e G is 3-
onne
ted, there are 3 vertex-disjoint paths

p1, p2, p3 from u to v in G. In G 0

, verti
es u, v are repla
ed by 
y
les. The paths p1, p2, p3 
an

be transformed to vertex-disjoint paths p 0

1, p
0

2, p
0

3 in G 0

. These paths start in verti
es u 0

1, u
0

2, u
0

3
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Algorithm 3.1 3-Regular-Color(G)

Input: A 3-
onne
ted graph G = (V, E).

Output: A 
olored 3-regular graph G 0 = (V 0, E 0).

1: Repla
e a vertex v 2 V of degree dv � 3 by a 
y
le (v 0

1, . . . , v
0

dv
) on dv new verti
es. This

de�nes verti
es V 0

and part of the edges in E 0

. We give 
olor 1 to the 
y
le edges.

2: Fix a rotation ρv of the edges around v, for every v 2 V . In 
ase that G is planar, we use a

planar rotation.

3: For every edge (u, v) 2 E,

• let u be the i-th neighbor a

ording to ρv of v in G

• let v be the j-th neighbor a

ording to ρu of u in G

Then we put the new edge (u 0

j , v
0

i) whi
h repla
es the old edge (u, v). These edges get 
olor 2.

This 
ompletes the de�nition of E 0

.

4: Output the resulting graph G 0 = (V 0, E 0).

from the 
y
le 
orresponding to u, and end in verti
es v 0

1, v
0

2, v
0

3 from the 
y
le 
orresponding to v,

respe
tively.

Let u 0

and v 0

be verti
es from the 
y
les 
orresponding to u and v, respe
tively. We show that

there are 3 vertex-disjoint paths from u 0

to v 0

in G 0

. For this, we want to extend paths p 0

1, p
0

2, p
0

3

to 
onne
t u 0

and v 0

. We 
onsider u 0

. The 
ase of v 0

is similar.

1. If u 0

is one of u 0

1, u
0

2, u
0

3, say u 0

1, then we 
an extend p 0

2, p
0

3 on the 
y
le to rea
h u 0

and stay

vertex-disjoint.

2. If u 0

is di�erent from u 0

1, u
0

2, u
0

3, then we use the non-
y
le edge that stems from G and go to

a neighbor w 0

of u 0

. Vertex w 0

is on the 
y
le 
orresponding to a vertex w in G. Sin
e G is

3-
onne
ted, there is a path p from w to v in G. Again there is a path p 0

in G 0


orresponding

to p.

We 
onstru
t a new path

bp that starts at u 0

and goes via w 0

to the staring point of p 0

. Then

we follow p 0

until we interse
t the �rst time with one of p 0

1, p
0

2, p
0

3, say p 0

1. Then bp 
ontinues

on p 0

1 until we rea
h v 0

1. When we 
onsider paths

bp, p 0

2, p
0

3 instead of p 0

1, p
0

2, p
0

3, then we are

in 
ase 1.

This shows that verti
es u 0, v 0

from di�erent 
y
les are 
onne
ted by 3 vertex-disjoint paths in G 0

.

In 
ase that u 0, v 0

are on the same 
y
le 
orresponding to one vertex of G, we 
an use two paths

from the 
y
le and one path via some neighbor vertex of u 0

to v 0

.

In order to maintain the isomorphism property, we have to avoid potential isomorphisms that

map new edges from the 
y
les to the original edges. This is the reason why we also 
olored the

edges. We summarize:

8



Lemma 3.3. Given two 3-
onne
ted planar graphs G and H, let G 0

and H 0

be the 
olored

3-regular graphs 
omputed by 3-Regular-Color. Then G ∼= H if and only if G 0 ∼= H 0

, where

the isomorphism between G 0

and H 0

has to respe
t the 
olors of the edges.

Note that the Lemma 
ru
ially depends on the unique embedding of the graph.

Before we show how to get a 
anon for graph G, we 
ompute a 
omplete invariant as an

intermediate step. The pro
edure Code(G 0, ρ, u0, v0) des
ribed in Algorithm 3.2 
omputes a 
ode

for G 0

with respe
t to a planar rotation system ρ, a starting vertex u0 and a starting edge (u0, v0).

Algorithm 3.2 Code(G 0, ρ, u0, v0)

Input: A 3-regular graph G 0

with N verti
es and 
olored edges, a planar rotation system ρ,

and verti
es u0 and v0 su
h that v0 is a neighbor of u0.

Output: A 
ode of G 0

with respe
t to ρ, vertex u0 and edge (u0, v0).

1: Constru
t a (N, 3)-universal exploration sequen
e U.

2: Traverse G 0

a

ording to U and ρ, starting from u0 along edge (u0, v0). Thereby we 
onstru
t

a list L of nodes traversed, L = (u0, v0,w0, . . . ) .

3: Relabel the verti
es o

urring in L a

ording to their �rst o

urren
e in the sequen
e. Let L 0

be the resulting list. For example, u0 and v0 get label 1 and 2, respe
tively, and therefore L 0

starts as L 0 = (1, 2, . . . ) .

4: Given L and L 0

, 
ompute the relabeling fun
tion π that maps the label of a node in L 0

to its

label in L. For example π(1) = u0 and π(2) = v0.

5: Output the N�N adja
en
y matrix A = (ai,j) of G
0

with respe
t to the new node labels. That

is, for i, j 2 {1, . . . ,N}, let

ai,j =

{
c, if (π(i), π(j)) is an edge in G 0

of 
olor c,

0, otherwise.

The �ve steps of the algorithm 
an be seen as the 
omposition of �ve fun
tions. We argue

that ea
h of these fun
tions is in log-spa
e. Then it follows that the overall algorithm works in

log-spa
e. Step 1 is in log-spa
e by Theorem 2.3. In step 2, we only have to store lo
al information

to walk through G 0

.

Step 3 requires to 
ompute the rank of ea
h vertex in the list L. For a vertex v o

urring in L

this amounts to sear
hing in L to the left of the 
urrent position for the �rst o

urren
e of v. Then

we have to 
ount the number of di�erent verti
es in L to the left of the �rst o

urren
e of v. This


an be done in log-spa
e. A more detailed outline 
an be found in [TW10℄.

In Step 4 we determine the position of node i in L 0

and the node vi at the same position in L.

Then π(i) = vi. Step 5 is again trivial when one has a

ess to π.

Definition 3.4. The 
ode σG 0

of a 3-regular graph G 0

is the lexi
ographi
 minimum of the

outputs of Code(G 0, ρ, u0, v0) for the two 
hoi
es of a planar rotation system ρ and all 
hoi
es

of u0 2 V and a neighbor v0 2 V of u0.

9



The following lemma states that the 
ode σG 0

of G 0


omputed so far is a 
omplete invariant for

the 
lass of 3-
onne
ted planar graphs.

Lemma 3.5. Let G 0

and H 0

be 3-regular planar graphs and σG 0

and σH 0

be the 
odes of G 0

and H 0

, respe
tively. Then

G 0 ∼= H 0 ⇐⇒ σG 0 = σH 0 .

Proof. If G 0 ∼= H 0

, then there is an isomorphism ϕ from G 0

to H 0

. Let ρG 0

be the planar rotations

system, u0 a vertex and (u0, v0) the starting edge whi
h lead to the minimum 
ode σG 0

. Let ρH 0

be the rotations system of H 0

indu
ed by ρG 0

and ϕ. Let σ = Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)).

We prove that σG 0 = σ: let w be a vertex that o

urs at position ℓ in the list LG 0


omputed

in step 2 in Code(G 0, ρH 0 , u0, v0). Then ϕ(w) will o

ur at position ℓ in the list LH 0


omputed in

step 2 in Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)). This is be
ause the oriented graphs are isomorphi
, and the

same UXS is used for their traversal. Hen
e, when a vertex w o

urs the �rst time LG 0

, ϕ(w) will

o

ur the �rst time in LH 0

at the same position. Moreover, by indu
tion, the number of di�erent

verti
es to the left of w in LG 0

will be the same as the number of di�erent verti
es to the left

of ϕ(w) in LH 0

. Hen
e, in step 3 in Code(G 0, ρH 0 , u0, v0) vertex w will get the same name, say j, as

vertex ϕ(w) in step 3 in Code(H 0, ρH 0 , ϕ(u0), ϕ(v0)). Therefore, in step 4, the relabeling fun
tion

for G 0

will map πG 0(j) = w, and the relabeling fun
tion for H 0

will map πH 0(j) = ϕ(w). So we will

get the same output in step 5. We 
on
lude that σG 0 = σ.

Clearly σ is also the minimum of all the possible 
odes for H 0

, be
ause otherwise we 
ould swit
h

the roles of G 0

and H 0

in the above argument and would obtain a 
ode for G 0

smaller than σG 0

.

Therefore we have also σH 0 = σ. Hen
e σG 0 = σH 0

.

For the reverse dire
tion, let σG 0 = σH 0 = σ. The labels of verti
es in σ are just a relabeling of

the verti
es of G 0

and H 0

. These relabelings are some permutations, say π1 and π2. Then π−1
2 Æ π1

is an isomorphism between G 0

and H 0

.

To prove Theorem 3.1 we show how to 
onstru
t a 
anon for G from the 
ode σG 0

for G 0

. Re
all

that algorithm 3-Regular-Color repla
es a vertex v of degree d in G by a 
y
le (v 0

1, . . . , v
0

d) in G 0

and also 
olors the edges. In the 
ode σG 0

, ea
h node in the 
y
le gets a new label. We assign to v

the minimum label among the new labels of (v 0

1, . . . , v
0

d) in G 0

. To do so, we start at one of the

verti
es, say v 0

1, and traverse 
olor 1 edges until we get ba
k to v 0

1. Thereby we 
an �nd out the

minimum label. Let π(v) be the label assigned to v.

We are not quite done yet. Re
all that G 0

has 2m verti
es. Hen
e the labels π(v) we assign

to the verti
es of G are in the range π(v) 2 {1, 2, . . . , 2m}. But G has n verti
es and we want

the assignment to map to {1, 2, . . . , n}. To do so, we 
onvert π into a mapping π 0

su
h that π 0(v)

is the rank of π(v) in the ordered π-labeling sequen
e. Then we have π 0(v) 2 {1, 2, . . . , n}. The


onstru
tion of π and π 0


an be done in log-spa
e.

As 
anon of G we de�ne a 
oding of the adja
en
y matrix of G, say σ, where verti
es are rela-

beled a

ording to π 0

. Then σ 
odes a graph whi
h is isomorphi
 to G by 
onstru
tion. Moreover,

for every graph H isomorphi
 to G, we will get the same 
ode σ for H. This is be
ause the relabeling

fun
tions π and π 0

depend only on the 
ode σG 0

, whi
h is the same for H by Lemma 3.5. Hen
e

our 
onstru
tion gives a 
anonization of 3-
onne
ted planar graphs. This 
on
ludes the proof of

Theorem 3.1.
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4 Canonization of Biconnected Planar Graphs

In this se
tion, we present an algorithm that given a planar bi
onne
ted graph outputs its 
anon

in logspa
e.

Theorem 4.1. The 
anonization of bi
onne
ted planar graphs is in log-spa
e.

The proof is presented in the following �ve subse
tions. In Se
tion 4.1 we �rst show how to de-


ompose a bi
onne
ted planar graph G into its tri
onne
ted 
omponents. From these 
omponents

we 
onstru
t the tri
onne
ted 
omponent tree of G.

In Se
tion 4.2 we give a brief overview of a log-spa
e algorithm for tree 
anonization, whi
h was

developed by Lindell [Lin92℄. The 
ore of Lindell's algorithm is to 
ome up with a total order on

trees su
h that two trees are isomorphi
 if and only if they are equal with respe
t to this order.

In Se
tion 4.3, we de�ne an isomorphism order on the tri
onne
ted 
omponent trees similar to

Lindell's order on trees. The isomorphism order we 
ompute has the property that two bi
onne
ted

graphs will be isomorphi
 if and only of they are equal with respe
t to the isomorphism order. This

yields an isomorphism test. We analyze its spa
e 
omplexity in Se
tion 4.4.

Finally, based on the isomorphism order, we develop our 
anonization pro
edure in Se
tion 4.5.

4.1 Decomposition of a Biconnected Graph into Triconnected Components

Graph de
omposition goes ba
k to Hop
roft and Tarjan [HT73℄, who presented a linear-time algo-

rithm to 
ompute su
h a de
omposition, and Cunningham and Edmonds [CE80℄. These algorithms

are sequential. With respe
t to parallel algorithms, Miller and Rama
handran [MR92℄ presented

a de
omposition algorithm on a CRCW-PRAM with O(log2 n) parallel time and using a linear

number of pro
essors. In this se
tion, we show that a bi
onne
ted graph 
an be de
omposed into

its tri
onne
ted 
omponents in log-spa
e.

The algorithm presented below was developed in [DNTW09℄

1

. We present the entire algorithm

here for the sake of 
ompleteness.

Definition 4.2. Let G = (V, E) be a bi
onne
ted graph. A separating pair {a, b} is 
alled

3-
onne
ted if there are three vertex-disjoint paths between a and b in G.

The tri
onne
ted 
omponents of G are the split graphs we obtain from G by splitting G

su

essively along all 3-
onne
ted separating pairs, in any order. If a separating pair {a, b} is


onne
ted by an edge in G, then we also de�ne a 3-bond for {a, b} as a tri
onne
ted 
omponent,

i.e., a multigraph with two verti
es {a, b} and three edges between them.

We de
ompose a bi
onne
ted graph only along separating pairs whi
h are 
onne
ted by at least

three disjoint paths. By only splitting a graph along 3-
onne
ted separating pairs, we avoid the

de
ompositions of 
y
les. Therefore, we get three types of tri
onne
ted 
omponents of a bi
onne
ted

graph: 3-
onne
ted 
omponents, 
y
le 
omponents, and 3-bonds.

De�nition 4.2 leads to the same tri
onne
ted 
omponents as in [HT73℄. The de
omposition is

unique, i.e., independent of the order in whi
h the separating pairs in the de�nition are 
onsid-

ered [Ma
37℄, see also [HT72a, CE80℄.

1

The �rst log-spa
e version of this problem appeared in the 
onferen
e version of the 
urrent work [DLN

+
09℄.

This was subsequently simpli�ed in the work of [DNTW09℄

11



Lemma 4.3. The 3-
onne
ted separating pairs and the tri
onne
ted 
omponents of a bi
on-

ne
ted graph 
an be 
omputed in log-spa
e.

Proof. In Se
tion 2 we argued that we 
an 
ompute all separating pairs of G in logspa
e. To

determine whether a separating pair {a, b} is 3-
onne
ted, we 
y
le over all pairs of verti
es u, v

di�erent from a and b and 
he
k whether the removal of u, v keeps a rea
hable from b. Clearly,

this 
an be a

omplished in log-spa
e.

It remains to 
ompute the verti
es of a tri
onne
ted 
omponent. Two verti
es u, v 2 V belong to

the same 3-
onne
ted 
omponent or 
y
le 
omponent, if no 3-
onne
ted separating pair separates u

from v. This property 
an again be 
he
ked by solving several rea
hability problems. Hen
e we


an 
olle
t the verti
es of ea
h su
h 
omponent in log-spa
e.

The tri
onne
ted 
omponents of a bi
onne
ted graph are the nodes of the tri
onne
ted 
om-

ponent tree .

Definition 4.4. Let G be a bi
onne
ted graph. The tri
onne
ted 
omponent tree T of G is the

following graph. There is a node for ea
h tri
onne
ted 
omponent and for ea
h 3-
onne
ted

separating pair of G. There is an edge in T between the node for tri
onne
ted 
omponent C

and the node for a separating pair {a, b}, if a, b belong to C.

Given a tri
onne
ted 
omponent tree T , we use graph(T ) to denote the 
orresponding

bi
onne
ted graph represented by it.

Note that graph T is 
onne
ted, be
ause G is bi
onne
ted, and a
y
li
. This also implies that T

is a tree. Ea
h path in T is an alternating path of separating pairs and tri
onne
ted 
omponents.

All the leaves of T are tri
onne
ted 
omponents. Hen
e, a path between two leaves always 
ontains

an odd number of nodes and therefore T has a unique 
enter node.

By Lemma 4.3, we 
an 
ompute the nodes of the 
omponent tree in logspa
e. We show that we


an also traverse the 
omponent tree in logspa
e. Here, by traversal we mean a way of systemati
ally

visiting every vertex of the tree. For example, in 
lassi
al graph theory, we study many di�erent

tree traversals su
h as preorder, inorder and postorder traversals. It is known that tree traversal


an be performed in logspa
e. Unlike in a tree, the nodes of the 
omponent tress are themselves

graphs. We show that, in spite of this, we 
an perform its traversal in logspa
e.

Lemma 4.5. The tri
onne
ted 
omponent tree of a bi
onne
ted graph G 
an be 
omputed and

traversed in logspa
e.

Proof. The traversal pro
eeds as a depth-�rst sear
h. Assume that a separating pair is �xed as

the root node of the 
omponent tree, We show how to navigate lo
ally in the 
omponent tree, i.e.,

for a 
urrent node how to 
ompute its parent, �rst 
hild, and next sibling. We explore the tree

starting at the root. Thereby we store the following information on the tape.

• We always store the root node, i.e., the two verti
es of the root separating pair.

• When the 
urrent node is separating pair {a0, b0}, we just store it.

• When the 
urrent node is a 3-
onne
ted 
omponent C with parent separating pair {a0, b0},

then we store a0, b0 and an arbitrary vertex v 6= a0, b0 from C.
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In the last item, the vertex v that we store serves as a representative for C. As a 
hoi
e for v take

the �rst vertex of C that is 
omputed by the 
onstru
tion algorithm of Lemma 4.3. Note that v

and a0, b0 together with the root node identify C uniquely.

The traversal 
ontinues by exploring the subtrees at the separating pairs in C, di�erent

from {a0, b0}. Let {a1, b1} be the 
urrent separating pair in C. We 
ompute a representative

vertex for the �rst 3-
onne
ted split 
omponent of {a1, b1} di�erent from C. Then we erase {a0, b0}

and the representative vertex for C from the tape and re
ursively traverse the subtrees at {a1, b1}.

When we return from the subtrees at {a1, b1}, we re
ompute {a0, b0} and C, the parent of {a1, b1}.

This is done by 
omputing the path from the root node to C in the 
omponent tree. That is, we

start at the root node and look for the 
hild 
omponent that 
ontains C via rea
hability queries.

Then we iterate the sear
h until we rea
h C, where we always store the 
urrent parent node.

The tree traversal 
ontinues with the next sibling of C in the tree. That is, we 
ompute the

next arti
ulation point in C after {a1, b1} with respe
t to the order on the separating pairs. Then

we delete {a1, b1} from the work tape. If C does not have a next sibling, we return to the parent

of C.
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Figure 4.1: The de
omposition of a bi
onne
ted planar graph

bG. Its tri
onne
ted 
omponents are

G1, . . . , G4 and the 
orresponding tri
onne
ted 
omponent tree is T . In bG, the pairs {a, b} and {c, d}

are 3-
onne
ted separating pairs. The inseparable triples are {a, b, c}, {b, c, d}, {a, c, d}, {a, b, d},

{a, b, f}, and {c, d, e}. Hen
e the tri
onne
ted 
omponents are the indu
ed graphs G1 on {a, b, f}, G2

on {a, b, c, d}, and G4 on {c, d, e}. Sin
e the 3-
onne
ted separating pair {c, d} is 
onne
ted by an

edge in

bG, we also get {c, d} as triple-bond G3. The virtual edges 
orresponding to the 3-
onne
ted

separating pairs are drawn with dashed lines.

4.2 Overview of Lindell’s Algorithm for Tree Canonization

We summarize the 
ru
ial ingredients of Lindell [Lin92℄ log-spa
e algorithm for tree 
anonization.

We will then adapt Lindell's te
hnique to tri
onne
ted 
omponent trees.

Lindell's algorithm is based on an order relation � for rooted trees de�ned below. The order

relation has the property that two trees S and T are isomorphi
 if and only if they are equal with

respe
t to the order, denoted by S � T . Be
ause of this property it is 
alled a 
anoni
al order.

Clearly, an algorithm that de
ides the order 
an be used as an isomorphism test. Lindell showed

how to extend su
h an algorithm to 
ompute a 
anon for a tree in log-spa
e.
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The order < on rooted trees is de�ned as follows.

Definition 4.6. Let S and T be two trees with root s and t, and let #s and #t be the number

of 
hildren of s and t, respe
tively. Then S < T if

1. |S| < |T |, or

2. |S| = |T | but #s < #t, or

3. |S| = |T | and #s = #t = k, but (S1, . . . , Sk) < (T1, . . . , Tk) lexi
ographi
ally, where it is

indu
tively assumed that S1 � � � � � Sk and T1 � � � � � Tk are the ordered subtrees of S

and T rooted at the k 
hildren of s and t, respe
tively.

The 
omparisons in steps 1 and 2 
an be made in log-spa
e. Lindell proved that even the third

step 
an be performed in log-spa
e using two-pronged depth-�rst sear
h, and 
ross-
omparing

only a 
hild of S with a 
hild of T . This is brie
y des
ribed below:

• Partition the k 
hildren of s in S into blo
ks a

ording to their sizes, i.e., the number of nodes

in the subtree rooted at the 
hild. Let N1 < N2 < � � � < Nℓ be the o

urring sizes, for some

ℓ � k, and let ki be the number of 
hildren in blo
k i, i.e., that have size Ni. It follows that∑
i ki = k and

∑
i kiNi = n − 1.

Doing the same for t in T , we get 
orresponding numbers N 0

1 < N 0

2 < � � �N 0

ℓ 0

and

k 0

1, k 0

2, . . . , k
0

ℓ 0

. If ℓ 6= ℓ 0 then we know that the two are not isomorphi
. Otherwise, we


ompare the two blo
k stru
tures as follows.

– If N1 < N 0

1, then S < T .

– If N1 > N 0

1, then S > T .

– If N1 = N 0

1 and k1 > k 0

1 then S < T .

– If N1 = N 0

1 and k1 > k 0

1 then S > T .

If N1 = N 0

1 and k1 = k 0

1 then we 
onsider the next blo
ks similarly. This pro
ess is 
ontinued

until a di�eren
e in the blo
k stru
ture is dete
ted, or all the 
hildren of s and t are exhausted.

• Let the 
hildren of s and t have the same blo
k stru
ture. Then 
ompare the 
hildren in ea
h

blo
k re
ursively as follows:

Case 1: k = 0. Hen
e s and t have no 
hildren. They are isomorphi
 as all one-node trees

are isomorphi
. We 
on
lude that S � T .

Case 2: k = 1. Re
ursively 
onsider the grand-
hildren of s and t.

Case 3: k � 2. For ea
h of the subtrees Sj 
ompute its order pro�le. The order pro�le


onsists of three 
ounters, c<, c> and c=. These 
ounters indi
ate the number of subtrees in

the blo
k of Sj that are respe
tively smaller than, greater than, or equal to Sj. The 
ounters

are 
omputed by making pairwise 
ross-
omparisons.
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Note that isomorphi
 subtrees in 
orresponding blo
ks have the same order pro�le. Therefore,

it suÆ
es to 
he
k that ea
h su
h order pro�le o

urs the same number of times in ea
h

blo
k in S and T . To perform this 
he
k, 
ompare the di�erent order pro�les of every blo
k

in lexi
ographi
 order. The subtrees in the blo
k i of S and T , whi
h is 
urrently being


onsidered, with a 
ount c< = 0 form the �rst isomorphism 
lass. The size of this isomorphism


lass is 
ompared a
ross the trees by 
omparing the values of the c=-variables. If these

values mat
h then both trees have the same number of minimal 
hildren. Note that the

lexi
ographi
al next larger order pro�le has the 
urrent value of c< + c= as its value for the

c<-
ounter.

This way, one 
an loop through all the order pro�les. If a di�eren
e in the order pro�les of

the subtrees of S and T is found then the lexi
ographi
al smaller order pro�le de�nes the

smaller tree.

The last order pro�le 
onsidered is the one with c< + c= = k for the 
urrent 
ounters. If this

point is passed without un
overing an inequality then the trees must be isomorphi
 and it

follows that S � T .

We analyze the spa
e 
omplexity. Note that in 
ase 2 with just one 
hild, we need no spa
e for

the re
ursive 
all. In 
ase 3, for ea
h new blo
k, the work-tape allo
ated for the former 
omputations


an be reused. Sin
e

∑
i kiNi � n, the following re
ursion equation for the spa
e 
omplexity S(n)

holds,

S(n) = max

i
{S(Ni) +O(log ki)} � max

i
{ S

�

n

ki

�

+O(log ki)},

where ki � 2 for all i. It follows that S(n) = O(log n).

Lindell de�nes the 
anon of a rooted tree T as the in�x 
oding of the tree over the three letter

alphabet {�, [, ]}, whi
h in turn 
an be 
oded over {0, 1}. The 
anon of a tree T with just one vertex

is c(T) = �. The 
anon of a tree T with subtrees T1 � T2 � � � � � Tk is c(T) = [c(T1)c(T2) � � � c(Tk)].

If we have given a tree T without a spe
i�ed root, then we try all the verti
es of T as the root.

The vertex that leads the smallest tree with respe
t to the order on rooted trees is used as the root

to de�ne the 
anon of T .

4.3 Isomorphism Order of Triconnected Component Trees

In this se
tion, we start with two tri
onne
ted 
omponent trees and give a log-spa
e test for isomor-

phism of the bi
onne
ted graphs represented by them. Re
all from De�nition 4.4 that a tri
onne
ted


omponent tree T that represents a bi
onne
ted graph G 
onsists of nodes 
orresponding to the

tri
onne
ted 
omponents and 3-
onne
ted separating pairs of G. See Figure 4.1 for an example.

The rough idea is to 
ome up with an order on the tri
onne
ted 
omponent trees, as in Lindell's

algorithm for isomorphism of trees. Clearly, a major di�eren
e to Lindell's setting is that the nodes

of the trees are now separating pairs or tri
onne
ted 
omponents. By using Lindell's algorithm

in 
onjun
tion with the algorithm from Se
tion 3, we 
anonize the 3-
onne
ted 
omponent nodes

of the tree. We 
all this the isomorphism order. We ensure that the isomorphism order has the
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property that two tri
onne
ted 
omponent trees have the same order if and only if the bi
onne
ted

graphs represented by them are isomorphi
.

To de�ne the order, we also 
ompare the size of the tree. We �rst de�ne the size of a tri
onne
ted


omponent tree.

Definition 4.7. For a tri
onne
ted 
omponent tree T , the size of an individual 
omponent

node C of T is the number nC of verti
es in C. The size of the tree T , denoted by |T |, is the

sum of the sizes of its 
omponent nodes.

Note that the verti
es of a separating pair are 
ounted in every 
omponent where they o
-


ur. Therefore the size of T is at least as large as the number of verti
es in graph(T), the graph


orresponding to the tri
onne
ted 
omponent tree T .

We des
ribe a pro
edure for 
omputing an isomorphism order given two tri
onne
ted 
omponent

trees S and T of two bi
onne
ted planar graphs G and H, respe
tively. We root S and T at separating

pair nodes s = {a, b} and t = {a 0, b 0}, respe
tively, whi
h are 
hosen arbitrarily. As Lindell, we

de�ne the �nal order of G and H based on the separating pairs as roots that lead to the smallest

trees. The rooted trees are denoted as S{a,b} and T{a 0,b 0}. They have separating pair nodes at odd

levels and tri
onne
ted 
omponent nodes at even levels. Figure 4.2 shows two trees to be 
ompared.

ba
s

G1

. . .

. . .. . .

. . . Gk

s1

. . . . . .

. . .. . .

. . .

. . .

t
a 0 b 0

HkH1

t1slk tlksl1 tl1

S{a,b}

S1 Slk T1 Tlk

SG1
SGk

THk
TH1

T{a 0,b 0}

Figure 4.2: Tri
onne
ted 
omponent trees.

We de�ne the isomorphism order <
T

for S{a,b} and T{a 0,b 0} by �rst 
omparing their sizes, then

the number of 
hildren of the root nodes s and t. These two steps are similar to Lindell's algorithm.

If we �nd equality in the �rst two steps, then, in the third step we make re
ursive 
omparisons of

the subtrees of S{a,b} and T{a 0,b 0}. However, here it does not suÆ
e to 
ompare the order pro�les of

the subtrees in the di�erent size 
lasses as in Lindell's algorithm. We need a further 
omparison

step to ensure that G and H are indeed isomorphi
.

To see this, assume that s and t have two 
hildren ea
h, G1, G2 and H1, H2 su
h that G1
∼= H1

and G2
∼= H2. Still we 
annot 
on
lude that G and H are isomorphi
 be
ause it is possible that the

isomorphism between G1 and H1 maps a to a 0

and b to b 0

, but the isomorphism between G2 and H2

maps a to b 0

and b to a 0

. Then these two isomorphisms 
annot be extended to an isomorphism

between G and H. For an example see Figure 4.3 of Page 20.
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To handle this, we use the notion of an orientation of a separating pair. A separating pair gets

an orientation from subtrees rooted at its 
hildren. Also, every subtree rooted at a tri
onne
ted


omponent node gives an orientation to the parent separating pair. If the orientation is 
onsistent,

then we de�ne S{a,b} �T

T{a 0,b 0} and we will show that G and H are isomorphi
 in this 
ase.

The sequential algorithm by Hop
roft and Tarjan [HT73℄ uses depth-�rst-sear
h for the de
om-

position. They also 
onsider the dire
tion in whi
h an edge is traversed by the sear
h. Thereby

the orientation issue is handled impli
itly.

In the following two subse
tions we give the details of the isomorphism order between two

tri
onne
ted 
omponent trees depending on the type of the root node.

4.3.1 Isomorphism order of two subtrees rooted at triconnected components

We 
onsider the isomorphism order of two subtrees SGi
and THj

rooted at tri
onne
ted 
omponent

nodes Gi and Hj, respe
tively. We �rst 
onsider the easy 
ases.

• Gi and Hj are of di�erent types. Gi and Hj 
an be either 3-bonds or 
y
les or 3-
onne
ted


omponents. If the types of Gi and Hj are di�erent, we immediately dete
t an inequality. We

de�ne a 
anoni
al order among subtrees rooted at tri
onne
ted 
omponents in this as
ending

order: 3-bond, 
y
le, 3-
onne
ted 
omponent, su
h that e.g. SGi
<
T

THj
if Gi is a 3-bond and

Hj is a 
y
le.

• Gi and Hj are 3-bonds. In this 
ase, SGi
and THj

are leaves, sin
e they 
annot be de
omposed

further into smaller 
omponents, and we de�ne SGi
�

T

THj
.

In 
ase where Gi and Hj are 
y
les or 3-
onne
ted 
omponents, we 
onstru
t the 
anons of Gi

and Hj and 
ompare them lexi
ographi
ally.

• To 
anonize a 
y
le, we traverse it starting from the virtual edge that 
orresponds to its

parent, and then traversing the entire 
y
le along the edges en
ountered. There are two

possible traversals depending on whi
h dire
tion of the starting edge is 
hosen. Thus, a 
y
le

has two 
andidates for a 
anon.

• To 
anonize a 3-
onne
ted 
omponent Gi, we use the log-spa
e algorithm from Se
tion 3.

Besides Gi, the algorithm gets as input a starting edge and a 
ombinatorial embedding ρ

of Gi. We always take the virtual edge {a, b} 
orresponding to Gi's parent as the starting

edge. Then there are two 
hoi
es for the dire
tion of this edge, (a, b) or (b, a). Further, a

3-
onne
ted graph has two planar rotation systems [Whi33℄. Hen
e, there are four possible


andidates for the 
anon of Gi.

In the latter two 
ases, we start the 
anonization of Gi and Hj in all the possible ways (two,

if they are 
y
les, and four, if they are 3-
onne
ted 
omponents), and 
ompare these 
anons bit-

by-bit. Let Cg and Ch be two 
andidate 
anons to be 
ompared. The base 
ase is that Gi and Hj

are leaf nodes and therefore 
ontain no further virtual edges. In this 
ase we use the lexi
ographi


order between Cg and Ch. (For instan
e, if the whole graph is simply a 
y
le or a 3-
onne
ted


omponent, then the algorithm terminates here.) If Gi and Hj 
ontain virtual edges then these

edges are spe
ially treated in the bitwise 
omparison of Cg and Ch:
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• If a virtual edge is traversed in the 
onstru
tion of one of the 
anons Cg or Ch but not in the

other, then we de�ne the one without the virtual edge to be the smaller 
anon.

• If Cg and Ch en
ounter virtual edges {u, v} and {u 0, v 0} 
orresponding to a 
hild of Gi and Hj,

respe
tively, we need to re
ursively 
ompare the subtrees rooted at {u, v} and {u 0, v 0}.

– If we �nd in the re
ursion that one of the subtrees is smaller than the other, then the


anon with the smaller subtree is de�ned to be the smaller 
anon.

– If we �nd that the 
anons of the subtrees rooted at {u, v} and {u 0, v 0} are equal, then we

look at the orientations given to {u, v} and {u 0, v 0} by their 
hildren. This orientation,


alled the referen
e orientation, is de�ned below in Se
tion 4.3.2. If one of the 
anons

traverses the virtual edge in the dire
tion of its referen
e orientation but the other one

not, then the one with the referen
e dire
tion is de�ned to be the smaller 
anon.

We eliminate the 
andidate 
anons whi
h were found to be the larger in at least one of the


omparisons. In the end, the 
andidate that is not eliminated is the 
anon. If we have the same


anons for both Gi and Hj then we de�ne SGi
�

T

THj
. The 
onstru
tion of the 
anons also de�nes

an isomorphism between the subgraphs des
ribed by SGi
and THj

, i.e. graph(SGi
) ∼= graph(THj

).

For a single tri
onne
ted 
omponent this follows from the algorithm of Se
tion 3. If the trees


ontain several 
omponents, then our de�nition of SGi
�

T

THj
guarantees that we 
an 
ombine the

isomorphisms of the 
omponents to an isomorphism between graph(SGi
) and graph(THj

).

Observe, that we do not need to 
ompare the sizes and the degree of the root nodes of SGi

and THj
in an intermediate step, as it is done in Lindell's algorithm for subtrees. This is be
ause

the degree of the root node Gi is en
oded as the number of virtual edges in Gi. The size of SGi
is


he
ked by the length of the minimal 
anons for Gi and when we 
ompare the sizes of the 
hildren

of the root node Gi with those of Hj.

4.3.2 Isomorphism order of two subtrees rooted at separating pairs

We 
onsider the isomorphism order of two subtrees S{a,b} and T{a 0,b 0} rooted at separating pairs

{a, b} and {a 0, b 0}, respe
tively. Let (G1, . . . , Gk) be the 
hildren of the root {a, b} of S{a,b}, and

(SG1
, . . . , SGk

) be the subtrees rooted at (G1, . . . , Gk). Similarly let (H1, . . . , Hk) be the 
hildren of

the root {a 0, b 0} of T{a 0,b 0} and (TH1
, . . . , THk

) be the subtrees rooted at (H1, . . . , Hk).

The �rst three steps of the isomorphism order are performed similar to that of Lindell [Lin92℄

maintaining the order pro�les. We �rst order the subtrees, say SG1
�

T

� � � �

T

SGk
and TH1

�

T

� � � �

T

THk
, and verify that SGi

�

T

THi
for all i. If we �nd an inequality then the one with the

smallest index i de�nes the order between S{a,b} and T{a 0,b 0}. Now assume that SGi
�

T

THi
for all i.

Indu
tively, the 
orresponding split 
omponents are isomorphi
, i.e. graph(SGi
) ∼= graph(THi

) for

all i.

An additional step involves a 
omparison of the orientations given by the subtrees SGi
and THi

to {a, b} and {a 0, b 0}, respe
tively.

Definition 4.8 (Orientation). The orientation given to the parent separating pair {a, b} of S(Gi) is

the dire
tion {a, b} whi
h leads to the 
anon of S(Gi), respe
tively. If the 
anons are obtained
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for both 
hoi
es of dire
tions of the edge, we say that SGi
is symmetri
 about their parent

separating pair, and thus does not give an orientation.

The orientation given to {a, b} by two subtrees might be di�erent. Our next step is to extra
t

one orientation from the orientations of all subtrees as the referen
e orientation for separating

pair {a, b}.

Definition 4.9 (Referen
e Orientation). Let I1 <T

� � � <
T

Ip be a partition of (SG1
, . . . , SGk

) into


lasses of �

T

-equal subtrees, for some p � k.

• For ea
h isomorphism 
lass Ij, the orientation 
ounter is a pair Oj = (c→j , c←j ), where c→j
is the number of subtrees of Ij whi
h gives one orientation, say (a, b), and c←j is the

number of subtrees from Ij whi
h give the other orientation, (b, a). The 
ounters are

ordered su
h that c→j � c←j . Then the orientation given to {a, b} by isomorphism 
lass Ij
is the one from the larger 
ounter, i.e. c→j , if c→j 6= c←j .

If c→j = c←j , that is if ea
h 
omponent in this 
lass is symmetri
 about {a, b} then no

orientation is given to {a, b} by this 
lass, and the 
lass is said to be symmetri
 about

{a, b}. Note that in an isomorphism 
lass, either all or none of the 
omponents are

symmetri
 about the parent.

• The referen
e orientation of {a, b} is de�ned as the orientation given to {a, b} by the

smallest non-symmetri
 isomorphism 
lass. If all isomorphism 
lasses are symmetri


about {a, b}, then we say that {a, b} has no referen
e orientation.

For T{a 0,b 0} we similarly partition (TH1
, . . . , THk

) into isomorphism 
lasses I 01 <
T

� � � <
T

I 0p. It

follows that Ij and I 0j 
ontain the same number of subtrees for every j. Let O 0

j = (d→j , d←j ) be the


orresponding orientation 
ounters for the isomorphism 
lasses I 0j .

Now we 
ompare the orientation 
ounters Oj and O 0

j for j = 1, . . . , p. If they are all pairwise

equal, then the graphs G and H are isomorphi
 and we de�ne S{a,b} �T

T{a 0,b 0}. Otherwise, let j be

the smallest index su
h that Oj 6= O 0

j . Then we de�ne S{a,b} <T

T{a 0,b 0} if Oj is lexi
ographi
ally

smaller than O 0

j , and T{a 0,b 0} <T

S{a,b} otherwise. For an example, see Figure 4.3.

4.3.3 Summary and correctness

We summarize the isomorphism order of two tri
onne
ted 
omponent trees S and T de�ned in the

previous subse
tions. Let s = {a, b} and t = {a 0, b 0} be the roots of S and T , and let #s and #t be

the number of 
hildren of s and t, respe
tively. Then we have S <
T

T if:

1. |S| < |T |, or

2. |S| = |T | but #s < #t, or

3. |S| = |T |, #s = #t = k, but (SG1
, . . . , SGk

) <
T

(TH1
, . . . , THk

) lexi
ographi
ally, where we

assume that SG1
�

T

� � � �

T

SGk
and TH1

�

T

� � � �

T

THk
are the ordered subtrees of S

and T , respe
tively. To 
ompute the order between the subtrees SGi
and THi

we 
ompare

lexi
ographi
ally the 
anons of Gi and Hi and re
ursively the subtrees rooted at the 
hildren

of Gi and Hi. Note, that these 
hildren are again separating pair nodes.
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Figure 4.3: The graphs G and H have the same tri
onne
ted 
omponent trees but are not

isomorphi
. In S{a,b}, the 3-bonds form one isomorphism 
lass I1 and the other two 
omponents

form the se
ond isomorphism 
lass I2, as they all are pairwise isomorphi
. The non-isomorphism

is dete
ted by 
omparing the dire
tions given to the parent separating pair. We have p = 2

isomorphism 
lasses and for the orientation 
ounters we have O1 = O 0

1 = (0, 0), whereas O2 =

(2, 0) and O 0

2 = (1, 1) and hen
e O 0

2 is lexi
ographi
ally smaller than O2. Therefore we have

T{a 0,b 0} <T

S{a,b}.

4. |S| = |T |, #s = #t = k, (SG1
, . . . , SGk

) �
T

(TH1
, . . . , THk

), but (O1, . . . ,Op) < (O 0

1, . . . ,O
0

p)

lexi
ographi
ally, where Oj and O 0

j are the orientation 
ounters of the jth isomorphism


lasses Ij and I 0j of all the SGi
's and the THi

's.

We say that S and T are equal a

ording to the isomorphism order , denoted by S �
T

T , if

neither S <
T

T nor T <
T

S holds.

The following theorem shows the 
orre
tness of the isomorphism order: two trees are �

T

-equal,

pre
isely when the underlying graphs are isomorphi
.

Theorem 4.10. Let G and H be bi
onne
ted planar graphs with tri
onne
ted 
omponent

trees S and T , respe
tively. Then G and H are isomorphi
 if and only if there is a 
hoi
e of

separating pairs s, t in G and H su
h that S �
T

T when rooted at s and t, respe
tively.

Proof. Assume that S �
T

T . The argument is an indu
tion on the depth of the trees that follows

the indu
tive de�nition of the isomorphism order. The indu
tion goes from depth d + 2 to d. If

the grand
hildren of separating pairs, say s and t, are �
T

-equal up to step 4, then we 
ompare the


hildren of s and t. If they are equal then we 
an extend the �

T

-equality to the separating pairs s

and t.

When subtrees are rooted at separating pair nodes, the 
omparison des
ribes an order on the

subtrees whi
h 
orrespond to split 
omponents of the separating pairs. The order des
ribes an

isomorphism among the split 
omponents.

When subtrees are rooted at tri
onne
ted 
omponent nodes, say Gi and Hj, the 
omparison

states equality if the 
omponents have the same 
anon, i.e. are isomorphi
. By the indu
tion

hypothesis we know that the 
hildren rooted at virtual edges of Gi and Hj are isomorphi
. The
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equality in the 
omparisons indu
tively des
ribes an isomorphism between the verti
es in the


hildren of the root nodes.

Hen
e, the isomorphism between the 
hildren at any level 
an be extended to an isomorphism

between the 
orresponding subgraphs in G and H and therefore to G and H itself.

The reverse dire
tion holds easily as well. Suppose G and H are isomorphi
 and there is an

isomorphism that maps the separating pair {a, b} of G to the separating pair {a 0, b 0} of H. One

needs to prove that S{a,b} �T

T{a 0,b 0} where these two are S and T rooted at {a, b} and {a 0, b 0}

respe
tively. One 
an prove this by indu
tion on the depth of S{a,b} and T{a 0,b 0}. Note that su
h an

isomorphism maps separating pairs of G onto separating pairs of H. This isomorphism des
ribes

a permutation on the split 
omponents of separating pairs, whi
h means we have a permutation

on tri
onne
ted 
omponents, the 
hildren of the separating pairs. By indu
tion hypothesis, the


hildren at depth d + 2 of two su
h tri
onne
ted 
omponents are isomorphi
 and equal a

ording

to �

T

. One 
an 
ombine this with the isomorphism of the tri
onne
ted 
omponents themselves

and the de�nition of �

T

to 
on
lude the proof of the reverse dire
tion and of the theorem.

4.4 Space Complexity of the Isomorphism Order Algorithm

We analyze the spa
e 
omplexity of the isomorphism order algorithm. The �rst two steps of the

isomorphism order algorithm 
an be 
omputed in log-spa
e as in Lindell's algorithm [Lin92℄. We

show that steps 3 and 4 
an also be performed in log-spa
e.

We use the algorithm from Se
tion 3 to 
anonize a 3-
onne
ted 
omponent Gi of size nGi
in

spa
e O(lognGi
). If the 
omponent is a 3-bond or a 
y
le, we use the ideas presented in Se
tion 4.3.1

to 
anonize them again using O(lognGi
) spa
e.

Comparing two subtrees rooted at triconnected components. For this, we 
onsider two

subtrees SGi
and THj

with |SGi
| = |THj

| = N rooted at tri
onne
ted 
omponent nodes Gi and Hj,

respe
tively. The 
ases that Gi and Hj are of di�erent types or are both 3-bonds are easy to

handle. Assume now that both are 
y
les or 3-
onne
ted 
omponents. Then we start 
onstru
ting

and 
omparing all the possible 
anons of Gi and Hj. We eliminate the larger ones and make

re
ursive 
omparisons whenever the 
anons en
ounter virtual edges simultaneously. We 
an keep

tra
k of the 
anons, whi
h are not eliminated, in 
onstant spa
e.

Suppose we 
onstru
t and 
ompare two 
anons Cg and Ch and 
onsider the moment when we

en
ounter virtual edges {a, b} and {a 0, b 0} in Cg and Ch, respe
tively. Now we re
ursively 
ompare

the subtrees rooted at the separating pair nodes {a, b} and {a 0, b 0}. Note, that we 
annot a�ord to

store the entire work-tape 
ontent. It suÆ
es to store the information of

• the 
anons whi
h are not eliminated,

• whi
h 
anons en
ountered the virtual edges 
orresponding to {a, b} and {a 0, b 0}, and

• the dire
tion in whi
h the virtual edges {a, b} and {a 0, b 0} were en
ountered.

This takes altogether O(1) spa
e.

When a re
ursive 
all is 
ompleted, we look at the work-tape and 
ompute the 
anons Cg

and Ch. Therefore, re
ompute the parent separating pair of the 
omponent, where the virtual

21



edge {a, b} is 
ontained. With a look on the bits stored on the work-tape, we 
an re
ompute the


anons Cg and Ch. Re
ompute for them, where {a, b} and {a 0, b 0} are en
ountered in the 
orre
t

dire
tion of the edges and resume the 
omputation from that point.

Although we only need O(1) spa
e per re
ursion level, we 
annot guarantee yet, that the

implementation of the algorithm des
ribed so far works in log-spa
e. The problem is, that the

subtrees where we go into re
ursion might be of size > N/2 and in this 
ase the re
ursion depth


an get too large. To get around this problem, we 
he
k whether Gi and Hj have a large 
hild,

before starting the 
onstru
tion and 
omparison of their 
anons. A large 
hild is a 
hild whi
h has

size > N/2. If we �nd a large 
hild of Gi and Hj then we 
ompare them a priori and store the result

of their re
ursive 
omparison. Be
ause Gi and Hj 
an have at most one large 
hild ea
h, this needs

only O(1) additional bits. Now, whenever the virtual edges 
orresponding to the large 
hildren

from SGi
and THj

are en
ountered simultaneously in a 
anon of Gi and Hj, the stored result 
an be

used, thus avoiding a re
ursive 
all.

Comparing two subtrees rooted at separating pairs. Consider two subtrees S{a,b} and T{a 0,b 0}

of size N, rooted at separating pair nodes {a, b} and {a 0, b 0}, respe
tively. We start 
omparing all

the subtrees SGi
and THj

of S{a,b} and T{a 0,b 0}, respe
tively. These subtrees are rooted at tri
onne
ted


omponents and we 
an use the implementation des
ribed above. Therefore, we store on the work-

tape the 
ounters c<, c=, c>. If they turn out to be pairwise equal, we 
ompute the orientation


ounters Oj and O 0

j of the isomorphism 
lasses Ij and I 0j , for all j. The isomorphism 
lasses are


omputed via the order pro�les of the subtrees, as in Lindell's algorithm.

When we return from re
ursion, it is an easy task to �nd {a, b} and {a 0, b 0} again, sin
e a

tri
onne
ted 
omponent has a unique parent, whi
h always is a separating pair node. Sin
e we

have the 
ounters c<, c=, c> and the orientation 
ounters on the work-tape, we 
an pro
eed with

the next 
omparison.

Let kj be the number of subtrees in Ij. The 
ounters c<, c=, c> and the orientation 
ounters

need altogether at most O(log kj) spa
e. From the orientation 
ounters we also get the referen
e

orientation of {a, b}. Let Nj be the size of the subtrees in Ij. Then we have Nj � N/kj. This would

lead to a log-spa
e implementation as in Lindell's algorithm ex
ept for the 
ase that Nj is large,

i.e. Nj > N/2.

We handle the 
ase of large 
hildren as above: we re
urse on large 
hildren a priori and store

the result in O(1) bits. Then we pro
ess the other subtrees of S{a,b} and T{a 0,b 0}. When we rea
h

the size-
lass of the large 
hild, we know the referen
e orientation, if any. Now we use the stored

result to 
ompare the orientations given by the large 
hildren to their respe
tive parent, and return

the result a

ordingly.

As seen above, while 
omparing two trees of size N, the algorithm uses no spa
e for making a

re
ursive 
all for a subtree of size larger than N/2, and it uses O(log kj) spa
e if the subtrees are of

size at most N/kj, where kj � 2. Hen
e we get the same re
urren
e for the spa
e S(N) as Lindell:

S(N) � max

j
S

 

N

kj

!

+O(log kj),

where kj � 2 for all j. Thus S(N) = O(logN). Note that the number n of nodes of G is in general

22



smaller than N, be
ause the separating pair nodes o

ur in all 
omponents split o� by this pair.

But we 
ertainly have n � N � O(n2) [HT73℄. This proves the following theorem.

Theorem 4.11. The isomorphism order between two tri
onne
ted 
omponent trees of bi
on-

ne
ted planar graphs 
an be 
omputed in log-spa
e.

4.5 The Canon of a Biconnected Planar Graph

On
e we know the order among the subtrees, it is straightforward to 
anonize the tri
onne
ted


omponent tree S. We traverse S in the tree isomorphism order as in Lindell's algorithm, outputting

the 
anon of ea
h of the nodes along with virtual edges and delimiters. That is, we output a `['

while going down a subtree, and `℄' while going up a subtree. We 
all this list of delimiters and


anons of 
omponents a 
anoni
al list of S.

We need to 
hoose a separating pair as root for the tree. Sin
e there is no distinguished

separating pair, we simply 
y
le through all of them. Sin
e there are less than n2
many separating

pairs, a log-spa
e transdu
er 
an 
y
le through all of them and 
an determine the separating pair

whi
h, when 
hosen as the root, leads to the lexi
ographi
ally minimum 
anoni
al list of S. We


all this the tree-
anon of S. We des
ribe the 
anonization pro
edure for a �xed root, say {a, b}.

The 
anonization pro
edure has two steps. In the �rst step we 
ompute the 
anoni
al list

for S{a,b}. In the se
ond step we 
ompute the 
anon for the bi
onne
ted planar graph from the


anoni
al list.

Canonical list of a subtree rooted at a separating pair. Consider a subtree S{a,b} rooted

at the separating pair node {a, b}. We start with 
omputing the referen
e orientation of {a, b} and

output the edge in this dire
tion. This 
an be done by 
omparing the 
hildren of the separating pair

node {a, b} a

ording to their isomorphism order with the help of the ora
le. Then we re
ursively

output the 
anoni
al lists of the subtrees of {a, b} a

ording to the in
reasing isomorphism order.

Among isomorphi
 siblings, those whi
h give the referen
e orientation to the parent are 
onsidered

before those whi
h give the reverse orientation. We denote this 
anoni
al list of edges l(S, a, b). If

the subtree rooted at {a, b} does not give any orientation to {a, b}, then take that orientation for

{a, b}, in whi
h it is en
ountered during the 
onstru
tion of the above 
anon of its parent.

Assume now, the parent of S{a,b} is a tri
onne
ted 
omponent. In the symmetri
 
ase, S{a,b}
does not give an orientation of {a, b} to its parent. Then take the referen
e orientation whi
h is

given to the parent of all siblings.

Canonical list of a subtree rooted at a triconnected component. Consider the subtree SGi

rooted at the tri
onne
ted 
omponent node Gi. Let {a, b} be the parent separating pair of SGi
with

referen
e orientation (a, b). If Gi is a 3-bond then output its 
anoni
al list l(Gi, a, b) as (a, b).

If Gi is a 
y
le then it has a unique 
anoni
al list with respe
t to the orientation (a, b), that is

l(Gi, a, b).

Now we 
onsider the 
ase that Gi is a 3-
onne
ted 
omponent. Then Gi has two possible 
anons

with respe
t to the orientation (a, b), one for ea
h of the two embeddings. Query the ora
le for the

embedding that leads to the lexi
ographi
ally smaller 
anoni
al list and output it as l(Gi, a, b). If
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we en
ounter a virtual edge {c, d} during the 
onstru
tion, we determine its referen
e orientation

with the help of the ora
le and output it in this dire
tion. If the 
hildren of the virtual edge do

not give an orientation, we output {c, d} in the dire
tion in whi
h it is en
ountered during the


onstru
tion of the 
anon for Gi. Finally, the 
hildren rooted at separating pair node {c, d} are

ordered with the 
anoni
al order pro
edure.

We give now an example. Consider the 
anoni
al list l(S, a, b) of edges for the tree S{a,b} of

Figure 4.2 on page 16. Let si be the edge 
onne
ting the verti
es ai with bi. We also write for

short l 0(Si, si) whi
h is one of l(Si, ai, bi) or l(Si, bi, ai). The dire
tion of si is as des
ribed above.

l(S, a, b) = [ (a, b) l(SG1
, a, b) . . . l(SGk

, a, b) ], where

l(SG1
, a, b) = [ l(G1, a, b) l

0(S1, s1) . . . l 0(Sl1 , sl1) ]

...

l(SGk
, a, b) = [ l(Gk, a, b) l

0(Slk , slk) ]

Canon for the biconnected planar graph. This list is now almost the 
anon, ex
ept that the

names of the verti
es are still the ones they have in G. Clearly, a 
anon must be independent of the

original names of the verti
es. The �nal 
anon for S{a,b} 
an be obtained by a log-spa
e transdu
er

whi
h relabels the verti
es in the order of their �rst o

urren
e in this 
anoni
al list and outputs

the list using these new labels.

Note that the 
anoni
al list of edges 
ontains virtual edges as well, whi
h are not a part of G.

However, this is not a problem as the virtual edges 
an be distinguished from real edges be
ause

of the presen
e of 3-bonds. To get the 
anon for G, remove these virtual edges and the delimiters

`[' and `℄' in the 
anon for S{a,b}. This is suÆ
ient, be
ause we des
ribe here a bije
tive fun
tion f

whi
h transforms an automorphism φ of S{a,b} into an automorphism f(φ) for G with {a, b} �xed.

This 
ompletes the proof of Theorem 4.1.

5 Canonization of Planar Graphs

In this se
tion we use all the ma
hinery built so far to obtain our main result.

Theorem 5.1. The 
anonization of planar graphs is in log-spa
e.

The proof of this is presented in the following subse
tions. In Se
tion 5.1, we �rst de�ne

the bi
onne
ted 
omponent tree of a 
onne
ted planar graph and list some of its properties. In

Se
tion 5.2, we de�ne an isomorphism order for bi
onne
ted 
omponent trees. Two trees will

have the same order if and only if the planar graphs represented by them are isomorphi
. The


omputation of su
h an order gives a test for isomorphism of planar graphs. In Se
tion 5.3 we

do a spa
e analysis of our algorithm and show that isomorphism testing 
an be done in log-spa
e

for planar graphs. Finally, in Se
tion 5.4 we give a log-spa
e 
anonization algorithm. This proves

Theorem 5.1.
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5.1 Biconnected Component Tree of a Planar Graph

Bi
onne
ted 
omponent trees are de�ned analogously to tri
onne
ted 
omponent trees. Re
all from

Se
tion 2 that when a graph is split along an arti
ulation point a, ea
h bi
onne
ted split 
omponent


ontains a 
opy of a.

Definition 5.2. Let G be a 
onne
ted graph. The bi
onne
ted 
omponent tree T of G is the

following graph. There is a node for ea
h bi
onne
ted 
omponent and for ea
h arti
ulation

point of G. There is an edge in T between the node for bi
onne
ted 
omponent B and the

node for an arti
ulation point a, if a o

urs in B.

It is easy to see that the graph T obtained in De�nition 5.2 is in fa
t a tree. This tree is unique,

i.e. independent of the order in whi
h the arti
ulation points are 
hosen to split graph G. The

bi
onne
ted 
omponent tree 
an be 
onstru
ted in log-spa
e: arti
ulation points 
an be 
omputed

in log-spa
e as explained in Se
tion 2. Two verti
es are in the same bi
onne
ted 
omponent, if

they are not separated by an arti
ulation point.

In the dis
ussion below, we refer to a 
opy of an arti
ulation point in a bi
onne
ted 
omponent B

as an arti
ulation point in B. Although an arti
ulation point a has at most one 
opy in ea
h

of the bi
onne
ted 
omponents, the 
orresponding tri
onne
ted 
omponent trees 
an have many


opies of a, in 
ase it belongs to a separating pair in the bi
onne
ted 
omponent.

Given a planar graph G, we root its bi
onne
ted 
omponent tree at an arti
ulation point.

During the isomorphism ordering of two su
h trees S and T , we 
an �x the root of S arbitrarily and

make an equality test for all 
hoi
es of roots for T , as in Lindell's algorithm and as in Se
tion 4.3.

As there are � n arti
ulation points, a log-spa
e transdu
er 
an 
y
le through all of them for the


hoi
e of the root for T . We state some properties of bi
onne
ted 
omponent trees.

Lemma 5.3. Let B be a bi
onne
ted 
omponent in the bi
onne
ted 
omponent tree S and

let T (B) be its tri
onne
ted 
omponent tree. Then the following holds.

1. S has a unique 
enter.

2. If an arti
ulation point a of S appears in a separating pair node s in T (B), then it

appears in all the tri
onne
ted 
omponent nodes whi
h are adja
ent to s in T (B).

3. If an arti
ulation point a appears in two nodes C and D in T (B), it appears in all

the nodes that lie on the path between C and D in T (B). Hen
e, there is a unique

node A in T (B) that 
ontains a whi
h is nearest to the 
enter of T (B). We 
all A the

tri
onne
ted 
omponent asso
iated with a.

The proofs of the above properties follow easily through folklore graph theoreti
 arguments and

are omitted here.

5.2 Isomorphism Order for Biconnected Component Trees

In this se
tion, we start with two bi
onne
ted 
omponent trees of 
onne
ted planar graphs and

give a log-spa
e test for isomorphism of the planar graphs represented by them. The idea is again
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to 
ome up with an order on the bi
onne
ted 
omponent trees, similar to the 
ase of tri
onne
ted


omponent trees. We 
all the resulting order the isomorphism order for bi
onne
ted 
omponent

trees. We ensure that two bi
onne
ted 
omponent trees are equal with respe
t to this order if and

only if the planar graphs represented by them are isomorphi
.

The size of a tri
onne
ted 
omponent tree was de�ned in De�nition 4.7 on page 16. Here we

extend the de�nition to bi
onne
ted 
omponent trees.

Definition 5.4. Let B be a bi
onne
ted 
omponent node in a bi
onne
ted 
omponent tree S,

and let T (B) be the tri
onne
ted 
omponent tree of B. The size of B is de�ned as |T (B)|. The

size of an arti
ulation point node in S is de�ned as 1. The size of S, denoted by |S|, is the

sum of the sizes of its 
omponent nodes

Note that the arti
ulation points in the de�nition may be 
ounted several times, namely in

every 
omponent they o

ur.

Let S and T be two bi
onne
ted 
omponent trees rooted at nodes s and t 
orresponding to

arti
ulation points a and a 0

, and let #s and #t be the number of 
hildren of s and t, respe
tively.

We de�ne S <
B

T if:

1. |S| < |T | or

2. |S| = |T | but #s < #t or

3. |S| = |T |, #s = #t = k, but (SB1
, . . . , SBk

) <
B

(TB 0

1
, . . . , TB 0

k
) lexi
ographi
ally, where we

assume that SB1
�

B

� � � �

B

SBk
and TB 0

1
�

B

� � � �

B

TB 0

k
are the ordered subtrees of S and T ,

respe
tively.

We postpone the de�nition of the order between the subtrees SBi
and TB 0

j
in step 3 to Se
tion 5.2.1

below.

We say that two bi
onne
ted 
omponent trees are equal a

ording to the isomorphism order,

denoted by S �
B

T , if neither of S <
B

T and T <
B

S holds.

Figure 5.1 illustrates the de�nition.

5.2.1 Outline of the algorithm for computing the isomorphism order

The steps 1 and 2 above are easy to implement in log-spa
e, as done before. We now give the

details for step 3.

Assume that equality is found in step 1 and 2. The indu
tive ordering of the subtrees of S and T

pro
eeds exa
tly as in Lindell's algorithm, by partitioning them into size-
lasses and 
omparing

the 
hildren in the same size-
lass re
ursively. The book-keeping required (e.g. the order pro�le of

a node, the number of nodes in a size-
lass that have been 
ompared so far) is similar to that in

Lindell's algorithm.

To 
ompare two subtrees SB and TB 0

, rooted at bi
onne
ted 
omponent nodes B and B 0

, re-

spe
tively, we start by 
onstru
ting and 
omparing the 
anons of their tri
onne
ted 
omponent

trees T (B) and T (B 0). To do so, we have to 
hoose a separating pair as root in ea
h of T (B)

and T (B 0).
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Figure 5.1: Comparison of the bi
onne
ted 
omponent trees Sa and Ta 0

rooted at nodes for

arti
ulation points a and a 0

. If the root nodes have the same number k of 
hildren, we 
ompare

the nodes B1, . . . , Bk of Sa with the nodes B 0

1, . . . , B
0

k of Ta 0

. Thereby, we re
ursively 
ompare the

subtrees at the arti
ulation nodes we �nd in these 
omponents.

For notation, we 
all it the outer algorithm when we do 
omparisons for the bi
onne
ted


omponent trees SB and TB 0

. The outer algorithm at this point invokes the inner algorithm, the

re
ursive 
omparison algorithm for T (B) and T (B 0).

The inner algorithm may en
ounter several 
opies of arti
ulation points a, a 0

, inside T (B)

and T (B 0), respe
tively. Figure 5.2 shows an example. We want to 
hoose one of them where we

go into re
ursion.

a

SB

a

B

v

u

wu

u w

u

u v

b

b b

b

v

w

A

s

a a

Sa a

T (B)

Figure 5.2: A bi
onne
ted 
omponent tree SB rooted at bi
onne
ted 
omponent B whi
h has an

arti
ulation point a as 
hild, whi
h o

urs several times in the tri
onne
ted 
omponent tree T (B)

of B. In A and the other tri
onne
ted 
omponents the dashed edges are separating pairs.

Definition 5.5. The referen
e 
opy of an arti
ulation point a in the rooted tri
onne
ted 
om-

ponent tree T (B) is the 
opy of point a whi
h is 
losest to the root of T (B).

By Lemma 5.3, the referen
e 
opy is de�ned uniquely.

27



All but the referen
e 
opies of these arti
ulation points are ignored by this algorithm. For the

referen
e 
opies, the 
urrent order pro�les 
omputed by the inner algorithm so far are stored in the

memory and the outer algorithm takes over for re
ursively 
omparing subtrees of a, a 0

. This swit
h

between inner and outer algorithm thus 
auses some bits of storage in the memory. The main task

is to limit the number of things that are stored, in order to get an overall log-spa
e bound.

To bound the spa
e, it is 
ru
ial to limit the 
hoi
es of separating pair nodes of T (B) and T (B 0)

whi
h 
an be used as roots for these trees. For now, we will assume that the number of 
hoi
es for

the root is at most κ, and pro
eed with the des
ription of the inner and outer algorithms. We will

give appropriate bounds on κ in Se
tion 5.2.2 below.

• For κ possibilities of roots, one is �xed for T (B) and the 
anoni
al ordering of it is 
ompared

with that of T (B 0) a

ording to <
T

, for all 
hoi
es of κ roots. This is then done for ea
h


hoi
e of the root of T (B). The aim is to 
ompare the minimum 
anoni
al 
odes of T (B)

and T (B 0) and return the result.

• The 
omparison of T (B) and T (B 0) for some 
hoi
es of roots is now 
arried out using the iso-

morphism order pro
edure for tri
onne
ted 
omponent trees. During the 
omparison of T (B)

and T (B 0), if a 
opy of an arti
ulation point is en
ountered in a 
anoni
al 
ode of a tri
on-

ne
ted 
omponent node C of T (B), but not in that of the 
orresponding node C 0

in T (B 0),

then that 
anoni
al 
ode for C is 
onsidered to be larger and is eliminated. If 
opies of arti
-

ulation points u and u 0

are en
ountered simultaneously in nodes C and C 0

, and if they are

their referen
e 
opies, a re
ursive 
all to the isomorphism order pro
edure for bi
onne
ted


omponent trees (outer algorithm) is made, to 
ompare the subtrees of SB and T 0

B rooted at u

and u 0

. If the 
opies en
ountered are not the referen
e 
opies, then equality is assumed and

the inner algorithm pro
eeds. While making the re
ursive 
all, the 
urrent order pro�le of C

or C 0

is stored along with the bit-ve
tor for already eliminated 
anoni
al 
odes.

5.2.2 Limiting the number of possible choices for the root separating pair

Here we prove that the 
hoi
es for the root nodes in tri
onne
ted 
omponent trees 
an be bounded

e�e
tively.

Besides the parent a, let B have arti
ulation points a1, . . . , al for some integer l � 0, su
h

that aj is the root node of the subtree Saj
of Sa (see Figure 5.1 on page 27). We partition

the subtrees Sa1
, . . . , Sal

into 
lasses E1, . . . , Ep of equal size subtrees, where size is a

ording to

De�nition 5.4. Let kj = |Ej| be the number of subtrees in Ej. Let the order of the size 
lasses

be su
h that k1 � k2 � � � � � kp. All arti
ulation points with their subtrees in size 
lass Ej are


olored with 
olor j. Re
all from Lemma 5.3 that arti
ulation point a is asso
iated with the unique


omponent A in T (B) that 
ontains a and is nearest to the 
enter C0 of T (B).

To limit the number of potential root nodes for T (B), we do a 
ase analysis a

ording to

properties of the 
enter C0 of T (B). In some of the 
ases, we su

eed dire
tly to give the desired

bound. In the remaining 
ases, we will show that the number of automorphisms of the 
enter C0 is

small. This suÆ
es for our purpose: in this 
ase, for every edge as starting edge, we 
anonize the


omponent C0 separately, i.e. without going into re
ursion on the separating pairs and arti
ulation

points of C0. Thereby we 
onstru
t the set of starting edges, say E0, that lead to the minimum 
anon
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for C0. Although there are polynomially many possible 
andidates for the 
anon, the minimum

ones are bounded by the number of automorphisms of C0, whi
h is small.

Now we take the �rst separating pair en
ountered in ea
h of the 
andidate 
anons obtained

when starting from edges in S. We take this set of separating pairs as the potential root nodes

for T (B), and hen
e, its 
ardinality is bounded by the number of automorphisms of C0.

If B 
ontains no separating pairs, i.e. B = C0, we 
y
le through the edges in S to 
ompute the


anon of B.

We start our 
ase analysis. Re
all that arti
ulation point a is the parent of B and C0 is the


enter of the tri
onne
ted 
omponent tree T (B).

• The center C0 of T (B) is a separating pair. We 
hoose this separating pair as the root

of T (B). Thus we have only one 
hoi
e for the root.

• C0 is a triconnected component and a is not associated with C0. Let a be asso
iated

with a tri
onne
ted 
omponent A in T (B). We �nd the path from A to C0 in T (B) and �nd

the separating pair 
losest to C0 on this path. This serves as the unique 
hoi
e for the root

of T (B).

• C0 is a cycle and a is associated with C0. Consider the virtual edges 
losest to a on


y
le C0. There are at most two of them. We 
hoose the separating pairs 
orresponding to

these virtual edges as the root 
andidates of T (B). Thus we get at most two 
hoi
es for the

root of T (B).

• C0 is a 3-connected component and a is associated with C0. We pro
eed with a 
ase

analysis a

ording to the number l of arti
ulation points in B besides a.

Case I: l = 0. B is a leaf node in Sa, it 
ontains no arti
ulation points besides a. We 
olor a

with a distin
t 
olor. In this 
ase we 
an 
y
le through all separating pairs as root for T (B).

Case II: l = 1. If B has exa
tly one arti
ulation point besides a, say a1, then we pro
ess

this 
hild a priori and store the result. We 
olor a and a1 with distin
t 
olors and pro
eed

with B as in 
ase of a leaf node.

Case III: l � 2. We distinguish two sub-
ases.

1. Some articulation point aj in class E1 is not associated with C0. Let aj be

asso
iated with a tri
onne
ted 
omponent D 6= C0. Find the path from D to C0 in T (B)

and sele
t the separating pair node 
losest to C0 on this path. Thus aj uniquely de�nes

a separating pair. In the worst 
ase, this may happen for every aj in E1. Therefore, we

get up to k1 separating pairs as 
andidates for the root.

2. All articulation points in E1 are associated with C0. We distinguish sub-
ases

a

ording to the size of E1.

(a) If k1 � 2, then by Lemma 5.8 below, C0 
an have at most 2k1 automorphisms.

Thus, we have at most 2k1 ways of 
hoosing the root of T (B).
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(b) If k1 = 1, then we 
onsider the next larger 
lass of subtrees, E2. We handle the 
ases

for E2 exa
tly as for E1. However, we do not need to pro
eed to E3, be
ause we 
an

handle the 
ase k1 = k2 = 1 dire
tly.

i. Some articulation point aj in E2 is not associated with C0. We do

the same with aj as in sub-
ase III (1). We get up to k2 separating pairs as


andidates for the root.

ii. All articulation points in E2 are associated with C0.

If k2 � 2, then we pro
ess the 
hild in E1 a priori and store the result. Similar

as in sub-
ase III (2a), we have at most 2k2 ways of 
hoosing the root of T (B).

If k2 = 1, then C has at least three verti
es that are �xed by all its automor-

phisms i.e. a and the arti
ulation point with its subtree in E1 and that in E2.

We will show in Corollary 5.7 below that C0 has at most one non-trivial auto-

morphism in this 
ase. Thus, we have at most two ways of 
hoosing the root

of T (B).

Let N = |SB|. We assume that all subtrees are of size � N/2 be
ause otherwise su
h a subtree is


onsidered as large and pro
essed a priori by the algorithm as opposed to going into the re
ursion

for it (see page 34 for details).

It remains to prove the bounds 
laimed above on the number of automorphism of the 3-


onne
ted 
omponents. We use the following lemma that provides an automorphism preserving

embedding of a 3-
onne
ted planar graph on the 2-sphere.

Lemma 5.6. [Bab95℄ (P. Mani) Every 3-
onne
ted planar graph G 
an be embedded on the 2-

sphere as a 
onvex polytope P su
h that the automorphism group of G is indu
ed by the

automorphism group of the 
onvex polytope P formed by the embedding.

The following 
orollary of the lemma justi�es sub-
ase III (2b ii).

Corollary 5.7. Let G be a 3-
onne
ted planar graph with at least 3 
olored verti
es, ea
h

having a distin
t 
olor. Then G has at most one non-trivial automorphism.

Proof. An automorphism of G has to �x all the 
olored verti
es. Consider the embedding of G on

a 2-sphere from Lemma 5.6. The only possible symmetry is a re
e
tion about the plane 
ontaining

the 
olored verti
es, whi
h leads to exa
tly one non-trivial automorphism.

The following lemma gives a relation between the size of the smallest 
olor 
lass and the number

of automorphisms for a 3-
onne
ted planar graph with one distin
tly 
olored vertex when the size

of the se
ond largest 
olor 
lass is at least 2 as 
onsidered in sub
ase III (2a).

Lemma 5.8. Let G be a 3-
onne
ted planar graph with 
olors on its verti
es su
h that one

vertex a is 
olored distin
tly, and let k � 2 be the size of the smallest 
olor 
lass apart from

the one whi
h 
ontains a. Then G has � 2k automorphisms.

Proof. Point a is �xed, therefore the orientation preserving part of the automorphism group is


y
li
 (see e.g. Lemma 3 in [AD04℄) and extends as rotations to the sphere. By Lemma 5.6 this

implies that there are at most k su
h rotations. Thus if we add the rotation reversing part we get

an upper bound of 2k on the order of the automorphism group.
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5.2.3 Summary and correctness of the isomorphism order

We argue that two bi
onne
ted 
omponent trees are equal for the isomorphism order for some


hoi
e of the root, if and only if the 
orresponding graphs are isomorphi
.

Theorem 5.9. Given two 
onne
ted planar graphs G and H, and their bi
onne
ted 
omponent

trees S and T , then G ∼= H if and only if there is a 
hoi
e of arti
ulation points a, a 0

in G

and H su
h that Sa �B

Ta 0

.

Proof. Assume that Sa �B

Ta 0

. The argument is an indu
tion on the depth of the trees that follows

the indu
tive de�nition of the isomorphism order. The indu
tion goes from depth d+2 to d. If the

grand
hildren of arti
ulation points, say s and t, are �
B

-equal up to step 3, then we 
ompare the


hildren of s and t. If they are equal, we 
an extend the �

B

-equality to the arti
ulation points s

and t.

When subtrees are rooted at arti
ulation point nodes, the 
omparison des
ribes an order on the

subgraphs whi
h 
orrespond to split 
omponents of the arti
ulation points. The order des
ribes

an isomorphism among the split 
omponents.

When subtrees are rooted at bi
onne
ted 
omponent nodes, say Bi and B 0

j , the 
omparison

states equality if the 
omponents have the same 
anon, i.e. are isomorphi
 (
f. Theorem 4.10) and

by indu
tion hypothesis, we know that the 
hildren rooted at arti
ulation points of Bi and B 0

j are

isomorphi
. The equality in the 
omparisons indu
tively des
ribes an isomorphism between the

verti
es in the 
hildren of the root nodes.

Hen
e, the isomorphism between the 
hildren at any level 
an be extended to an isomorphism

between the 
orresponding subgraphs in G and H and therefore to G and H itself.

The reverse dire
tion holds easily as well. Suppose G and H are isomorphi
 and there is an

isomorphism between G and H that maps the arti
ulation point a of G to the arti
ulation point a 0

of H. One needs to prove that the bi
onne
ted 
omponent trees Sa of G and Ta 0

of H rooted

respe
tively at a and a 0

will be �

B

. Again, we pro
eed by indu
tion on the depth of Sa and Ta 0

. An

isomorphism maps arti
ulation points of G to arti
ulation points of H. Further, this isomorphism

des
ribes a permutation of the split 
omponents of the arti
ulation points. By indu
tion hypothesis,

the 
hildren at depth d+2 of two su
h bi
onne
ted 
omponents are isomorphi
 and equal a

ording

to �

B

. Thus, 
ombined with the isomorphism of 
orresponding bi
onne
ted 
omponents and the

de�nition of �

B

, this yields the reverse dire
tion and 
ompletes the proof.

5.3 Space Complexity of the Isomorphism Order Algorithm

The spa
e analysis of the isomorphism order algorithm is similar to that of Lindell's algorithm. We

highlight the di�eren
es needed in the analysis �rst.

When we 
ompare bi
onne
ted 
omponents B and B 0

in the bi
onne
ted 
omponent tree then

a typi
al query is of the form (s, r), where s is the 
hosen root of the tri
onne
ted 
omponent tree

and r is the index of the edge in the 
anon, whi
h is to be retrieved. If there are k 
hoi
es for

the root for the tri
onne
ted 
omponent trees of B and B 0

, the base ma
hine 
y
les through all

of them one by one, keeping tra
k of the minimum 
anon. This takes O(log k) spa
e. From the

dis
ussion above, we know that the possible 
hoi
es for the root 
an be restri
ted to O(k), and that
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the subtrees rooted at the 
hildren of B have size � |SB|/k, when k � 2. Hen
e the 
omparison

of B and B 0


an be done in log-spa
e in this 
ase.

We 
ompare the tri
onne
ted 
omponent trees T (B) and T (B 0) a

ording to B and B 0

. When

we 
ompare tri
onne
ted 
omponents in T (B) and T (B 0) then the algorithm asks ora
le queries to

the tri
onne
ted planar graph 
anonization algorithm. The base ma
hine retrieves edges in these


anons one by one from the ora
le and 
ompares them. Two edges (a, b) and (a 0, b 0) are 
ompared

by �rst 
omparing a and a 0

. If both are arti
ulation points, we 
he
k whether we rea
h them for

the �rst time, i.e., whether we are at the referen
e 
opies of a and a 0

. In this 
ase, we 
ompare the

bi
onne
ted subtrees Sa and Sa 0

rooted at a and a 0

. If these are equal then we look, whether (a, b)

and (a 0, b 0) are separating pairs. If so, then we 
ompare their tri
onne
ted subtrees. If these are

equal then we pro
eed with the next edge, e.g. (b, c), and 
ontinue in the same way.

Next we show that the position of the referen
e 
opy of an arti
ulation point i.e. the 
ompo-

nent A and the position in the 
anon for A, 
an be found again after re
ursion without storing any

extra information on the work-tape.

Lemma 5.10. The referen
e 
opy of an arti
ulation point a in T (B) and a 0

in T (B 0) for the


omparison of tri
onne
ted 
omponent trees T (B) with T (B 0) 
an be found in log-spa
e.

Proof. To prove the lemma, we distinguish three 
ases for a in T (B). Assume, that we have the

same situation for a 0

in T (B 0). If not, then we found an inequality. We de�ne now a unique


omponent A, where a is 
ontained. We distinguish the following 
ases.

• Arti
ulation point a o

urs in the root separating pair of T (B). That is, a o

urs already at

the beginning of the 
omparisons for T (B). Then we de�ne A as the root separating pair.

• Arti
ulation point a o

urs in separating pairs other than the root of T (B). Then a o

urs

in all the 
omponent nodes, whi
h 
ontain su
h a separating pair. By the 
onstru
tion of

the tree, these nodes form a 
onne
ted subtree of T (B). Hen
e, one of these 
omponent

nodes is the 
losest to the root of T (B). This 
omponent is always a tri
onne
ted 
omponent

node. Let A be this 
omponent. Note, that the 
omparison �rst 
ompares a with a 0

before


omparing the bi
onne
ted or tri
onne
ted subtrees, so we rea
h these 
opies �rst in the


omparison.

• Arti
ulation point a does not o

ur in a separating pair. Then, a o

urs in only one tri
on-

ne
ted 
omponent node in T (B). Let A be this 
omponent.

In all ex
ept the �rst 
ase, we �nd a in a tri
onne
ted 
omponent node A �rst. Let a 0

be found

�rst in 
omponent node A 0

, a

ordingly. Assume, we start the 
omparison of A and A 0

. More

pre
isely, we start to 
ompare the 
anons C of A and C 0

of A 0

bit for bit. We go into re
ursion if

and only if we rea
h the �rst edge in the 
anons whi
h 
ontain a and a 0

. Note, that C 
an 
ontain

more than one edge with endpoint a. On all the other edges in C and C 0

we do not go again into

re
ursion. It is easy to see, that we 
an re
ompute the �rst o

urren
e of A and A 0

.

Comparing two subtrees rooted at separating pairs or triconnected components. We

go into re
ursion at separating pairs and tri
onne
ted 
omponents in T (B) and T (B 0). When we
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rea
h a referen
e 
opy of an arti
ulation point in both trees, then we interrupt the 
omparison of B

with B 0

and go into re
ursion as des
ribed before, i.e. we 
ompare the 
orresponding arti
ulation

point nodes, the 
hildren of B and B 0

. When we return from re
ursion, we pro
eed with the


omparison of T (B) and T (B 0).

In this part we 
on
entrate on the 
omparison of T (B) and T (B 0). We give an overview of

what is stored on the work-tape when we go into re
ursion at separating pairs and tri
onne
ted


omponents. Basi
ally, the 
omparison is similar to that in Se
tion 4.4. We summarize the 
hanges.

• We use the size fun
tion a

ording to De�nition 5.4. That is, the size of a tri
onne
ted

subtree rooted at a node C in T (B) also in
ludes the sizes of the bi
onne
ted subtrees rooted

at the referen
e arti
ulation points whi
h appear in the subtree of T (B) rooted at C.

• For a root separating pair node, we store at most O(log k) bits on the work-tape, when we

have k 
andidates as root separating pairs for T (B). Hen
e, whenever we make re
omputa-

tions in T (B), we have to �nd the root separating pair node �rst. For this, we 
ompute T (B)

in log-spa
e and with the rules des
ribed above, we �nd the 
andidate edges in log-spa
e.

With the bits on the work-tape, we know whi
h of these 
andidate edges is the 
urrent root

separating pair. We pro
eed as in the 
ase of non-root separating pair nodes des
ribed next.

• For a non-root separating pair node and tri
onne
ted 
omponent nodes, we store the same

on the work-tape as des
ribed in Se
tion 4.4, i.e. the 
ounters c<, c=, c>, orientation 
ounters

for separating pair nodes, and the information of the 
urrent 
anon for tri
onne
ted 
om-

ponent nodes. First, re
ompute the root separating pair node, then we 
an determine the

parent 
omponent node. With the information on the work-tape, we 
an pro
eed with the


omputations as des
ribed in Se
tion 4.4.

For the tri
onne
ted 
omponent trees T (B) and T (B 0), we get the same spa
e-bounds as in the

previous se
tion on page 22. That is, for the 
ross-
omparison of the 
hildren of separating pair

nodes s of T (B) and t of T (B 0) we use O(log kj) spa
e when we go into re
ursion on subtrees of

size � N/kj, where N is the size of the subtree rooted at s and kj is the 
ardinality of the j-th

isomorphism 
lass. For ea
h su
h 
hild (a tri
onne
ted 
omponent node), we use O(1) bits, when

we go into re
ursion. In the 
ase we have large 
hildren (of size � N/2), we treat them a priori.

We will dis
uss this below.

When we 
onsider the trees Sa and Sa 0

rooted at arti
ulation points a and a 0

then we have

for the 
ross 
omparison of their 
hildren, say B1, . . . , Bk and B 0

1, . . . , B
0

k respe
tively, a similar

spa
e analysis as in the 
ase of separating pair nodes. That is, we use O(log kj) spa
e when we

go into re
ursion on subtrees of size � N/kj, where N = |Sa| and kj is the 
ardinality of the j-th

isomorphism 
lass. Large 
hildren (of size � N/2) are treated a priori. We will dis
uss this below.

When we 
ompare bi
onne
ted 
omponents Bi and B 0

i, then we 
ompute T (Bi) and T (B 0

i).

We have a set of separating pairs as 
andidates for the root of T (Bi). Re
all, that for Bi, its


hildren are partitioned into size 
lasses. Let ki be the number of elements of the smallest size


lass with ki � 2, there are O(ki) separating pairs as roots for T (Bi). Ex
ept for the trivial 
ases,

the algorithm uses O(log ki) spa
e when it starts to 
ompare the trees T (Bi) and T (B 0

i).

Assume now that we 
ompare T (Bi) and T (B 0

i). In parti
ular, assume we 
ompare tri
onne
ted


omponents A and A 0

of these trees. We follow the 
anons of A and A 0

as des
ribed above, until
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we rea
h arti
ulation points, say a and a 0

. First, we re
ompute whether a and a 0

already o

urred

in the parent node. If not, then we re
ompute the 
anons of A and A 0

and 
he
k, whether a and a 0

o

ur for the �rst time. If so, then we store nothing and go into re
ursion.

When we return from re
ursion, we re
ompute the 
omponents A and A 0

in T (B) and T (B 0).

On the work-tape there is information about whi
h are the 
urrent and the unerased 
anons. We

run through the 
urrent 
anons and �nd the �rst o

urren
e of a and a 0

.

Large children. As in the 
ase of bi
onne
ted graphs in Se
tion 4.1, we deviate from the algo-

rithm des
ribed so far in the 
ase that the re
ursion would lead to a large 
hild. Large subtrees

are again treated a priori.

However, the notion of a large 
hild is somewhat subtle here. We already de�ned the size of

bi
onne
ted 
omponent trees Sa and SB with an arti
ulation point a or a bi
onne
ted 
omponent B

as root. A large 
hild of su
h a tree of size N is a 
hild of size � N/2.

Now 
onsider T (B), the tri
onne
ted 
omponent tree of B. Let A be a tri
onne
ted 
omponent

and {u, v} be a separating pair in T (B). We have not yet de�ned the subtrees SA and S{u,v} rooted

at A and {u, v}, respe
tively, and this has to be done quite 
arefully.

Definition 5.11. Let B be a bi
onne
ted 
omponent and T (B) its tri
onne
ted 
omponent

tree. Let C be a node in T (B), i.e. a tri
onne
ted 
omponent node or a separating pair node.

The tree S�C rooted at C 
onsists of the subtree of T (B) rooted at C (with respe
t to the root

of T (B)) and of the subtrees Sa for all arti
ulation points a that have a referen
e 
opy in the

subtree of T (B) rooted at C, ex
ept those Sa that are a large 
hild of SB. The size of S�C is the

sum of the sizes of its 
omponents.

Let N be the size of S�C. A large 
hild of S�C is a subtree of C of size � N/2.

We already des
ribed above that an arti
ulation point a may o

ur in several 
omponents of

a tri
onne
ted 
omponent tree. We said that we go into re
ursion to the bi
onne
ted 
omponent

tree Sa only on
e, namely either when we rea
h the referen
e 
opy of a, or even before in the

following 
ase: let a be an arti
ulation point in the bi
onne
ted 
omponent B and let C be the

node in T (B) that 
ontains the referen
e 
opy of a. Then it might be the 
ase that Sa is a large


hild of SB and of S�C. In this 
ase we visit Sa when we rea
h B, i.e. before we start to 
ompute

the root for T (B). Then, when we rea
h the referen
e 
opy of a in C, we �rst 
he
k whether

we already visited Sa. In this 
ase the 
omparison result (with some large 
hild Sa 0

of B 0

) is

already stored on the work-tape and we do not visit Sa a se
ond time. Note, if we would go into

re
ursion at the referen
e 
opy a se
ond time then we 
annot guarantee the log-spa
e bound of

the transdu
er, be
ause we already have written bits on the work-tape for B when we traverse the


hild, the bi
onne
ted subtree Sa for the se
ond time. Otherwise, we visit Sa at the referen
e 
opy

of a.

Consequently, we 
onsider Sa as a subtree only at the pla
e where we go into re
ursion to Sa.

Re
all, that this is not a stati
 property, be
ause for example the position of the referen
e 
opy

depends on the 
hosen root of the tree, and we try several possibilities for the root. Figure 5.3

shows an example.

We summarize, the algorithm rea
hes a 
omponent a, B or C as above, it �rst 
he
ks whether the


orresponding tree Sa, SB, or S
�

C has a large 
hild and treats it a priori. The result is stored with O(1)
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Figure 5.3: The tri
onne
ted 
omponent tree T (B) of the bi
onne
ted 
omponent B. The tri-


onne
ted 
omponent A 
ontains the referen
e 
opy of arti
ulation point a. If Sa is not a large


hild of B, then the subtree SA 
onsists of the subtree of T (B) rooted at A and the subtree Sa. In


ontrast, Sa is not part of the subtree S{a,b} be
ause it does not 
ontain the referen
e 
opy of a.

bits. In the 
ase of tri
onne
ted 
omponents, we also store the orientation. We distinguish large


hildren as follows.

• Large 
hildren with respe
t to the bi
onne
ted 
omponent tree. These are 
hildren of node a

in Sa or B in SB. These 
hildren are bi
onne
ted 
omponent nodes or arti
ulation point

nodes. When 
omparing SB with SB 0

, then we go for large 
hildren into re
ursion before


omputing the trees T (B) and T (B 0).

• Large 
hildren with respe
t to the tri
onne
ted 
omponent tree. These are 
hildren of node C

in S�C. These 
hildren are separating pair nodes, tri
onne
ted 
omponent nodes.

• Large 
hildren with respe
t to S�C, where C is a node in T (B). These are 
hildren of node B

in SB whi
h are not large 
hildren of B. These 
hildren are arti
ulation point nodes whi
h

have a referen
e 
opy in C.

We analyze the 
omparison algorithm when it 
ompares subtrees rooted at separating pairs

and subtrees rooted at arti
ulation points. For the analysis, the re
ursion goes here from depth d

to d+ 2 of the trees. Observe, that large 
hildren are handled a priori at any level of the trees. We

set up the following re
ursion equation for the spa
e requirement of our algorithm.

S(N) = max

j
S

 

N

kj

!

+O(log kj),

where kj � 2 (for all j) are the values mentioned above in the 
orresponding 
ases. Hen
e, S(N) =

O(logN).

For the explanation of the re
ursion equation it is helpful to imagine that we have two work-

tapes. We use the �rst work-tape when we go into re
ursion at arti
ulation point nodes, and the
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se
ond work-tape when we go into re
ursion at separating pair nodes. The total spa
e needed is

the sum of the spa
e of the two work-tapes.

• At an arti
ulation point node, the value kj is the number of elements in the j-th size 
lass

among the 
hildren B1, . . . , Bk of the arti
ulation point node. We store O(log kj) bits and

re
ursively 
onsider subtrees of size � N/kj.

• At a separating pair node the value kj is the number of elements in the j-th isomorphism


lass among the 
hildren G1, . . . , Gk of the separating pair node. We store O(log kj) bits and

re
ursively 
onsider subtrees of size � N/kj.

This �nishes the 
omplexity analysis. We get the following theorem.

Theorem 5.12. The isomorphism order between two planar graphs 
an be 
omputed in log-

spa
e.

5.4 The Canon of a Planar Graph

From Theorem 5.12, we know that the isomorphism order of bi
onne
ted 
omponent trees 
an be


omputed in log-spa
e. Using this algorithm, we show that the 
anon of a planar graph 
an be

output in log-spa
e.

The 
anonization of planar graphs pro
eeds exa
tly as in the 
ase of bi
onne
ted planar graphs.

A log-spa
e pro
edure traverses the bi
onne
ted 
omponent tree and makes ora
le queries to the

isomorphism order algorithm and outputs a 
anoni
al list of edges, along with delimiters to separate

the lists for siblings.

For an example, 
onsider the 
anoni
al list l(S, a) of edges for the tree Sa of Figure 5.1 on

page 27. Let l(Bi, a) be the 
anoni
al list of edges of the bi
onne
ted 
omponent Bi, i.e. the


anoni
al list of T (Bi) with a the parent arti
ulation point. Let a1, . . . , al1 be the order of the

referen
e 
opies of arti
ulation points as they o

ur in the 
anon of T (Bi). Then we get the

following 
anoni
al list for Sa.

l(S, a) = [ (a) l(SB1
, a) . . . l(SBk

, a) ], where

l(SB1
, a) = [ l(B1, a) l(Sa1

, a1) . . . l(Sal1
, al1) ]

...

l(SBk
, a) = [ l(Bk, a) l(Salk

, alk) ]

A log-spa
e transdu
er then renames the verti
es a

ording to their �rst o

urren
e in this list,

to get the �nal 
anon for the bi
onne
ted 
omponent tree. This 
anon depends upon the 
hoi
e

of the root of the bi
onne
ted 
omponent tree. Further log-spa
e transdu
ers 
y
le through all

the arti
ulation points as roots to �nd the minimum 
anon among them, then rename the verti
es

a

ording to their �rst o

urren
e in the 
anon and �nally, remove the virtual edges and delimiters

to obtain a 
anon for the planar graph. This proves Theorem 5.1.
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6 Conclusion

In this paper, we improve the known upper bound for isomorphism and 
anonization of planar

graphs from AC1
to L. This implies L-
ompleteness for this problem, thereby settling its 
omplexity.

An interesting question is to extend it to other important 
lasses of graphs.
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