
On Closure Properties of #Pin the Context of PF �#P �Mitsunori OgiharayDept. Computer ScienceUniv. of Rochester(ogiwara@cs.rochester.edu) Thomas ThieraufFakult�at f�ur InformatikUniverst�at Ulm(thierauf@informatik.uni-ulm.de)Seinosuke TodaDept. Computer ScienceUniv. Electro-Communications(toda@cs.uec.ac.jp) Osamu WatanabeDept. Computer ScienceTokyo Institute of Technology(watanabe@cs.titech.ac.jp)AbstractFor any operator � on integer-valued functions, we say that #P is closed under � incontext PF�#P if, for every f 2 #P, � [f] belongs to PF �#P. For several operators � , it isshown that the closure properties of #P under � in the above sense is closely related to therelationships between P#P[1] and higher classes such as PHPP and PPPP.1. IntroductionCounting is one of the key notions in computation. Recently, various counting problems havereceived considerable attention (see, e.g., [Sch90]) and, in order to model them, there have beenintroduced and extensively studied complexity classes called counting classes , typi�ed by func-tion classes #P [Val79], spanP [KST89], and GapP [FFK94], and language classes PP [Gil77],�P [PZ83], C=P [Sim75, Wag86a], and the counting hierarchy CH [Tor91, Wag86b]. Unfortu-nately, many of the questions regarding counting classes, even the ones about inclusion relation,are left open. Confronted with such di�culties in resolving problems absolutely, researchers have�A part of the work was done while the �rst author was visiting Department of Computer Science, State Uni-versity of New York at Bu�alo, and the second, third, and fourth authors were visiting Department of ComputerScience, University of Rochester. This research is supported in part by JSPS/NSF International CollaborationGrant JSPS-ENGR-207/NSF-INT-9116781. The �rst author is supported in part by NSF Grant grant CCR-9002292. The second author is supported in part by DFG Postdoctorial Scholarship Th 472/1-1 and NSF grantCCR-8957604.yPreviously known as Mitsunori Ogiwara. 1

devised tools to obtain relative answers that promote a better understanding of the original que-stions. (Cf. Even though the P=?NP question is open, through various research, now we haveample knowledge about how NP would be di�erent from P if they were di�erent.) The purposeof this paper is to introduce a structural concept that helps us to deepen our understanding onrelationships between counting classes.The central counting class is #P, the class of functions that count the number of solutionsto NP decision problems. The class #P is known to contain many natural functions, such asthe permanent of integer matrices, which is one of the �rst nontrivial functions proven to bein #P and, in fact, proven to be #P-complete [Val79]. With the increase in the number ofinteresting examples, the properties of #P, especially, the closure properties of #P, has becomea central research topic. Intuitively, we say that #P is closed under an operation � if thefunctions constructed by applying � to #P functions always belong to #P. For instance, forany #P functions f(x) and g(x), the functions f(x) + g(x) and f(x)g(x) also belong to #P,Here we say that #P is closed under addition and multiplication and that both addition andmultiplication are closure properties of #P. Closure properties of #P have played importantroles, both explicitly and implicitly, in the study of counting classes of languages [BHW91,BRS91, CH90, FR91], and many closure properties possessed by #P have been found (See[OH93]). Nevertheless, the class does not seem to possess closure properties under some primitiveoperations, such as modi�ed subtraction.1Ogiwara and Hemachandra [OH93] have established the theory for closure properties offunction classes. They have clari�ed why #P seems to lack such primitive closure properties.They showed that #P is closed under modi�ed subtraction if and only if the counting hierarchycollapses to UP, which is the smallest counting class. Informally put, we cannot hope thatmodi�ed subtraction of #P functions is done by #P unless all the decision problems in thecounting hierarchy, including those belonging to the polynomial-time hierarchy, are solved byNP machines that have at most one accepting path per input.Although it is not likely that #P functions can compute modi�ed subtraction of #P-functions, we notice that subtraction is almost computed by #P functions. Let f(x) and g(x)be two #P functions and p(n) be a polynomial such that maxff(x); g(x)g < 2p(jxj) for all x.Then it is easy to design a #P function h(x) such that for all x, h(x) = 2p(jxj) + (f(x)� g(x)).Clearly, the �rst bit of h(x) represents the sign of f(x) � g(x) and the last p(jxj) bits of h(x)represent f(x)�g(x). So, we can easily retrieve f(x)�g(x) from h(x). Here we may say that thefunction h(x) realizes the subtraction of f(x) and g(x), as the actual value of the subtraction isencoded in the binary representation of h(x), and we might as well say that #P is closed undersubtraction in some weaker sense, as we only have to do some simple post-computation on the1The modi�ed subtraction of m from n, denoted by n 	m, is maxfn �m; 0g. Since #P functions are alwaysnonnegative, #P is provably not closed under the usual subtraction.2

outcome of a #P function. This observation is generalized to the following de�nition of closureproperties of #P in context PF �#P.De�nition 1.1. For any operator (or, functor) � , let � [#P] denote the class of functions ob-tained by applying � to some function in #P, and let PF �#P = fh � f : h 2 PF; f 2 #Pg,where h � f denotes the ordinary composition of the two functions and PF denotes the class ofall polynomial-time computable functions.We say that #P is closed under � in context PF �#P if � [#P] � PF �#P.In other words, � is a closure property of #P in context PF�#P if the function generated by ap-plying � to #P can be computed by #P with supplementary polynomial-time post-computation.We have chosen PF �#P from the point of view that we should keep our context as close aspossible to #P. But, in fact, the above de�nition can be easily extended to an arbitrary context.However, as far as it concerns our results, our proof techniques can be applied to any largercontext to show results similar to the ones we will prove.By allowing polynomial-time post-computation and extending the context from #P to PF�#P, we have cured the weakness of #P, i.e., the lack of closure properties under some primitiveoperations. Indeed, it is easy to see that, in context of PF � #P, the class is closed not onlyunder modi�ed subtraction but also under many `hard' closure properties [OH93]. This leads usto question \What is the limit of the closure properties of #P in context PF �#P?" In orderto answer this question, we seek to �nd closure properties that are provably possessed by #P(lower bounds) as well as those that do not seem to be possessed by #P (upper bounds). Webelieve that clarifying the limit will shed lights on the computational power of PF �#P and, inturn, on the structure of #P.Consider the following two notions of majority computing operators, which we call the weakmajority and the (strong) majority, respectively.2 For any function f : �� ! N and any stringx in ��,majw[f](x) = 8<: y; if more than half of f(h1; xi); : : : ; f(h2jxj; xi) are equal to y;some value; otherwise;maj[f](x) = 8<: y; if more than half of f(h1; xi); : : : ; f(h2jxj; xi) are equal to y;?; otherwise,where \?" 2 �� is a special symbol not representing an element in N.Both the weak majority majw[f] and the (strong) majority maj[f] take the same value y ify gains a majority in the values of f . But, when there is no majority, they behave di�erently;2As we shall see in the next section, formally, we will consider classes of operators instead of one �xed operator.3

majw[f] takes the value \?" to inform that there is no majority while majw[f] may take anarbitrary value. The di�erence seems crucial, for, as we shall see in Section 3, the followingresults hold:(1) #P is closed under majw in context PF�#P,3(2) #P is closed under maj in context PF�#P if and only if P#P[1] = PPPP (or, equivalently,CH collapses to P#P[1]).Thus, we conclude that the limit of the closure properties of #P in context PF �#P is betweenthe weak majority and the strong majority, and that the crucial factor that (possibly) separatesP#P[1] and PPPP is that only one question to #P does not help to detect whether the majorityexists among exponentially many values of a #P function.We also seek to �nd results similar to (2) above, i.e., the results characterizing collapses ofcounting classes in terms of the closure properties of #P. We think such characterizations willbe useful (in some cases) for analyzing relationships among counting classes. In Section 4, weprovide such results with respect to closure properties median, plurality, and maximum.2. PreliminariesIn this paper, we follow standard de�nitions and notations in computational complexity theory(see, e.g., [BDG88, BDG91]).Throughout this paper, we �x our alphabet to � = f0; 1g; by a string we mean an elementof ��, and by a language we mean a subset of ��. Natural numbers are encoded in �� in anordinary way, and let N denote the set of (encoded) natural numbers. For any string x, letjxj denote the length of x, and for any set X , let kXk denote the cardinality of X . For anylanguage L, let L�n be the set f x 2 L : jxj � n g. The standard lexicographic ordering of ��is used; that is, for strings x; y 2 ��, x is lexicographically smaller than y (denoted by x < y) ifeither (i) jxj < jyj, or (ii) jxj = jyj and there exists z; u; v 2 �� such that x = z0u and y = z1v.We consider a standard one-to-one pairing function from ����� to �� that is computable andinvertible in polynomial time. For inputs x and y, we denote the output of the pairing functionby x#y; this notation is extended to denote every n tuple. Furthermore, we assume that forall (x; y) and (x0; y0) such that jxj = jx0j and jyj = jy0j, we have jx#yj = jx0#y0j.Throughout this paper we assume that functions are total.For our computation model, we consider standard Turing machines. A machine is eitherdeterministic or nondeterministic, and a deterministic machine is either an acceptor or a trans-ducer, while a nondeterministic Turing machine is always an acceptor. We also consider a querymachine, i.e., a machine that can ask queries to a given oracle. In this paper, an oracle iseither a set or a function; for each oracle type, we adopt the standard query mechanism for our3We show that for an appropriate choice of the values when there is no majority, the weak majority of #Pfunctions can be done in context PF �#P. 4

query machines. We assume that the nondeterministic branching degree at each guessing stateis always two. For a nondeterministic machine M and any string x, let accM (x) (resp., rejM (x),totalM(x)) denote the number of accepting paths (resp., the number of rejecting paths, the totalnumber of paths) of M on input x.In what follows, we de�ne the complexity classes used in this paper. Below, we denote by Cany class of either languages or functions, and we de�ne those classes relative to C. Nonrelativizedclasses are de�ned as special cases in which the empty oracle is used.(1) PC is the class of languages L for which there exist some polynomial time-bounded deter-ministic query acceptor M and some oracle X in C such that for all x 2 ��, x 2 L if andonly if MX accepts x.(2) NPC is the class of languages L for which there exist some polynomial time-bounded non-deterministic query acceptor M and some oracle X in C such that for all x 2 ��, x 2 L ifand only if accMX (x) > 0.(3) PPC is the class of languages L for which there exist some polynomial time-bounded non-deterministic acceptor M and some oracle X in C such that for all x 2 ��, x 2 L if andonly if accMX(x) > totalMX (x)=2.(4) C=PC is the class of languages L for which there exist some polynomial time-boundednondeterministic acceptor M , some integer-valued function f in PF, and some oracle X inC such that for all x 2 ��, x 2 L if and only if accMX(x) = f(x).(5) PFC is the class of functions that are computable by some polynomial time-bounded querytransducer with some oracle in C.(6) #PC is the class of total functions f : �� ! N for which there exist some polynomialtime-bounded nondeterministic query acceptor M and some oracle X in C such that for allx 2 ��, f(x) = accMX (x).By restricting the way of asking queries, we can de�ne various subclasses of the above classes.Here we de�ne those that are used in our discussion.(7) PC[1] (resp., PFC[1]) is the class of languages accepted (resp., computed) by some polynomial-time deterministic query machine relative to some oracle in C, where the query machine asksat most one query per input. (Such query machines are called one-query machines.)The polynomial-time hierarchy and the counting hierarchy are de�ned as follows.(8) PHC is the class NPC [NPNPC [NPNPNPC [: : : , where classes NPNPC , NPNPNPC ; : : : arede�ned inductively. PFHC is the class of functions that are computable in polynomial timerelative to any language in PHC.(9) CHC is the class PPC [PPPPC [PPPPPPC [: : : , where classes PPPPC , PPPPPPC ; : : : are5

de�ned inductively.We will mainly deal with the following language classes: P#P[1], P#P, PH, PHPP, PPPP,and CH. We know that PPPH � P#P[1] [Tod91] and P#P[1] � P#P � PHPP � PPPPP � CH.None of these inclusions are known to be proper. Below, we list several elementary facts onthese classes, which are used in proving our results. They are either obvious or easy to prove.Proposition 2.1.(1) PF �#P = PF#P[1].(2) PFCH = CH.(3) PPPP � P#P[1] if and only if CH = P#P[1] if and only if PFCH � PF#P[1].(4) NPPP � P#P[1] if and only if CH = P#P[1] if and only if PFCH � PF#P[1].We will further use the following technical result on C=P due to Simon [Sim75] and theresults on PPPP and NPPP that are slight modi�cation of the results due to Tor�an [Tor91].Lemma 2.2.(1) [Sim75] Let A 2 C=P. Then there exist a polynomial q and a polynomial-time nondeter-ministic machine M such that for all x, the following conditions are satis�ed:(i) totalM (x) = 2q(jxj), (ii) accM(x) � 2q(jxj)�1, and(iii) x 2 A if and only if accM (x) = rejM (x) = 2q(jxj)�1.(2) [Tor91] A set L is in PPPP if and only if there exist a polynomial p and a set A 2 C=Psuch that for every x,x 2 L () jjfw 2 �p(jxj) : x#w 2 A gjj � 2p(jxj)�1 + 1; andx 62 L () jjfw 2 �p(jxj) : x#w 2 A gjj � 2p(jxj)�1 � 1:(3) [Tor91] A set L is in NPPP if and only if there exist a polynomial p and a set A 2 C=Psuch that for every x, we have x 2 L () jjfw 2 �p(jxj) : x#w 2 A gjj � 1.The operators we study as closure properties are based on the following functions on N�,where N� is the set of tuples of N. Let (x1; :::; xm) be any element in N� and let � be some�xed function from N� to N.maj(x1; : : : ; xm) = 8<: y; if more than half of x1; : : : ; xm are equal to y,?; otherwise (where ? is some symbol not in N),maj�w(x1; : : : ; xm) = 8<: y; if more than half of x1; : : : ; xm are equal to y,�(x1; : : : ; xm); otherwise,mid(x1; : : : ; xm) = the b(m+ 1)=2c-th smallest value6

in the ordering xi1 � � � � � xim of x1; : : : ; xm,plu(x1; : : : ; xm) = the set of the most commonly occurring number(s)amongst x1; : : : ; xm,plu�(x1; : : : ; xm) = the smallest value in plu(x1; : : : ; xm),max(x1; : : : ; xm) = the largest number in fx1; : : : ; xmg,Let us say a few words about \mid". When the number m of elements is odd, then themedian, i.e., the middle element, is unambiguous since it is the (m + 1)=2-th smallest element.However, when m is even, there are two candidates for the median, namely the b(m+ 1)=2c-thand the d(m+1)=2e-th smallest element, which are called the left and right median, respectively.We de�ned \mid" as a function taking the left median. As shown in [OH93], sometimes one hasto be careful about which median function is chosen. However, our results concerned with themedian operator hold for the right median operator as well.An operator is de�ned as a functor mapping one function to another. We de�ne now theoperator classes that we are interested in. Let f be a function on ��, and let � be some functionfromN� to N. Below, e denotes a polynomial-time computable function of �� to N (in binary).poly-pre[f] = f f � h : h 2 PF g;poly-post[f] = f h � f : h 2 PF g;poly[f] = poly-pre[f] [poly-post[f];maj[f] = f g : g(x) = maj(f(1; x); : : : ; f(e(x); x)) for some e 2 PF g;maj�w[f] = f g : g(x) = maj�w(f(1; x); : : : ; f(e(x); x)) for some e 2 PF g;mid[f] = f g : g(x) = mid(f(1; x); : : : ; f(e(x); x)) for some e 2 PF g;plu[f] = f g : g(x) = plu�(f(1; x); : : : ; f(e(x); x)) for some e 2 PF g; andmax[f] = f g : g(x) = max(f(1; x); : : : ; f(e(x); x)) for some e 2 PF g:For any class of functions F and any operator class � , we de�ne � [F] to be the classSf � [f] : f 2 F g.It is clear that #P is closed under poly-pre. Thus, for discussing closure properties of #P,our choice of a pairing function h�; �i is not essential. On the other hand, #P is not known tobe closed under poly-post.We can now reformulate our questions concerning closure properties of #P in context PF �#P as follows. Let � be any of the operator classes de�ned above. Then we ask whether� [#P] � poly[#P]. We will show that this in fact holds for � =maj�w for an appropriate choiceof �, and this does not hold for � = maj, mid, plu, or max unless some implausible collapseoccurs. 7

3. On the Majority OperatorsWe show in this section that #P is closed under the weak majority operator in context PF�#P, but not closed under the majority operator in context PF�#P, unless the counting hierarchycollapses. In the proof of our �rst theorem, we need the following result of Toda [Tod91].Lemma 3.1. [Tod91] Let T 0 2 #P, q be a polynomial, and m � 2 be a natural number. Thenthere is a function T 2 #P such that for all x 2 �� of length n,T 0(x) � 0 (mod m) =) T (x) � 0 (mod mq(n)); andT 0(x) � �1 (mod m) =) T (x) � �1 (mod mq(n)):Theorem 3.2. #P is closed under maj�w in context PF �#P, for some function � : N� ! N.4Proof. Let f 2 #P, let e be a polynomial-time computable function, and let g(x) =maj(f(1; x); : : : ; f(e(x); x)). Our goal is to design a polynomial time-bounded deterministictransducer M0 that, for each input x, asks one query to some function f0 2 #P and outputsg(x), if the majority exists. Noting that PF �#P = PF#P[1], this clearly proves the theorem.As we do not have to worry about detecting the nonexistence of the majority, we may de�nethe function � : N� ! N as the output of M0.Let x 2 �n and p be a polynomial such that for all i � e(x), f(i; x) < 2p(n) and e(x) < 2p(n).Let mi denote the i-th prime number. By the Prime Number Theorem, mi � 2i2, for everyi � 1. Hence, primes m1; : : : ; mp(n) are computable within polynomial time in n. Also, notethat f(i; x) < m1 � � �mp(n), for all i � e(x).We de�ne a function u0 as follows. For all strings x and integers i; j; k such that 1 � i � e(x),1 � j � p(n), and 0 � k < mj ,u0(i; x; j; k) = (f(i; x) + (mj � k))mj�1:Clearly, u0 is in #P. By the Fermat's little Theorem, for all integers i; j; k such that 1 � i � e(x),1 � j � p(n), and 0 � k < mj , we have� f(i; x) � k (mod mj) =) u0(i; x; j; k)� 0 (mod mj), and� f(i; x) 6� k (mod mj) =) u0(i; x; j; k)� 1 (mod mj).Apply Lemma 3.1 to T 0(i; x; j; k) = u0(i; x; j; k) + (mj � 1) and q = p. Then we get T 2 #Psatisfying the conditions mentioned in the lemma. De�ne u = T + 1. Then we have:� u0(i; x; j; k)� 0 (mod mj) =) u(i; x; j; k)� 0 (mod mp(n)j), and4Preceding to this work, essentially the same result was proven in a quite di�erent form in a manuscript byBeigel, Tarui, and Toda. But, in the conference version [BTT92], the result is stated in a weaker form. Thoughthe result will appear in their journal version, since its style is quite di�erent and does not �t in our paper, weinclude the full proof of the theorem. 8

� u0(i; x; j; k)� 1 (mod mj) =) u(i; x; j; k)� 1 (mod mp(n)j).De�ne a function v by v(x; j; k) = Xi�e(x) u(i; x; j; k):Clearly, v is in #P. Furthermore, for all strings x of length n and all integers j; k such that1 � j � p(n) and 0 � k < mj , we havev(x; j; k) mod mp(n)j = jjf i � e(x) : f(i; x) 6� k (mod mj) gjj;and thereforee(x)� (v(x; j; k) mod mp(n)j) = jjf i � e(x) : f(i; x)� k (mod mj) gjj:Now, suppose g(x) 6= ?, i.e., the majority exists. Then, for each prime mj , there exists aunique kj < mj such that g(x) � kj (mod mj). Therefore, more than e(x)=2 of the i's satisfyf(i; x) � kj (mod mj). Conversely, for all k < mj that are di�erent from kj , there are lessthan e(x)=2 of the i's such that f(i; x) � k (mod mj). Thus, we observe that for every j andk with 1 � j � p(n) and 0 � k < mj ,g(x) � k (mod mj) () e(x)� (v(x; j; k) mod mp(n)j) > e(x)=2:By the last observation, when we get the values v(x; j; k) for all j and k with 1 � j � p(n)and 0 � k < mj , we can compute the unique kj < mj such that g(x) � kj (mod mj). Then,using the Chinese Remainder Theorem, we can compute g(x) from the mj 's and kj's withinpolynomial time in n.By using standard methods, we can construct a function f0 in #P such that all the valuesv(x; j; k) for all j and k with 1 � j � p(n) and 0 � k < mj , are computable from f0(x) withinpolynomial time in n. Hence, some polynomial time-bounded deterministic query transducerM0, given any input x, can compute g(x) by asking one query, namely x, to f0. tuTheorem 3.2 states that the majority of exponentially many values of a #P function canbe computed by a #P function as long as the majority exists. Can we expect from the newfunction to receive information on the existence of the majority? The following theorem statesthat we cannot expect this unless the counting hierarchy collapses.Theorem 3.3. #P is closed under maj in context PF �#P if and only if P#P[1] = PPPP.Proof. Suppose that #P is closed undermaj in context PF�#P. We will show PPPP � P#P[1].Let L be any set in PPPP. By Lemma 2.2 (2), there exist a set A 2 C=P and a polynomial psuch that for all x 2 �n,x 2 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 + 1; andx 62 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 � 1:9

Furthermore, by Lemma 2.2 (1), there exist a polynomial time-bounded nondeterministicmachine M and a polynomial q(�; �) such that for all x 2 �n and w 2 �p(n), it holdsthat totalM (x#w) = 2q(n;p(n)), accM (x#w) � 2q(n;p(n))�1, and x#w 2 A if and only ifaccM (x#w) = rejM(x#w) = 2q(n;p(n))�1.De�ne f and g as follows. For each x 2 �� and each i; 1 � i � 2p(jxj), let f(i; x) =accM (x#w), where w is the i-th smallest string among those of length p(jxj) (in the lexicographicordering), and let g(x) = maj(f(1; x); : : : ; f(2p(jxj); x)):Clearly, f 2 #P. So, by our supposition that #P is closed under maj in context PF �#P, g isin PF �#P = PF#P[1].We claim that for all x 2 �n, x 2 L if and only if g(x) = 2q(n;p(n))�1. To see one direction,assume x 2 L. Then more than half of the strings w 2 �p(n) satisfy x#w 2 A, and therefore,more than half of the integers i with 1 � i � 2p(n) satisfy f(i; x) = 2q(n;p(n))�1. Thus, we haveg(x) = 2q(n;p(n))�1. To see the converse, assume x 62 L. Then less than half of the stringsw 2 �p(n) satisfy x#w 2 A. This implies that less than half of the integers i with 1 � i � 2p(n)satisfy f(i; x) = 2q(n;p(n))�1. Thus 2q(n;p(n))�1 is not the majority of (f(1; x); : : : ; f(2p(n); x)).Hence, using the one-query machine for g, we can construct a machine that accepts L inpolynomial time asking one query to a #P function. We leave the details to the reader.Next suppose that P#P[1] = PPPP. By Proposition 2.1, we have CH = P#P[1]. Let f 2 #Pand e 2 PF. It su�ces to show that g(x) = maj(f(1; x); : : : ; f(e(x); x)) is in PFCH, for sinceCH = P#P[1], we have g 2 PF#P[1] = PF �#P.De�ne a set G by G = f x#k : x 2 ��, k is a positive integer, and g(x) = k g. Obviously,for all x#k, we have x#k 2 G if and only if f(i; x) = k for more than e(x)=2 of the integers iwith 1 � i � e(x). We conclude that G is in PPC=P. Furthermore, de�ne a set H by H = f x#j: x 2 ��, j is a positive integer, g(x) 6= ?, and the j-th bit of the binary representation of g(x)is 1 g. It is easy to see that H is in NPG � CH. This implies that g is in PFCH, because g is inPFH . tuThe following corollary is immediate from the theorem.Corollary 3.4. #P is closed undermaj in context PF�#P if and only if the counting hierarchyCH collapses to P#P[1].4. On the Median, Plurality, and Maximum OperatorsIn this section, we consider the closure properties of #P under the median, plurality, andmaximum operators. We will show that, as for (strong) majority, #P is not closed under themedian or plurality operators in context PF �#P, unless the counting hierarchy collapses. For10

the maximum operators, we can argue along the same line, but we need a slightly strongerhypothesis.We start by considering the median operators. In light of Toda's result [Tod90] that themid operators applied to polynomial-time computable functions characterize PF#P = PFPP,we can observe that the mid operators are strong enough to capture the computational powerof PP-computations. Our result below is inspired with this observation.Theorem 4.1. #P is closed under mid in context PF �#P if and only if P#P[1] = PPPP.Proof. Suppose that #P is closed undermid in context PF�#P. We will show PPPP � P#P[1].Let L 2 PPPP. By Lemma 2.2 (2), there exist a set A 2 C=P and a polynomial p such that forall x 2 �n, x 2 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 + 1; andx 62 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 � 1:Furthermore, by Lemma 2.2 (1), there is a polynomial time-bounded nondeterministic ma-chine M and a polynomial q(�; �) such that for all x 2 �n and w 2 �p(n), we have totalM (x#w) =2q(n;p(n)), accM (x#w) � 2q(n;p(n))�1, and x#w 2 A if and only if accM(x#w) = rejM(x#w) =2q(n;p(n))�1.De�ne f and g as follows. For each x 2 �� and each i; 1 � i � 2p(jxj),� f(i; x) = accM(x#w), where w is the i-th smallest string among those of length p(jxj), and� g(x) = mid(f(1; x); : : : ; f(2p(jxj); x)).We claim that for every x 2 �n, x 2 L if and only if g(x) = 2q(n;p(n))�1. Suppose x 2 L.Then, for more than half of w 2 �p(n), x#w 2 A. Thus, for more than half of integers i with1 � i � 2p(n), f(i; x) = 2q(n;p(n))�1. Moreover, there is no integer i with 1 � i � 2p(n) such thatf(i; x) > 2q(n;p(n))�1. Therefore, we have g(x) = 2q(n;p(n))�1. On the other hand, suppose x 62 L.Then, for all strings w of length p(n), accM(x#w) < 2q(n;p(n))�1. So, 2q(n;p(n))�1 never appearsin (f(1; x); : : : ; f(2p(n); x)) and hence, it cannot be g(x). Thus, the claim holds. Since g is inPF �#P = PF#P[1] by our assumption, we can conclude that L is in P#P[1].Conversely, suppose PPPP = P#P[1]. Let g(x) = mid(f(1; x); : : : ; f(e(x); x)), where f is afunction in #P and e is a function in PF. We will show that g is in PFCH.For all x 2 �n and all positive integers k, g(x) = k if and only if the following conditionsare satis�ed:(1) f(i; x) = k for some i with 1 � i � e(x),(2) jjf i � e(x) : f(i; x)< k gjj < e(x)=2, and(3) jjf i � e(x) : f(i; x)> k gjj � e(x)=2.De�ne G = fx#k : g(x) = kg. From the above conditions, we have G 2 PPPP. De�ne H =fx#j : the j-th bit of the binary representation of g(x) is 1 g. Clearly, H is in NPG and hence11

in CH. Since g 2 PFH , we conclude that g is in PFCH, which is, by our assumption combinedwith Proposition 2.1, PF#P[1]. tuCorollary 4.2. #P is closed undermid in context PF�#P if and only if the counting hierarchyCH collapses to P#P[1].Next, we consider the plurality operators. Since there is a certain similarity between pluralityand majority, one might expect that one can somehow simulate the majority operators by theplurality operators. The proof of the following result is based on this intuition.Theorem 4.3. #P is closed under plu in context PF �#P if and only if P#P[1] = PPPP.Proof. Assume that #P is closed under plu in context PF �#P. We will show that PPPP �P#P[1]. Let L 2 PPPP. By Lemma 2.2 (2), there exist a set A 2 C=P and a polynomial p suchthat for all x 2 �n,x 2 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 + 1; andx 62 L () jjfw 2 �p(n) : x#w 2 A gjj � 2p(n)�1 � 1:Furthermore, by Lemma 2.2 (1), there is a polynomial time-bounded nondeterministic ma-chine M and a polynomial q(�; �) such that for all x 2 �n and w 2 �p(n), we have totalM (x#w) =2q(n;p(n)), accM (x#w) � 2q(n;p(n))�1, and x#w 2 A if and only if accM(x#w) = rejM(x#w) =2q(n;p(n))�1.We de�ne N to be a nondeterministic machine that, given an input of the form x#wb withjwj = p(jxj) and b 2 f0; 1g, operates as follows:(1) If b = 0, then N simulates M on input x#w.(2) If b = 1 and the last bit of w is 0, then N nondeterministically guesses u of lengthq(jxj; p(jxj)) and halts in an accepting state.(3) If b = 1 and the last bit of w is 1, then N nondeterministically guesses u of lengthq(jxj; p(jxj)) and halts in a rejecting state.For any x 2 �n, the following facts on N follow immediately:(a) For exactly one forth of strings v of length p(n) + 1, accN (x#v) = 0.(b) For exactly one fourth of strings v of length p(n) + 1, accN(x#v) = 2q(n;p(n)).(c) If x 2 L, then for more than one fourth of strings v of length p(n) + 1, accN (x#v) =2q(n;p(n))�1.(d) If x 62 L, then for less than one fourth of strings v of length p(n) + 1, accN(x#v) =2q(n;p(n))�1. 12

Now de�ne functions f and g as follows. For each x 2 �n and i; 1 � i � 2p(n)+1, f(i; x) =accN (x#v), where v is the i-th smallest string among those of length p(n) + 1, and for each x,g(x) = plu�(f(1; x); : : : ; f(2p(jxj)+1; x)):We claim that for all x 2 �� of length n, x 2 L if and only if g(x) = 2q(n;p(n))�1. To see onedirection, assume x 2 L. Then, by condition (c) above, more than one forth of the integers iwith 1 � i � 2p(n)+1 satisfy f(i; x) = 2q(n;p(n))�1. Moreover, by conditions (a), (b), and (d), forall positive integers k other than 2q(n;p(n))�1, there are less than one forth of the integers i with1 � i � 2p(n)+1 such that f(i; x) = k. Therefore, 2q(n;p(n))�1 is the most commonly occurringnumber in (f(1; x); : : : ; f(2p(n)+1; x)); that is, g(x) = 2q(n;p(n))�1. To see the converse, assumex 62 L. Then, by condition (a) above, one forth of the integers i with 1 � i � 2p(n)+1 satisfyf(i; x) = 0. On the other hand, by condition (d), less than one forth satisfy f(i; x) = 2q(n;p(n))�1.Thus 2q(n;p(n))�1 is not a most commonly occurring number in (f(1; x); : : : ; f(2p(n)+1; x)); thatis, g(x) 6= 2q(n;p(n))�1.Since g is in PF#P[1] by our assumption on the closure property of #P under the pluralityoperators, we can conclude that L is in P#P[1].To show the converse implication, assume that PPPP = P#P[1]. Let g(x) =plu�(f(1; x); : : : ; f(e(x); x)), where f is a function in #P and e is a function in PF. We showthat g is in PFCH.We �rst de�ne a set G by G = fx#k : g(x) = kg. The following characterization of G isimmediate from the de�nition of the plu� operator: for all x 2 �� and all integers k, we havex#k 2 G if and only if(i) 8k0 [jjf i � e(x) : f(i; x) = k0 gjj � jjf i � e(x) : f(i; x) = k gjj], and(ii) 8k0 < k [jjf i � e(x) : f(i; x) = k0 gjj < jjf i � e(x) : f(i; x) = k gjj].This implies that G is in co-NPPPPP � CH. Next, we de�ne a set H by H = fx#j : the j-thbit of g(x) is one g. It obvious that H is in NPG. Hence H is also in CH. Since g is in PFH , wecan conclude that g is in PFCH. Combining Proposition 2.1 with our assumption, this impliesthat g is in PF#P[1]. tuCorollary 4.4. #P is closed under plu in context PF�#P if and only if the counting hierarchyCH collapses to P#P[1].Finally, we consider the maximum operators. Here, we have a slightly di�erent result, whichindicates in turn that the maximum operators are weaker than the other operators considered sofar. Krentel [Kre88] showed that the maximum operators applied to polynomial-time computablefunctions characterize PFNP. By this result, we can observe that the maximum operators arestrong enough to capture the computational power of NP-computations. The following result isinspired with this observation. 13

Theorem 4.5. #P is closed under max in context PF �#P if and only if P#P[1] = NPPP.Proof. Assume that #P is closed under max in context PF � #P. We will show that everylanguage in NPPP belongs to P#P[1]. Let L be in NPPP. By Lemma 2.2 (3), there exist a setA 2 C=P and a polynomial p such that for all x 2 ��,x 2 L () jjfw 2 �p(jxj) : x#w 2 A gjj � 1:Moreover, by Lemma 2.2 (1), there exist a polynomial time-bounded nondeterministic machineM and a polynomial q(�; �) such that for all x 2 �n and all w 2 �p(n), we have totalM(x#w) =2q(n;p(n)), accM(x#w) � 2q(n;p(n))�1, and x 2 A if and only if accM (x#w) = rejM (x#w) =2q(n;p(n))�1.De�ne functions f and g as follows. For each x 2 �n and i; 1 � i � 2p(n), f(i; x) =accN (x#w), where w is the i-th smallest string in �p(n), and for each x,g(x) = max(f(1; x); : : : ; f(2p(n); x)):We claim that for all x 2 �� of length n, x 2 L if and only if g(x) = 2q(n;p(n))�1. To see onedirection, assume x 2 L. Then there exists w 2 �p(n) such that x#w 2 A; that is, there existsan integer i; 1 � i � 2p(n), such that f(i; x) = 2q(n;p(n))�1. Since f(i; x) � 2q(n;p(n))�1 for allintegers i, we see that g(x) = 2q(n;p(n))�1. To see the converse, assume x 62 L. Then there existsno string w of length p(n) such that x#w 2 A; that is, for all integers i with 1 � i � 2p(n), wehave f(i; x) < 2q(n;p(n))�1. Thus we get that g(x) < 2q(n;p(n))�1. Thus the claim holds. Since gis in PF �#P = PF#P[1] by our assumption, the above observation implies L 2 P#P[1].To show the converse implication, assume NPPP = P#P[1]. Let g(x) =max(f(1; x); : : : ; f(e(x); x)), where f is a function in #P and e is a function in PF. We showthat g is in PFHPP. Then we can conclude, by Proposition 2.1, that g is in PF#P[1].De�ne G = fx#k : g(x) = kg. It is obvious that for all x 2 �� and all integers k, wehave x#k 2 G if and only if (i) there exists some i � e(x) such that f(i; x) = k, and (ii) for allj � e(x), f(j; x) � k. From (i) and (ii) we get that G is in PHPP. Furthermore, de�ne H =fx#j : the j-th bit of the binary representation of g(x) is 1 g. It is obvious that H is in NPG� PHPP. Since g is in PFH , we conclude that g is in PFHPP. tuCorollary 4.6. #P is closed under max in context PF �#P if and only if PHPP = P#P[1].5. Concluding RemarksWe have studied closure properties of #P in context PF � #P. As we have mentioned inSection 1, we are not restricting the context to the one we have chosen. Indeed, one can thinkof any complexity class with access to #P as context. Regarding the operators in this paper,14

however, our proof techniques can be carried over to larger classes. For example, we can showthat #P is closed under maj in context PF#P if and only if P#P = PPPP.But, for smaller classes, the situation seems to be di�erent. In Section 1, we have mentionedthat the modi�ed subtraction of #P functions can be retrieved from another #P function. As amatter of fact, the post-computation can even be done by small circuits of constant depth, i.e., byAC0-circuits. So, we may say that #P is closed under modi�ed subtraction in context AC0�#P.But, this argument does not seem to hold for several other `hard' closure properties in [OH93].Consider, for example, bf(x)=g(x)c for f 2 #P and nonzero g 2 #P. It is easy to design a#P function, say h(x) = f(x)2p(jxj) + g(x) for some suitably large polynomial p, from whichlogarithmically depth-bounded circuits can compute the division (see [BCH86]). But, combiningthe result of Furst, Saxe and Sipser [FSS84] with the easily provable fact that the parity functionis AC0-reducible to integer division, it is seen that no AC0 circuit can compute the division fromh above. Thus, studying the closure properties of #P in context AC0 �#P would give us otherinsight on the nature of #P-computations and hence of the counting hierarchy. Particularly, asa �rst trial along this line, it is interesting to ask whether there is a #P function from whichthe division can be computed by AC0 circuits.It would be meaningful to continue the investigation along the line described in this paper.In particular, it would be interesting to �nd more nontrivial closure properties of #P withrespect to some reasonable contexts. Especially, exhibiting an operator, like majority, that,with a slight change in the de�nition, will drastically change its behavior as closure properties,will shed light on the properties of its related complexity classes, and may give some hint onhow to actually separate those classes.AcknowledgementThe material presented in this paper was initiated and studied while the authors were visitingLane Hemaspaandra at the University of Rochester. The authors would like to thank him forleading them to this subject and his hospitality. Without him, the present paper would not haveexisted. They also would like to thank Jun Tarui for helpful comments related to Theorem 3.2.References[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o, Structural Complexity I, EATCS Monographson Theoretical Computer Science, Springer-Verlag (1988).[BDG91] J. Balc�azar, J. D��az, and J. Gabarr�o, Structural Complexity II, EATCS Monographson Theoretical Computer Science, Springer-Verlag (1991).[BCH86] P. Beame, S. Cook and H. Hoover, Log depth circuits for division and related pro-blems, SIAM J. Comput. 15 (1986), 994{1003.15

[BHW91] R. Beigel, L. Hemachandra, and G. Wechsung, Probabilistic polynomial time isclosed under parity reductions, Inform. Proc. Lett. 37 (1991), 91{94.[BRS91] R. Beigel, N. Reingold, and D. Spielman, PP is closed under intersection, In Proc.23rd Symp. on Theory of Comput., ACM Press (1991), pp. 1{9.[BTT92] R. Beigel, J. Tarui, and S. Toda, On probabilistic ACC circuits with an exact-threshold output gate, In Proc. 3rd Int. Symp. on Algorithms and Computation,Lecture Notes in Computer Science #650 (1992), pp. 420{429.[CH90] J. Cai and L. Hemachandra, On the power of parity polynomial time, Math. SystemsTheory 23 (1990), 95{106.[Gil77] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Com-put. 6 (1977), 675{695.[FFK94] S. Fenner, L. Fortnow, and S. Kurtz, Gap-de�nable counting classes, J. Comput.System Sci. 48 (1994), 116{148.[FR91] L. Fortnow and N. Reingold, PP is closed under truth-table reductions, In Proc. 6thConf. on Structure in Complexity Theory IEEE (1991), pp. 13{15.[FSS84] M. Furst, J. Saxe and M. Sipser, Party, circuits and the polynomial-time hierarchy,Math. Systems Theory 17 (1984), 13{27.[KST89] J. K�obler, U. Sch�oning, and J. Tor�an, On counting and approximation, Acta Inform.26 (1989), 363{379.[Kre88] M. Krentel, The complexity of optimization Problems, J. Comput. System Sci. 36(1988), 490{509.[OH93] M. Ogiwara and L. Hemachandra, A complexity theory for feasible closure properties,J. Comput. System Sci. 46 (1993), 295{325.[PZ83] C. Papadimitriou and S. Zachos, Two remarks on the power of counting, In Proc.6th GI Conf. on Theoret. Comput. Sci., Lecture Notes in Computer Science #145(1983), pp. 269{276.[Sch90] U. Sch�oning, The power of counting, In Complexity Theory Retrospective (A. Selman,ed.), Springer-Verlag (1990), 204{223.[Sim75] J. Simon, On some central problems in computational complexity, PhD thesis, Cor-nell University, Ithaca, N.Y., January 1975. Available as Cornell Department ofComputer Science Technical Report TR75-224.16

[Tod90] S. Toda, Simple characterization of P(#P) and complete problems, J. Comput. Sy-stem Sci. 49 (1994), 1{17.[Tod91] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20(1991), 865{877.[Tor91] J. Toran, An oracle characterization of the counting hierarchy, J. Assoc. Comput.Mach. 38 (1991), 753{774.[Val79] L. Valiant, The complexity of enumeration and reliability problems, SIAM J. Com-put. 8 (1979), 410{421.[Wag86a] K. Wagner, Some observations on the connection between counting and recursion,Theoret. Comput. Sci. 47 (1986), 131{147.[Wag86b] K. Wagner, The complexity of combinatorial problems with succinct input represen-tations, Acta Inform. 23 (1986), 325{356.

17

