On Closure Properties of #P
in the Context of PF o #P *

Mitsunori Ogiharal Thomas Thierauf
Dept. Computer Science Fakultat fur Informatik
Univ. of Rochester Universtat Ulm
(ogiwara@cs.rochester.edu) (thierauf@informatik.uni-ulm.de)
Seinosuke Toda Osamu Watanabe
Dept. Computer Science Dept. Computer Science
Univ. Electro-Communications Tokyo Institute of Technology
(toda@ces.uec.ac.jp) (watanabe@cs.titech.ac.jp)
Abstract

For any operator 7 on integer-valued functions, we say that #P is closed under 7 in
context PFo#P if, for every f € #P, 7[f] belongs to PF o #P. For several operators 7, it is
shown that the closure properties of #P under 7 in the above sense is closely related to the

relationships between P#P[and higher classes such as PHYY and PPYY.

1. Introduction

Counting is one of the key notions in computation. Recently, various counting problems have
received considerable attention (see, e.g., [Sch90]) and, in order to model them, there have been
introduced and extensively studied complexity classes called counting classes, typified by func-
tion classes #P [Val79], spanP [KST89], and GapP [FFK94], and language classes PP [Gil77],
&P [PZ83], C=P [Sim75, Wag86a], and the counting hierarchy CH [Tor91, Wag86b]. Unfortu-
nately, many of the questions regarding counting classes, even the ones about inclusion relation,

are left open. Confronted with such difficulties in resolving problems absolutely, researchers have

*A part of the work was done while the first author was visiting Department of Computer Science, State Uni-
versity of New York at Buffalo, and the second, third, and fourth authors were visiting Department of Computer
Science, University of Rochester. This research is supported in part by JSPS/NSF International Collaboration
Grant JSPS-ENGR-207/NSF-INT-9116781. The first author is supported in part by NSF Grant grant CCR-
9002292. The second author is supported in part by DFG Postdoctorial Scholarship Th 472/1-1 and NSF grant
CCR-8957604.

"Previously known as Mitsunori Ogiwara.

devised tools to obtain relative answers that promote a better understanding of the original que-
stions. (Cf. Even though the P=7NP question is open, through various research, now we have
ample knowledge about how NP would be different from P if they were different.) The purpose
of this paper is to introduce a structural concept that helps us to deepen our understanding on
relationships between counting classes.

The central counting class is #P, the class of functions that count the number of solutions
to NP decision problems. The class #P is known to contain many natural functions, such as
the permanent of integer matrices, which is one of the first nontrivial functions proven to be
in #P and, in fact, proven to be #P-complete [Val79]. With the increase in the number of
interesting examples, the properties of #P, especially, the closure properties of #P, has become
a central research topic. Intuitively, we say that #P is closed under an operation 7 if the
functions constructed by applying 7 to #P functions always belong to #P. For instance, for
any #P functions f(z) and g¢(z), the functions f(z) + g(«) and f(x)g(x) also belong to #P,
Here we say that #P is closed under addition and multiplication and that both addition and
multiplication are closure properties of #P. Closure properties of #P have played important
roles, both explicitly and implicitly, in the study of counting classes of languages [BHWOI1,
BRS91, CH90, FRI1], and many closure properties possessed by #P have been found (See
[OH93]). Nevertheless, the class does not seem to possess closure properties under some primitive
operations, such as modified subtraction.

Ogiwara and Hemachandra [OH93] have established the theory for closure properties of
function classes. They have clarified why #P seems to lack such primitive closure properties.
They showed that #P is closed under modified subtraction if and only if the counting hierarchy
collapses to UP, which is the smallest counting class. Informally put, we cannot hope that
modified subtraction of #P functions is done by #P unless all the decision problems in the
counting hierarchy, including those belonging to the polynomial-time hierarchy, are solved by
NP machines that have at most one accepting path per input.

Although it is not likely that #P functions can compute modified subtraction of #P-
functions, we notice that subtraction is almost computed by #P functions. Let f(z) and g(z)
be two #P functions and p(n) be a polynomial such that max{f(z),g(z)} < 2°=D for all a.
Then it is easy to design a #P function h(z) such that for all z, h(z) = 220¢D 4 (f(2) — g(2)).
Clearly, the first bit of h(z) represents the sign of f(z) — g(z) and the last p(|z|) bits of h(z)
represent f(z)—g(z). So, we can easily retrieve f(z)—g(z) from h(z). Here we may say that the
function h(x) realizes the subtraction of f(z) and g(z), as the actual value of the subtraction is
encoded in the binary representation of h(z), and we might as well say that #P is closed under

subtraction in some weaker sense, as we only have to do some simple post-computation on the

'The modified subtraction of m from n, denoted by n © m, is max{n — m,0}. Since #P functions are always

nonnegative, #P is provably not closed under the usual subtraction.

outcome of a #P function. This observation is generalized to the following definition of closure

properties of #P in context PF o #P.

Definition 1.1. For any operator (or, functor) 7, let 7[#P] denote the class of functions ob-
tained by applying 7 to some function in #P, and let PF o #P = {ho f : h € PF, f € #P},
where h o f denotes the ordinary composition of the two functions and PF denotes the class of
all polynomial-time computable functions.

We say that #P is closed under 7 in context PF o #P if 7[#P] C PF o #P.

In other words, 7 is a closure property of #P in context PF o #P if the function generated by ap-
plying 7 to #P can be computed by #P with supplementary polynomial-time post-computation.
We have chosen PF o #P from the point of view that we should keep our context as close as
possible to #P. But, in fact, the above definition can be easily extended to an arbitrary context.
However, as far as it concerns our results, our proof techniques can be applied to any larger
context to show results similar to the ones we will prove.

By allowing polynomial-time post-computation and extending the context from #P to PFo
#P, we have cured the weakness of #P, i.e., the lack of closure properties under some primitive
operations. Indeed, it is easy to see that, in context of PF o #P, the class is closed not only
under modified subtraction but also under many ‘hard’ closure properties [OH93]. This leads us
to question “What is the limit of the closure properties of #P in context PF o #P7” In order
to answer this question, we seek to find closure properties that are provably possessed by #P
(lower bounds) as well as those that do not seem to be possessed by #P (upper bounds). We
believe that clarifying the limit will shed lights on the computational power of PF o #P and, in
turn, on the structure of #P.

Consider the following two notions of majority computing operators, which we call the weak
majority and the (strong) majority, respectively.? For any function f: ¥* — N and any string

x in X%,

) v, if more than half of f((1,z)), ..., f((21°],2)) are equal to ¥,
maj,[f](z) =

some value, otherwise;

) y, if more than half of f({1,2)),..., f((2*],2)) are equal to y,
majf](z) =

7, otherwise,

where “?7

€ Y* is a special symbol not representing an element in IN.
Both the weak majority maj,[f] and the (strong) majority maj[f] take the same value y if

y gains a majority in the values of f. But, when there is no majority, they behave differently;

2 As we shall see in the next section, formally, we will consider classes of operators instead of one fixed operator.

“?” to inform that there is no majority while maj,[f] may take an

maj,[f] takes the value
arbitrary value. The difference seems crucial, for, as we shall see in Section 3, the following
results hold:
(1) #P is closed under maj,, in context PFo#P >
(2) #P is closed under maj in context PFo#P if and only if P#PI = PPYY (or, equivalently,
CH collapses to P#FI),
Thus, we conclude that the limit of the closure properties of #P in context PF o #P is between
the weak majority and the strong majority, and that the crucial factor that (possibly) separates
P#P[1 and PPFT is that only one question to #P does not help to detect whether the majority
exists among exponentially many values of a #P function.
We also seek to find results similar to (2) above, i.e., the results characterizing collapses of
counting classes in terms of the closure properties of #P. We think such characterizations will

be useful (in some cases) for analyzing relationships among counting classes. In Section 4, we

provide such results with respect to closure properties median, plurality, and maximum.

2. Preliminaries

In this paper, we follow standard definitions and notations in computational complexity theory
(see, e.g., [BDG88, BDGI1]).

Throughout this paper, we fix our alphabet to ¥ = {0, 1}; by a string we mean an element
of ¥*, and by a language we mean a subset of ¥*. Natural numbers are encoded in ¥* in an
ordinary way, and let N denote the set of (encoded) natural numbers. For any string z, let
|z| denote the length of x, and for any set X, let || X|| denote the cardinality of X. For any
language L, let L<" be the set {z € L : |#| < n}. The standard lexicographic ordering of ¥*
is used; that is, for strings z,y € ¥*, x is lezicographically smaller than y (denoted by z < y) if
either (i) |z| < |y|, or (ii) || = |y| and there exists z,u,v € ¥* such that 2 = 20u and y = zlwv.
We consider a standard one-to-one pairing function from %* x ¥* to X* that is computable and
invertible in polynomial time. For inputs and y, we denote the output of the pairing function
by x#y; this notation is extended to denote every n tuple. Furthermore, we assume that for
all (z,y) and (2,y") such that || = |2/| and |y| = |y'|, we have |z #y| = |2'#y].

Throughout this paper we assume that functions are total.

For our computation model, we consider standard Turing machines. A machine is either
deterministic or nondeterministic, and a deterministic machine is either an acceptor or a trans-
ducer, while a nondeterministic Turing machine is always an acceptor. We also consider a query
machine, i.e., a machine that can ask queries to a given oracle. In this paper, an oracle is

either a set or a function; for each oracle type, we adopt the standard query mechanism for our

*We show that for an appropriate choice of the values when there is no majority, the weak majority of #P

functions can be done in context PF o #P.

query machines. We assume that the nondeterministic branching degree at each guessing state
is always two. For a nondeterministic machine M and any string z, let accys() (resp., rejp(2),
totalps(z)) denote the number of accepting paths (resp., the number of rejecting paths, the total
number of paths) of M on input z.

In what follows, we define the complexity classes used in this paper. Below, we denote by C
any class of either languages or functions, and we define those classes relative to C. Nonrelativized

classes are defined as special cases in which the empty oracle is used.

(1) P is the class of languages L for which there exist some polynomial time-bounded deter-
ministic query acceptor M and some oracle X in C such that for all € ¥*, € L if and
only if MX accepts z.

(2) NP is the class of languages L for which there exist some polynomial time-bounded non-
deterministic query acceptor M and some oracle X in C such that for all z € ¥*, z € L if
and only if aceyyx(x) > 0.

(3) PP is the class of languages L for which there exist some polynomial time-bounded non-
deterministic acceptor M and some oracle X in C such that for all z € ¥*, 2 € L if and
only if accyrx(x) > totalp;x(x)/2.

(4) C=P¢ is the class of languages L for which there exist some polynomial time-bounded
nondeterministic acceptor M, some integer-valued function f in PF, and some oracle X in
C such that for all € ¥*, 2 € L if and only if accy,x(2z) = f(2).

(5) PFC is the class of functions that are computable by some polynomial time-bounded query
transducer with some oracle in C.

(6) #PC is the class of total functions f : ¥* — N for which there exist some polynomial
time-bounded nondeterministic query acceptor M and some oracle X in C such that for all

r € X", f(z) = accprx ().

By restricting the way of asking queries, we can define various subclasses of the above classes.

Here we define those that are used in our discussion.

(7) P (resp., PFC[l]) is the class of languages accepted (resp., computed) by some polynomial-
time deterministic query machine relative to some oracle in C, where the query machine asks
at most one query per input. (Such query machines are called one-query machines.)

The polynomial-time hierarchy and the counting hierarchy are defined as follows.

(8) PHC is the class NPC U NPNFC NPNPNPC U ..., where classes NPNPC, NPNPNPC, ...are

defined inductively. PFHC is the class of functions that are computable in polynomial time

relative to any language in PHC.

C C
(9) CHC is the class PPC U PPPF U PPFPTT U L. , where classes PPPPC, ppre” ,...are

defined inductively.

We will mainly deal with the following language classes: P#FUI pP#P pH PHFT, pprP,
and CH. We know that PPPH C P#PIU [Tod91] and P#PI C P#P C PHFP C PPP™" C CH.
None of these inclusions are known to be proper. Below, we list several elementary facts on

these classes, which are used in proving our results. They are either obvious or easy to prove.

Proposition 2.1.

(1) PF o #P = Pr#Pll,

(2) PFOH = CH.

(3) PPPP C P#PULif and only if CH = P#PU if and only if PFCH C pF#PI,
(4) NPPP C p#PI if and only if CH = P#PIUif and only if PFCH C PF#PIU,

We will further use the following technical result on C=P due to Simon [Sim75] and the
results on PPYY and NPYY that are slight modification of the results due to Toran [Tor91].

Lemma 2.2.
(1) [Sim75] Let A € C=P. Then there exist a polynomial ¢ and a polynomial-time nondeter-
ministic machine M such that for all z, the following conditions are satisfied:
(i) totalps(z) = 290D (i) acepr(z) < 200#D=1 and
(iii) @ € A if and only if acepr(x) = rejy(x) = 20UeD=1
(2) [Tor91] A set L is in PPFY if and only if there exist a polynomial p and a set A € C_P

such that for every z,

vel == |[{wexrlD agwe AY| 2270071 11, and
v gL == |{wexrleh :agtw e A} < ovlleh=t —

(3) [Tor91] A set L is in NPT if and only if there exist a polynomial p and a set A € C_P
such that for every @, we have z € I <= |[{w e XP#) : adtw e A} > 1.

The operators we study as closure properties are based on the following functions on N*,
where N* is the set of tuples of N. Let (21,...,2,,) be any element in N* and let ¢ be some
fixed function from N* to N.

. y, if more than half of ¢, ..., 2, are equal to y,
maj(x1, ..., Tym) = i) .
?, otherwise (where ? is some symbol not in N),
8 Y, if more than half of z¢, ... ,x,, are equal to y,
maji(z1, ..., ¢m) =)
dx1, ... ,2y), otherwise,
mid(1, ...,2,) = the [(m+1)/2|-th smallest value

in the ordering ;) <---<wz; of zy,..., 2.,

plu(zy, ... ,2,) = the set of the most commonly occurring number(s)
amongst 1, ..., T,
plu*(z1, ... ,2,) = the smallest value in plu(zq, ..., 2m),
max(z1, ...,%,) = the largest number in {z1, ..., 2.,},

Let us say a few words about “mid”. When the number m of elements is odd, then the
median, i.e., the middle element, is unambiguous since it is the (m + 1)/2-th smallest element.
However, when m is even, there are two candidates for the median, namely the |(m + 1)/2]-th
and the [(m+1)/2]-th smallest element, which are called the left and right median, respectively.
We defined “mid” as a function taking the left median. As shown in [OH93], sometimes one has
to be careful about which median function is chosen. However, our results concerned with the
median operator hold for the right median operator as well.

An operator is defined as a functor mapping one function to another. We define now the
operator classes that we are interested in. Let f be a function on X*, and let ¢ be some function

from N* to N. Below, e denotes a polynomial-time computable function of ¥* to N (in binary).

poly-pre[f] = {foh :hePF},
poly-post[f] = {hof:h€ePF},
poly[f] = poly-pre[f]U poly-post|[f],
maj[f] = {g:g(x)=maj f(1,z),...,f(e(z),z)) for some e € P} },
maj,[f] = {g:g(x)= maj?i,(f(l,w), ., f(e(x),2)) for some e € PF },
mid[f] = {g: g(z)=mid(f(1,z),..., f(e(x),z)) for some e € PF},
plulf] = {g:g(a)=plu*(f(1,2),..., f(e(z),z)) for some e € PF'}, and
max[f] = {g: g(z)=max(f(1,z),..., f(e(z),z)) for some e € PF }.

For any class of functions F and any operator class 7, we define 7[F| to be the class
{rlf): fe 7).

It is clear that #P is closed under poly-pre. Thus, for discussing closure properties of #P,
our choice of a pairing function (-,-) is not essential. On the other hand, #P is not known to
be closed under poly-post.

We can now reformulate our questions concerning closure properties of #P in context PF o
#P as follows. Let 7 be any of the operator classes defined above. Then we ask whether
7[#P] C poly[#P]. We will show that this in fact holds for 7 = maj? for an appropriate choice
of ¢, and this does not hold for 7 = maj, mid, plu, or max unless some implausible collapse

occurs.

3. On the Majority Operators

We show in this section that #P is closed under the weak majority operator in context PFo
#P. but not closed under the majority operator in context PFo#P, unless the counting hierarchy

collapses. In the proof of our first theorem, we need the following result of Toda [Tod91].

Lemma 3.1. [Tod91] Let 7' € #P, ¢ be a polynomial, and m > 2 be a natural number. Then
there is a function T' € #P such that for all € ¥* of length »,

T'(z)=0 (modm) = T(z)=0 (modm™), and
T'(z)= -1 (mod m) = T(z)=-1 (mod m™).

Theorem 3.2. #P is closed under maj?i, in context PF o #P, for some function ¢ : N* — N.4
Proof. Let f € #P, let e be a polynomial-time computable function, and let g(z) =
maj(f(1,2),..., f(e(z),x)). Our goal is to design a polynomial time-bounded deterministic
transducer My that, for each input x, asks one query to some function fy € #P and outputs
g(z), if the majority exists. Noting that PF o #P = PF#PI this clearly proves the theorem.
As we do not have to worry about detecting the nonexistence of the majority, we may define
the function ¢ : N* — N as the output of Mj.

Let 2 € ¥ and p be a polynomial such that for all i < e(z), f(i,2) < 2°0") and e(z) < 2°("),
Let m; denote the i-th prime number. By the Prime Number Theorem, m; < 2i%, for every

¢ > 1. Hence, primes mq,...,m are computable within polynomial time in n. Also, note

p(n)
that f(i,2) < my - my,), for all i <e(x).
We define a function u’ as follows. For all strings = and integers ¢, j, k such that 1 <7 < e(2),

1<j<p(n),and 0 <k < my,

(i, 5, k) = (f(i,2) 4+ (m; — k)™~

Clearly, v’ is in #P. By the Fermat’s little Theorem, for all integers ¢, j, k such that 1 <17 < e(2),
1<j<p(n),and 0 <k < my, we have

o f(i,z)=k (mod m;) = v'(i,z,j,k)=0 (mod m;), and

o f(i,z)#k (mod m;) = u'(i,z,j,k)=1 (mod m;).
Apply Lemma 3.1 to T'(4, 2, j, k) = v'(i,2,5,k) + (m; — 1) and ¢ = p. Then we get T € #P
satisfying the conditions mentioned in the lemma. Define u = T 4+ 1. Then we have:

o u(i,z,5,k)=0 (mod m;) = u(i,z,j,k)=0 (mod mﬁ(n)), and

*Preceding to this work, essentially the same result was proven in a quite different form in a manuscript by
Beigel, Tarui, and Toda. But, in the conference version [BTT92], the result is stated in a weaker form. Though
the result will appear in their journal version, since its style is quite different and does not fit in our paper, we

include the full proof of the theorem.

. u’(i,$,j,k)5 1 (mod m]) = u(i7$7j7k)5 1 (mod mf(n))
Define a function v by

v(z,j, k)= Z u(i, z, j, k).

i<e(x)
Clearly, v is in #P. Furthermore, for all strings x of length n and all integers j, & such that
1<j<p(n)and 0 <k < m;, we have

o(z, j,k)ymod m""™ = [[{i < e(x) : f(i,x) £k (mod my)}l,
and therefore
e(2) = (v(z, j, k) mod m? ™) = ||{i < e(z) : f(i,x)=k (mod m;)}]].

Now, suppose g(z) # ?, i.e., the majority exists. Then, for each prime m;, there exists a
unique k; < m; such that g(z) = k; (mod m;). Therefore, more than e(2)/2 of the ¢’s satisfy
fi,z) = k; (mod m;). Conversely, for all k& < m; that are different from k;, there are less
than e(z)/2 of the ¢’s such that f(i,2) =k (mod m;). Thus, we observe that for every j and
kwith 1 < j <p(n)and 0 <k < my,

g(z) =k (mod m;) < e(x)— (v(z,7,k)mod mf(n)) > e(x)/2.

By the last observation, when we get the values v(x, j, k) for all j and & with 1 < 7 < p(n)
and 0 < k < m;, we can compute the unique k; < m; such that g(z) = k; (mod m;). Then,
using the Chinese Remainder Theorem, we can compute g(z) from the m;’s and k;’s within
polynomial time in n.

By using standard methods, we can construct a function fp in #P such that all the values
v(x,J, k) for all j and k with 1 < j < p(n) and 0 < k < m;, are computable from fyo(z) within
polynomial time in n. Hence, some polynomial time-bounded deterministic query transducer

Moy, given any input z, can compute g(z) by asking one query, namely z, to fo. O

Theorem 3.2 states that the majority of exponentially many values of a #P function can
be computed by a #P function as long as the majority exists. Can we expect from the new
function to receive information on the existence of the majority? The following theorem states

that we cannot expect this unless the counting hierarchy collapses.
Theorem 3.3. #P is closed under maj in context PF o #P if and only if P#FIU = ppFF,

Proof. Suppose that #P is closed under maj in context PFo#P. We will show PPFF C p#Pl,
Let L be any set in PPFP. By Lemma 2.2 (2), there exist a set A € C=P and a polynomial p
such that for all x € X",

rel == |{wexr™ :agwe || =271 41, and
gl = [{weTr :agwe A} < 2wl -1

Furthermore, by Lemma 2.2 (1), there exist a polynomial time-bounded nondeterministic
machine M and a polynomial ¢(-,-) such that for all 2 € ¥" and w € yr() it holds
that totalp(z#tw) = 2000200 qeepp(aftw) < 200020N=1 " and a#w € A if and only if
acer(x#tw) = rej y(z#w) = 2000p(9) =1,

Define f and g as follows. For each z € ¥* and each i,1 < i < 2°(#D let f(i,2) =

accpyr(x#w), where w is the i-th smallest string among those of length p(|2|) (in the lexicographic

ordering), and let
g(x) = maj(f(1,2),..., f(220=D 2)).

Clearly, f € #£P. So, by our supposition that #P is closed under maj in context PF o #P, ¢ is
in PF o #P = Pr#Fll,

We claim that for all z € ¥", z € L if and only if g(z) = 2(n2(M)=1 Ty see one direction,
assume x € L. Then more than half of the strings w € vP(") satisfy a#w € A, and therefore,
more than half of the integers i with 1 < i < 2P(") satisfy fli,z) = 2¢(np(n))=1 " Thuys, we have
g(z) = 200uP0)=1 " To see the converse, assume z ¢ L. Then less than half of the strings
w € YP() satisfy z#w € A. This implies that less than half of the integers ¢ with 1 < i < 2°(?)
satisfy f(i,2) = 2a(np(n))=1 Thyg 29(mr(M)=1 is not the majority of (f(1,z),.. .,f(2p(”),$)).

Hence, using the one-query machine for g, we can construct a machine that accepts L in
polynomial time asking one query to a #P function. We leave the details to the reader.

Next suppose that P#FI = PPPP. By Proposition 2.1, we have CH = P#F[, Let f € #P
and e € PF. Tt suffices to show that g(z) = maj(f(1,z),..., f(e(z),2)) is in PFH for since
CH = P#PI we have g € PF#PIIl = PF o #P.

Define a set G by G = {a#k : @ € ¥*, k is a positive integer, and g(z) = k }. Obviously,
for all x4k, we have a4k € G if and only if f(¢,2) = k for more than e(x)/2 of the integers i
with 1 < i < e(2). We conclude that G is in PPY=Y. Furthermore, define a set 0 by H = { a#j
: @ € ¥, j is a positive integer, g(x) # 7, and the j-th bit of the binary representation of ¢g(z)
is 1 }. It is easy to see that H is in NP C CH. This implies that ¢ is in PFCH, because g is in
PFH. O

The following corollary is immediate from the theorem.

Corollary 3.4. #P is closed under maj in context PFo#P if and only if the counting hierarchy
CH collapses to P#FU,

4. On the Median, Plurality, and Maximum Operators

In this section, we consider the closure properties of #P under the median, plurality, and
maximum operators. We will show that, as for (strong) majority, #P is not closed under the

median or plurality operators in context PF o #P, unless the counting hierarchy collapses. For

10

the maximum operators, we can argue along the same line, but we need a slightly stronger
hypothesis.

We start by considering the median operators. In light of Toda’s result [Tod90] that the
mid operators applied to polynomial-time computable functions characterize PF#F = PFFF
we can observe that the mid operators are strong enough to capture the computational power

of PP-computations. Our result below is inspired with this observation.
Theorem 4.1. #P is closed under mid in context PF o #P if and only if P#FIU = ppPT,

Proof. Suppose that #P is closed under mid in context PFo#P. We will show PPFT C p#PUI,
Let L € PPPP. By Lemma 2.2 (2), there exist a set A € C=P and a polynomial p such that for
all z € X7,

rel == |{wexr™ :agwe || =271 41, and
gl = [{weTr :agwe A} < 2wl -1

Furthermore, by Lemma 2.2 (1), there is a polynomial time-bounded nondeterministic ma-
chine M and a polynomial ¢(-,-) such that for all z € ¥" and w € ¥r(") | we have totalpr(x#w) =
2a(np(n)) accyr(z#w) < 2000p())=1 and z#w € A if and only if accpyr(z#w) = rejpy(a#w) =
94(n,p(n))-1

Define f and g as follows. For each 2 € * and each 7,1 < i < 272D,

o f(i,z)= accy(z#w), where w is the i-th smallest string among those of length p(|z|), and
o g(x)=mid(f(1,z),..., f(2°0=D 2)).

We claim that for every z € ¥", 2 € L if and only if g(z) = 2a(n2(n))=1 " Suppose z € L.
Then, for more than half of w € XP("), z4w € A. Thus, for more than half of integers i with
1 <q<2e(n) fli,z) = 2a(n.2(n))=1 " Moreover, there is no integer ¢ with 1 < ¢ < 2°(") such that
f(i,2) > 2a0vp(") =1 Therefore, we have g(x) = 220»P(")=1_On the other hand, suppose = ¢ L.
Then, for all strings w of length p(n), acepr(z#w) < 200up0)) =1 G, 29(nr()=1 pever appears
in (f(1,2),.. .,f(2p(”),x)) and hence, it cannot be g(z). Thus, the claim holds. Since ¢ is in
PFo #P = pr#PQ] by our assumption, we can conclude that L is in P#F,

Conversely, suppose PPFT = P#FPI Tet g(z) = mid(f(1,z),..., f(e(x),z)), where fis a
function in #P and e is a function in PF. We will show that ¢ is in PFCH.

For all € ¥™ and all positive integers k, g(«) = k if and only if the following conditions
are satisfied:

(1) f(i,z) =k for some ¢ with 1 <i < e(2),

(2) Ii < e(a) : flire) < k)| < efw)/2, and

(3) 11 < e(w) = flirw) > B | < ele)/2

Define G = {z#k : g(z) = k). From the above conditions, we have G € PP'Y. Define 0 =
{a#j : the j-th bit of the binary representation of g(z)is 1 }. Clearly, H is in NP and hence

11

in CH. Since g € PFH, we conclude that ¢ is in PF“H, which is, by our assumption combined
with Proposition 2.1, pr#P0l g

Corollary 4.2. #P is closed under mid in context PFo#P if and only if the counting hierarchy
CH collapses to P#PII,

Next, we consider the plurality operators. Since there is a certain similarity between plurality
and majority, one might expect that one can somehow simulate the majority operators by the

plurality operators. The proof of the following result is based on this intuition.
Theorem 4.3. #P is closed under plu in context PF o #P if and only if P#FIU = ppFF,

Proof. Assume that #P is closed under plu in context PF o #P. We will show that PPFF C
P#P0, Let L € PPPP. By Lemma 2.2 (2), there exist a set A € C=P and a polynomial p such
that for all x € X7,

rel == |{wexr™ :agwe || =271 41, and
gl = [{weTr :agwe A} < 2wl -1

Furthermore, by Lemma 2.2 (1), there is a polynomial time-bounded nondeterministic ma-
chine M and a polynomial ¢(-,-) such that for all z € ¥" and w € ¥r(") | we have totalpr(x#w) =
2a(np(n)) accyr(z#w) < 2000p())=1 and z#w € A if and only if accpyr(z#w) = rejpy(a#w) =
92¢(n,p(n))-1

We define N to be a nondeterministic machine that, given an input of the form xz#wb with

|w| = p(|z|) and b € {0, 1}, operates as follows:
(1) If b= 0, then N simulates M on input z#w.

(2) If b = 1 and the last bit of w is 0, then N nondeterministically guesses u of length
q(|z|, p(|=])) and halts in an accepting state.

(3) If b = 1 and the last bit of w is 1, then N nondeterministically guesses u of length
q(|z|, p(|=])) and halts in a rejecting state.

For any x € X", the following facts on N follow immediately:

(a) For exactly one forth of strings v of length p(n) + 1, acey(z#v) = 0.

(b) For exactly one fourth of strings v of length p(n) + 1, acen(ztv) = 2000,

(¢) If 2 € L, then for more than one fourth of strings v of length p(n) + 1, acey(z#v) =
92¢(n,p(n))-1

(d) If « ¢ L, then for less than one fourth of strings v of length p(n) + 1, acen(a#v) =
99(n,p(n))—1,

12

Now define functions f and g as follows. For each z € " and 7,1 < i < 2°(n)+1 fli,z) =

accy(z#v), where v is the i-th smallest string among those of length p(n) + 1, and for each z,

g(z) = plu*(f(1,2),..., f2rU=D+1 2y,

We claim that for all 2 € ¥* of length n, € L if and only if g(z) = 24(mp(1)) =1 To gee one
direction, assume & € L. Then, by condition (c) above, more than one forth of the integers i
with 1 < i < 2200+ satisfy (i, 2) = 290%P(")=1 Moreover, by conditions (a), (b), and (d), for
all positive integers k other than 29("P(")=1 there are less than one forth of the integers i with
1 < i < 20+ gych that f(i,2) = k. Therefore, 24(n:p(n))=1 ig the most commonly occurring
number in (f(1,2),..., f(2°0DF1 2)); that is, g(z) = 29022(M)=1 To see the converse, assume
x ¢ L. Then, by condition (a) above, one forth of the integers ¢ with 1 <7 < 2°(n)+1 gatisfy
f(i,2) = 0. On the other hand, by condition (d), less than one forth satisfy f(¢,2) = 2a(np(n))=1,
Thus 2¢(4())=1 is 1ot a most commonly occurring number in (f(1,z),..., f(2°0)F1 2)); that
is, g(z) # 29(mp(M)=1,

Since ¢ is in pr#Fll by our assumption on the closure property of #P under the plurality
operators, we can conclude that L is in P#FI,

To show the converse implication, assume that PPYT = P#PH] Let ¢g(z) =
plu*(f(1,2),..., f(e(z),x)), where f is a function in #P and e is a function in PF. We show
that ¢ is in PFCH,

We first define a set ' by G = {a#k : g(x) = k}. The following characterization of G is
immediate from the definition of the plu™ operator: for all x € ¥* and all integers k, we have
x#k € G if and only if

(i) V' ({0 < e() : fne) = W] < {0 < e(x) : f(i,0) = k|], and

(i) WK < K [[{i < e(0) s fia) = K| < I1{i<e(o) s flisa) = k|]

This implies that G is in co-NPFP™" C CH. Next, we define a set H by H = {a#j : the j-th
bit of g(z) is one }. It obvious that H is in NP%. Hence H is also in CH. Since g is in PF, we
can conclude that ¢ is in PF". Combining Proposition 2.1 with our assumption, this implies

that ¢ is in pr#POI. g

Corollary 4.4. #P is closed under plu in context PF o #P if and only if the counting hierarchy
CH collapses to P#PII,

Finally, we consider the maximum operators. Here, we have a slightly different result, which
indicates in turn that the maximum operators are weaker than the other operators considered so
far. Krentel [Kre88] showed that the maximum operators applied to polynomial-time computable
functions characterize PFNF. By this result, we can observe that the maximum operators are
strong enough to capture the computational power of NP-computations. The following result is

inspired with this observation.

13

Theorem 4.5. #P is closed under max in context PF o #P if and only if P#PI = NPPP,

Proof. Assume that #P is closed under max in context PF o #P. We will show that every
language in NPFF belongs to P#FU. Let L be in NPPP. By Lemma 2.2 (3), there exist a set
A € C_P and a polynomial p such that for all x € ¥*,

vel <= |{wexrl®) . pgtwe A} > 1.

Moreover, by Lemma 2.2 (1), there exist a polynomial time-bounded nondeterministic machine
M and a polynomial ¢(-,-) such that for all € ¥ and all w € X2("), we have totalpr(z#w) =
2a(np(n)) accpyr(z#w) < 2000p())=1 and 2 € A if and only if accyr(z#w) = rejy(a#w) =
94(n,p(n))-1

Define functions f and g as follows. For each z € ¥" and ¢,1 < ¢ < 2°(%) fli,z) =

accy(z#w), where w is the i-th smallest string in (1) and for each z,

g(z) = max(f(1,2),.... f(2°0), 2)).

We claim that for all z € ¥* of length n, 2 € L if and only if g(2) = 24(mp(1)) =1 To gee one
direction, assume z € L. Then there exists w € ¥") such that z#w € A; that is, there exists
an integer i,1 < i < 2°(") such that fli,z) = 2a(n.2(n)=1 " Gince fli,z) < 2a(n.p(n)) =1 for all
integers 7, we see that g(z) = 24(np(n))=1 " To see the converse, assume ¢ L. Then there exists
no string w of length p(n) such that a#w € A; that is, for all integers ¢ with 1 <7 < 2P(1") we
have f(i,2) < 2000P(")=1 Thus we get that g(z) < 2¢(*»(")=1 Thus the claim holds. Since g
isin PFo #P = pr#PQ] by our assumption, the above observation implies L € P#Fl,

To show the converse implication, assume NPFP = Pp#PQ] Let g(z) =
max(f(1,z),..., f(e(x),z)), where f is a function in #P and e is a function in PF. We show
that ¢ is in PFHFY. Then we can conclude, by Proposition 2.1, that ¢ is in pr#P0,

Define ¢ = {a#k : g(x) = k}. It is obvious that for all z € ¥* and all integers k, we
have x#k € G if and only if (i) there exists some ¢ < e(x) such that f(i,2) = k, and (ii) for all
j < e(z), f(j,2) < k. From (i) and (ii) we get that G is in PH'Y. Furthermore, define H =
{x4#j : the j-th bit of the binary representation of g(z)is 1 }. It is obvious that H is in NP
C PHPP. Since g is in PFY, we conclude that ¢ is in PFH'T. O

Corollary 4.6. #P is closed under max in context PF o #P if and only if PH'T = p#P[],

5. Concluding Remarks

We have studied closure properties of #P in context PF o #P. As we have mentioned in
Section 1, we are not restricting the context to the one we have chosen. Indeed, one can think

of any complexity class with access to #P as context. Regarding the operators in this paper,

14

however, our proof techniques can be carried over to larger classes. For example, we can show
that #P is closed under maj in context PF#F if and only if P#F = pPFF.

But, for smaller classes, the situation seems to be different. In Section 1, we have mentioned
that the modified subtraction of #P functions can be retrieved from another #P function. As a
matter of fact, the post-computation can even be done by small circuits of constant depth, i.e., by
ACPcircuits. So, we may say that #P is closed under modified subtraction in context ACY o #P.
But, this argument does not seem to hold for several other ‘hard’ closure properties in [OH93].
Consider, for example, |f(z)/g(x)] for f € #P and nonzero g € #P. It is easy to design a
#P function, say h(z) = f(x)Qp“x') + g(z) for some suitably large polynomial p, from which
logarithmically depth-bounded circuits can compute the division (see [BCHS86]). But, combining
the result of Furst, Saxe and Sipser [F'SS84] with the easily provable fact that the parity function
is AC%-reducible to integer division, it is seen that no ACY circuit can compute the division from
h above. Thus, studying the closure properties of #P in context AC® o #P would give us other
insight on the nature of #P-computations and hence of the counting hierarchy. Particularly, as
a first trial along this line, it is interesting to ask whether there is a #P function from which
the division can be computed by AC? circuits.

It would be meaningful to continue the investigation along the line described in this paper.
In particular, it would be interesting to find more nontrivial closure properties of #P with
respect to some reasonable contexts. Especially, exhibiting an operator, like majority, that,
with a slight change in the definition, will drastically change its behavior as closure properties,
will shed light on the properties of its related complexity classes, and may give some hint on

how to actually separate those classes.

Acknowledgement

The material presented in this paper was initiated and studied while the authors were visiting
Lane Hemaspaandra at the University of Rochester. The authors would like to thank him for
leading them to this subject and his hospitality. Without him, the present paper would not have

existed. They also would like to thank Jun Tarui for helpful comments related to Theorem 3.2.

References

[BDGS88] J. Balcézar, J. Diaz, and J. Gabarrd, Structural Complezity I, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag (1988).

[BDGI1] J. Balcdzar, J. Diaz, and J. Gabarrd, Structural Complexity 11, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag (1991).

[BCH86] P. Beame, S. Cook and H. Hoover, Log depth circuits for division and related pro-
blems, SIAM J. Comput. 15 (1986), 994-1003.

15

[BHWO1]

[BRS91]

[BTT92]

[CH90]

[Gil77]

[FFK94]

[FRO1]

[FSS84]

[KST89]

[Kre88]

[OHO3]

[PZ83]

[Sch90]

[Sim75]

R. Beigel, L. Hemachandra, and G. Wechsung, Probabilistic polynomial time is
closed under parity reductions, Inform. Proc. Lett. 37 (1991), 91-94.

R. Beigel, N. Reingold, and D. Spielman, PP is closed under intersection, In Proc.
23rd Symp. on Theory of Comput., ACM Press (1991), pp. 1-9.

R. Beigel, J. Tarui, and S. Toda, On probabilistic ACC circuits with an exact-
threshold output gate, In Proc. 3rd Int. Symp. on Algorithms and Computation,
Lecture Notes in Computer Science #650 (1992), pp. 420-429.

J. Cai and L. Hemachandra, On the power of parity polynomial time, Math. Systems
Theory 23 (1990), 95-106.

J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Com-
put. 6 (1977), 675-695.

S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput.
System Sci. 48 (1994), 116-148.

L. Fortnow and N. Reingold, PP is closed under truth-table reductions, In Proc. 6th
Conf. on Structure in Complexity Theory IEEE (1991), pp. 13-15.

M. Furst, J. Saxe and M. Sipser, Party, circuits and the polynomial-time hierarchy,
Math. Systems Theory 17 (1984), 13-27.

J. Kébler, U. Schéning, and J. Toran, On counting and approximation, Acta Inform.

26 (1989), 363-379.

M. Krentel, The complexity of optimization Problems, J. Comput. System Sci. 36
(1988), 490-509.

M. Ogiwara and L. Hemachandra, A complexity theory for feasible closure properties,

J. Comput. System Sci. 46 (1993), 295-325.

C. Papadimitriou and S. Zachos, Two remarks on the power of counting, In Proc.
6th GI Conf. on Theoret. Comput. Sci., Lecture Notes in Computer Science #145
(1983), pp. 269-276.

U. Schéning, The power of counting, In Complexity Theory Retrospective (A. Selman,
ed.), Springer-Verlag (1990), 204-223.

J. Simon, On some central problems in computational complexity, PhD thesis, Cor-
nell University, Ithaca, N.Y., January 1975. Available as Cornell Department of
Computer Science Technical Report TR75-224.

16

[Tod90] S. Toda, Simple characterization of P(#P) and complete problems, .J. Comput. Sy-
stem Sci. 49 (1994), 1-17.

[Tod91] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20
(1991), 865-877.

[Tor91] J. Toran, An oracle characterization of the counting hierarchy, J. Assoc. Comput.

Mach. 38 (1991), 753-774.

[Val79] L. Valiant, The complexity of enumeration and reliability problems, SIAM J. Com-
put. 8 (1979), 410-421.

[Wag86a] K. Wagner, Some observations on the connection between counting and recursion,

Theoret. Comput. Sci. 47 (1986), 131-147.

[Wag86b] K. Wagner, The complexity of combinatorial problems with succinct input represen-

tations, Acta Inform. 23 (1986), 325-356.

17

