Pinpointing Computation with Modular Queries in the
Boolean Hierarchy

Manindra Agrawal * Richard Beigel Thomas Thierauf ¥
May 27, 1997

Abstract

A modular query consists of asking how many (modulo m) of k strings belong to a fixed
NP language. Modular queries provide a form of restricted access to an NP oracle. For
each k£ and m, we consider the class of languages accepted by NP machines that ask a single
modular query. Han and Thierauf [HT96] showed that these classes coincide with levels of
the Boolean hierarchy when m is even or k¥ < 2m, and they determined the exact levels.
Until now, the remaining case — odd m and large £ — looked quite difficult. We pinpoint
the level in the Boolean hierarchy for the remaining case; thus, these classes coincide with
levels of the Boolean hierarchy for every k and m.

In addition we characterize the classes obtained by using an NP({) acceptor in place of an
NP acceptor (NP(!) is the [th level of the Boolean hierarchy). As before, these all coincide
with levels in the Boolean hierarchy.

1 Introduction

A set L is (polynomial-time) truth-table reducible to a set A [LLS75], if there exist two
polynomial-time bounded Turing machines, the generator and the evaluator. On a given input
string z, the generator first generates a list of strings which are then asked of oracle A. Then
the evaluator, getting = and the answers of A to the queries as input, decides the membership
of x in L. A truth-table reduction is called bounded if the number of queries produced by the
generator is bounded by a constant for any z.

In this paper, we consider a more restrictive version of a truth-table reduction. Namely,
instead of giving the full information about the queries to the evaluator, that is, the characteristic
sequence with respect to oracle A, the evaluator gets only some partial information about it.
The point is that by comparing various kinds of partial information that can be given to an
evaluator, one can study the kind of information an evaluator actually needs to solve a certain
problem. This setting has been studied in many papers [Bei91, HT96, KT94, W90, Wec85], and
some surprising results have been obtained. To describe this more formally, we use a notation
introduced by Kébler and Thierauf [KT94].

*Department of Computer Science, Indian Institute of Technology, Kanpur 208016, India. Email: manin-
dra@iitk.ernet.in. Work done while visiting Abteilung Theoretische Informatik, Universitat Ulm, on an Alexander
von Humboldt Fellowship.

"Yale University, Dept. of Computer Science, P.O. Box 208285, New Haven, CT 06520-8285, USA. Email:
beigel-richard@cs.yale.edu. On sabbatical leave 1996-97 at the Dept. of Computer Science, University of Mary-
land, College Park, MD 20742-3251, USA. Email beigel@cs.umd.edu. Supported in part by U.S. National Science
Foundation grants CCR-8952528 and CCR-9415410 and by NASA (NAG52895)

tAbteilung Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, 89069 Ulm, Germany. FEmail:
thierauf@informatik.uni-ulm.de.

Definition 1.1 [KT94] Let C be a class of languages and let F be a class of functions from
Y* to ¥*. A set L is in the class C//F if and only if there are a set A € C and a function f € F
such that for all x € X*, it holds that @ € L < (z, f(x)) € A.

We consider the following function classes. Let A be a set, k£ > 0, and m > 2.
Fex?™ = 3JgeFPVa: g(z)=(v1,...,2) and f(z) = (xl) - Azy),
fe#M — 3J5eFPVa: g(z)=(z1,...,25) and f(z ZA

feModdM — 3p e #MWM va: f(2) = h(2) mod m,

where A(-) denotes the characteristic function of A. For m = 2, we also write @4 instead
of Modfl[k]. For a class C of sets, \’I* denotes Uasec YA and analogously for the other two
classes.

In other words, YA gives the sequence of answers to the queries to A produced by some
generator ¢, #4*] counts the number of queries that are in A, and Modfl[k] gives the later
number modulo m. As an example, we have P //xNPIH = ng[k].

One of the motivations to consider such restricted truth-table reductions is a somewhat

surprising result that follows from a paper by Wagner and Wechsung [Wec85], see also in [Bei91].
Theorem 1.2 [Wec85] For all k > 0,

P//XNP[k] _ P//#NP[k] — pJ/ @NP[k]

In other words, one can drastically reduce the information a polynomial-time evaluator gets
when asking an NP oracle, namely from full information to a single bit information: the parity
of the number of queries that are in the oracle, without changing the accepted class of sets,
PP

It follows from Theorem 1.2 that instead of GN'H] one can use Mod%P[k], for any even m,
and still get the same class, P//@Np[k]. This is, however, not clear when m is odd. Han and
Thierauf [HT96] showed that in this case the evaluator gets in fact less information (unless the

Boolean hierarchy collapses).
Theorem 1.3 [HT96] For all k > 0 and m > 2 odd,
P//MOdTNnP[k] _ P// @NP[k—l_k/mJ])

In other words, a parity function can ask [k/m] less queries to an NP oracle than a modulo m
function, for odd m, and still give the same amount of information to a P evaluator.

Extending the evaluator to a nondeterministic machine, we get a nondeterministic version
of the truth-table reduction. Kébler and Thierauf [KT94] showed that the counterpart of the
first equality of Theorem 1.2 holds, and furthermore, that the resulting class coincides with the
(2k 4+ 1)-th level of the Boolean hierarchy.

Theorem 1.4 [KT94] For all k > 0,

NP /NP = NP/ NPE = NP(2k 4 1).

Note that NP(k) € P//\NPI € NP(k + 1) for all & > 1 [KSW87] (see also [Bei91]).
Therefore, switching from a P to an NP evaluator roughly doubles the level of the Boolean
hierarchy where the resulting classes are located.

When we have a parity function given to an NP evaluator, Han and Thierauf [HT96] sho-
wed that the resulting classes are located much lower in the Boolean hierarchy than with full
information.

Theorem 1.5 [HT96] For all k > 0,
NP j/@NPEEFI = NP/ @NPRETE = NP(2k + 3).

For general modulo functions, again, when m is even, Mod%P[k] gives the same information
to an NP evaluator as GNP, However, when m is odd, only lower and upper bound are known
for the resulting classes, the precise location of NP//Mod%P[k], when m is odd, remained open.

Theorem 1.6 [HT96] For all k > 2m — 2,
(i) NP//Mod Pl = NP //@NPIH| for m even,
(ii) NP //@NPl=1k/m]] C NP//Mod NP C NP //@NPH for m odd.

In this paper, we solve the open problem. Namely, we show that all classes NP//Mod%P[k]
in fact coincide with some level of the Boolean hierarchy, and we determine the level. Based on
the mind-change technique developed by Wagner and Wechsung [Wec85], we associate with each
class NP//Mod%P[k] a certain game. The game consists of a table where one can make certain
moves according to rules, we will specify below. Some of the moves increase the counter for the
game. The maximum score the counter can reach by any playing strategy will be the level of
the Boolean hierarchy the class NP //Mod PP coincides with.

Therefore, we will develop a playing strategy and then prove that this strategy is optimal.
Since we also get again the results mentioned above (with NP evaluators), we have now a uniform
way of proving results along these lines. Furthermore, our technique extends to more general
classes: the evaluator can be in higher levels of the Boolean hierarchy. That is, we can handle
classes NP(1)//Mod P for [> 1.

Such classes look very technical. However, we think that our methods of locating such,
somehow involved classes, in the, much simpler defined, Boolean Hierarchy are interesting enough
in its own and might find further applications in other settings.

2 Preliminaries

We follow standard definitions and notations in computational complexity theory (see,
e.g., [HU79] or [BDG88]). Throughout this paper, we use the alphabet ¥ = {0,1}. For a
predicate P, let [P] denote 1 if P is true, and 0 if P is false.

P (NP) denote the classes of languages that can be recognized by a polynomial-time de-
terministic (nondeterministic) Turing machine. FP is the class of polynomial-time computable
total functions.

The Boolean hierarchy is the closure of NP under Boolean operations, and is usually defined
in levels by allowing successively more Boolean operations. This can be done for example by
symmetric differences of NP sets [CGH'88]: a set L is in NP(k) (k > 1), the k-th level of
the Boolean hierarchy, if there exist Ay, ..., Ay € NP such that L = AjA---AAg. A set

L is in coNP(k), if L € NP(k). The Boolean hierarchy, BH, is the union of all the levels,
BH = Ujs; NP(k).

We note that in the above definition of NP(k), we can require in addition that the sets A;
form a decreasing chain Ay D --- D Ay and we still get the same class, NP(k) [CGH*88].

3 Providing the Game

Wagner and Wechsung [Wec85] have shown that any Boolean expression over NP sets coincides
with some level (or its complement) of the Boolean hierarchy. Since their proof technique is the
key also to our results, we include a proof of their theorem. Let us first define some notions.

Let a be a Boolean function with &k variables, that is a : (zy,...,2%) € {0,1}* — {0,1}.
Then NP(a) be the class of sets L that can be expressed by k sets Lq,..., L; € NP as follows.
For any x € ¥*, set variable x; = 1 if and only if input # € L;, for e = 1,..., k. Then we must
have 2 € L <= a(zy,...,2x) = 1.

The result of Wagner and Wechsung [Wec85] says that for any « there is some m such that
NP(a) coincides with either NP(m) or coNP(m). A crucial point thereby is to determine the
value of m.

Let a = (ay,...,a;) be an increasing chain in {0, 1}* with respect to the bitwise order <.
Thatis, a; € {0,1}* fori=1,...,t,and a; < ... < a;. The number of mind-changes of o in a is
the number of positions ¢ such that a(a;) # a(a;+1). By m(a) we denote the maximum number
of mind-changes of o in any increasing chain in {0,1}*. The level of the Boolean hierarchy
NP(a) coincides with is determined by m(a).

Theorem 3.1 [Wec85] For any k-ary Boolean function «,

| NP(m(a)), if a(0%) =0
NP(a) = { coNP(m(«)), otherwise.

Proof. Let L € NP(a) via Lq,..., Ly € NP. Define sets A4;, i =1,...,m(a), as follows

@ € A; <= there exists an increasing chain a = (ag,...,aq;) in {0,1}"
where a makes 7 mind-changes and such that

if there is a 1 at position j in a;, then z € L;.

Clearly, all sets A; are in NP. Moreover, they form a decreasing inclusion chain: 4y 2 --- D
Aoy Now,let A= Aya---a Ay) € NP(m(a)). That is, 2 € A if and only if the maximum 7
such that « € A; is odd. In other words, z € A if and only if the maximum number of mind-
changes that a can make with respect to z is odd. Therefore I = A if a(0¥) = 0 and L = A if
a(0F) = 1.

For the reverse direction let [= Ay a---a A o) € NP(m(a)), for NP sets Ay D - 2 Ay).
Furthermore, let (ag, . .., @y (4)) be an in increasing chain in {0, 1}* where a makes m(a) mind-
changes. We can assume that a,,(o) = 1%,

Now we define sets Ly,..., Ly that define L via a. For all j € {1,...,k}, if a; has a 1 at
position j, then L; = A;. In other words, we write A; in all variable positions of a@ where a;
has a 1. In the next step, we write Ay in all variable positions of o where ay has a 1 that is
not already in ay. That is, for all 7 € {1,...,k}, if a; has a 0 at position j and ay has a 1 at
position j then L; = A,. Continuing that way up to m(a), we get k sets Lq, ..., Ly that define
L via a if a(0F) = 0, and that define T if a(0%) = 1.]

Let a be a k-ary Boolean function. An upper bound on the number of mind-changes of
a is the number of variables, k, since no increasing chain in {0,1}* can be longer than k + 1.
Therefore, 0 < m(a) < k.

Consider for example the k-ary parity function par,. The sequence with a; = 1°0F~% for
t = 0,...,k forms an increasing chain. Since the number of mind-changes matches the upper
bound, we have m(par;) = k. Note that the class NP(k) is defined via the k-ary parity function.
Since par,(0%) = 0, we get back NP(k) by Theorem 3.1.

As a more interesting example, consider classes NP(l)//#NP[k]. The Boolean function «
associated with NP(1)//#NPI has k + (k4 1) variables, namely, k variables 1, ...,z for the
#NPU] function and [variables g1, ..., yi, for each potential function value i € {0,....k} of
the #NPII function. Then the value of a is par;(yi, ..., ¥a), if ¢ of the z; variables are one.
Note that to evaluate o, we don’t need to know the exact assignment to its variables: since « is
composed out of symmetric functions, it is enough to know the number of ones in (z1,...,zx)
and each tuple (y;1,...,%i), for i =0,..., k. The collection of these numbers, we call a state.

Definition 3.2 A state s is a k + 2 tuple of integers s = (co,¢1,..., ¢, 0) such that 0 < ¢; <
for0<j <k, and 0 <i < k. We refer to the last component of s (the number i) as the index
of s, and the numbers c; as the counters of s. When i is the index of s, counter ¢; is the active
counter of s.

In a state s = (cg,...,ck, 1), the index ¢ denotes the number of ones in (z1,...,2x) and the
counter ¢; denotes the number of ones in (y;1,...,y;). The function o can now be thought of
as acting on states: a(s) = ¢; mod 2.

An increasing chain of assignments becomes now an increasing sequence of states where we
want to maximize the number of mind-changes. We reformulate the problem in terms of a game
played on a table.

Definition 3.3 The table consists of k + 1 columns and ki + 1 rows. The entries in the table
are states. For 0 < C' < kl and 0 < i < k, the entry at position (C,t) of the table can be any
state s = (cq, .. ., Ck, 1) with Z?:o c; =C.

For a state s = (cq, ..., 1), the row and column neighbours of s in the table are defined as
Jollows. The left and right row neighbours of s are

s = (cgy...nCh,i— 1), ifi>0, and
s7 = (coy.. 050+ 1), ifi<k,
respectively. Similarly, the upper and lower column neighbours of s are
st = (€oyevesCim1,6— 1,Ci41, ..y Chyt), if ¢; >0, and
slo= (eoyevesCim1, G4 1,01,y 1), if e <,

respectively.

The game is played by a player on the table. When the game begins, the player is in the
state s;,; = (0,...,0,0), and consequently in position (0,0) on the table. Now, the player is
allowed to make the following two kinds of moves.

Definition 3.4 Let s = (co,...,ck, 1) be a state. A row move from s takes the player to the
state s7. It is defined only when ¢ < k. A column move from s takes the player to the state s|.
It is defined only when ¢; < . The game ends when no more move is possible.

The mind-change for any move is defined to be 1 if the values of the active counters of the
two adjacent states involved in the move have different parity (i.e., are different modulo 2), and
0 otherwise.

So, for a column move, the mind-change is always one. And for a row move from the state
s = (¢g,...,Ck, 1), the mind-change equals (¢; + ¢;41) mod 2.

The aim of the player is to make moves, starting from the state s;,;;, such that the sum of
the mind-changes is maximized.

Definition 3.5 A playing strategy S for the player is a sequence of moves having exactly k
row moves and such that when the player plays according to the strategy S, it remains within
the table, i.e., no counter of any state reached during the game exceeds . For the strategy S, we
define the mind-change of the strategy, me(S), as the sum of the mind-changes of its moves.

An optimal playing strategy for the player is a strateqy that has the mazimum number of
mind-changes.

For a strategy S, let S(i) denote the state reached by the player immediately after the i'" row
move according to the strategy S.

The mind-change of a column move is always one. Only for the row moves the mind-change
can be zero, and therefore, these have to be made carefully in order to arrive at an optimal
playing strategy.

Definition 3.6 A state s = (cq,...,ck, 1) is good if ¢; Z ¢;41 (mod 2), and bad otherwise. A
row move from a good (bad) state is a good (bad) move.

Coming back to classes NP(1)//#NPI¥ it is clear that the number of mind-changes of an
optimal strategy equals m(a). The optimal strategy is quite easy to see:

STRATEGY FOR NP([)//#NPIA]

1 for : — 0 to &k do
2 make [column moves
3 if 7 < k then make a row move

At any time, variable ¢ contains the column of the table where column moves are made. In
each column, we simply make the maximum number of column moves.

Note that in case that [is odd, all our row moves are good, while they are bad in case that
[is even. Hence, when [is even, we get I(k + 1) mind-changes, and, when [is odd, we get
additionally k£ mind-changes, i.e., [(k+ 1) + k in total.

When [is odd, the number of mind-changes matches the upper bound, the number of va-
riables of a. Therefore the strategy is optimal in this case. When [is even, observe that no
strategy can make more than [mind-changes in any column including the row move to the next
column. This generalizes Theorem 1.4.

Theorem 3.7 For k, [> 1,

[NP(I(k+ 1)+ k), iflis odd,
NP(1)//#H = { NP(I(k+ 1)), if l is even.

The argument here was easy because every counter becomes active exactly once, and there-
fore, it is obvious that a good strategy makes all possible column moves as soon as a counter
becomes active. However, when considering classes NP(1)//ModNFIH this doesn’t hold anymore.
To adapt the definitions from above, we have now only m counters cg, ..., ¢,_1 in a state, and,
for any 7 € {0,...,k}, the counter ¢; pod.m is the active counter. Hence, after every m row moves
the counter ¢; becomes active again, for every 7, 0 < ¢ < m.

The table still has k£ + 1 columns, but now ml + 1 rows. Column- and row moves and mind-
changes are defined in the same way, just the indices of the counters have to be taken modulo m
now. To keep notation clean, we will mostly write ¢; instead of ¢; modm-

4 Strategies for NP(Z)//Mod%P[k]

Let us start by naivly adapting the strategy for NP(1)//#NPIH to classes NP(1)//Mod P That
is, during the first m row moves we fill up all the m counters. Then all our column moves are
used and all states in the remaining k& — m row moves will be bad. Hence, we get Im mind-
changes when [is even, and Im + m — 1 when [is odd. This seems to be a good strategy only
if K = m because then we make no bad moves.

For larger k, a better strategy is to spend just one column move to turn a bad state into a
good state. That is, we make one column move per every row move. Hence, after the first m row
moves all counters have value 1, after the second m row moves all counters have value 2, and so
on. After ml row moves, all counters have value [. Except when ¢,,_1 is the avtive counter, the
column move turns the bad actual state into a good state, then making a good row move. Still,
the remaining k — Im row moves are all bad. We get 2ml{ — [mind-changes by this strategy,
because on ml — [of the column moves we make a good row move. Observe that we obtained
roughly twice as many mind-changes as in the naive strategy from above. This is clearly a good
strategy as long as k is small, e.g., k = Im. The case of small k is treated in detail in Section 7.
For larger k& we can in fact do better.

Suppose now that k is large compared to m and [(we will determine later how large precisly
k should be) and consider the above strategy (the second one). The initial part, where we make
all our good row moves, is small, and we spend most of the time in the second part where we
make only bad row moves. Therefore it would be better if there are many good states present
when the second part starts. In order to have many good states, neighbouring counters must
have different parity. This motivates the following definition.

Definition 4.1 For any state s = (co,...,¢m-1,1), we define the badness of s, b(s), as the
number of counters c; such that ¢; = ¢(j41)ymodm (mod 2), for j =0,...,m — 1.

For example in the initial state s;,;, all counters have value 0, and therefore b(s;,i1) = m
which is clearly the maximum value for b for any state. Note also that b(s) is the number of bad
states the player will see during the next m row moves. In other word, for s = (¢q, ..., Cm-1,17)
and any strategy S, there are b(s) bad states in {s,S(i +1),...,5(1 +m — 1)}.

How small can b become? Consider the counters that have alternating values 0 and 1. Now
we get a difference of whether m is even or odd. If m is even, we get an alternating cycle and
the badness b is 0. However, if m is odd, we cannot avoid to have a pair of counters with the
same parity. Therefore the smallest value for b in this case is 1. Because of this difference, we
distinguish the case whether m is even or odd, and give two strategies: strategy A for even m
and strategy B for odd m. We will show in Section 5 that these strategies are optimal for large
enough k.

4.1 For m even

The player plays according to the following strategy A.

STRATEGY A

1 for¢t—0tom-—1do

make [— 1 column moves

if i Z/ (mod 2) then make a column move
make a row move

= W N

5 fori— mtok—1do make a row move
6 if ¢, =1 — 1 then make column move

The for-loop in line 1 to 4 put alternating the value [— 1 and [in the counters. That is, state
A(m) has the form A(m) = (I,1-1,...,1,1—=1,m)if lis odd, and A(m) = (I-1,1,...,1—=1,1,m)if
lis even. From the m row moves made so far, m/2—1 are bad moves. Now, we have b(.A(m)) = 0,
and therefore all row moves made in line 5 are good. In total, there are k — (m/2 — 1) good row
moves.

In the first for-loop, we also make m! — m/2 column moves. Depending on the value of ¢,
there can be one more column move in line 6. When do we get an extra column move in the
last column? Tet 0 < k' < m such that & = k& (mod m). Thus ¢ is the active counter at
the end and we want to know whether ¢z = [— 1 before executing line 6. By the condition in
line 3, this is the case when &' =1 (mod 2). Since m is even, k' = k (mod 2). Hence, we get
an extra column move precisely when k=1 (mod 2).

In summery, the number of mind-changes of strategy A is

me(A) (k (3 - 1)) + (ml _ %) + k=1 (mod 2)]

= k+ml—-m+1+k=10 (mod?2).

Observe the improvement over our first approaches when k is large. Recall that the number
of variables of the underlying formula, i.e., £+ ml in this case, is an upper bound on the number
mind-changes of any formula. Hence mc(.A) is off by less then m from the upper bound. We lost
these mind-changes by spending half of them to set up the first m columns, and for the other
half, we did less column moves than possible. In the beginning examples, we have already seen
that the player can avoid making any bad moves for small k. However, for large k, we will show
that bad moves cannot be avoided and that strategy A is optimal.

4.2 For m odd

We will develop a strategy B when m is odd. As already explained before Section 4.1, the
smallest badness we can achieve for a state s in this case is b(s) = 1. In strategy A we did all
column moves (except may be one) during the first m row moves. Now we are more careful with
our column moves since we might be able to use them to decrease the number of bad moves we
have to make. Hence, we will produce a state with badness 1, which is the best we can achieve,
but keeping our column moves as small as possible. That is, we start by producing alternating
counter values 1, 0, 1, 0, If we simply continue that way for the first m columns, we will
end with a 1,1i.e., ¢;,_1 = 1. Observe now that because of our column move in the first column,
i.e., cg = 1, the state B(m — 1) is good. Making a column move there, turns a good state into
a bad state. Hence, this doesn’t look like a good idea. Instead, we do the following: we keep
B(m —1) as a good state and make a column move already in column m —2. Then b(B(m)) = 1.

If we make only row moves from now on, as it is done in strategy A, then one move out of
every m will be a bad move. But we can do even better by using column moves: if we make
a column move in the bad state, the state is turned into a good state, and the badness of this
good state is still 1! So we can continue that way until our counters are filled up.

STRATEGY B

1 for: — 0tom—2do
2 if 7 is even or 7 = m — 2 then make a column move

make a row move

for i — m—1to k do
if B(7) is bad and ¢; < [then make a column move
make a row move

-1 S O W

if ¢, = — 1 then make a column move

By the for-loop in line 1 to 3, we get B(m) = (1,0,1,0,...,1,0,1,1,0,m) and the number of
bad moves made so far is (m — 3)/2 As the player proceeds from B(m), the first bad state that
it encounters is B(2m — 3). Then it makes a column move (line 5) and proceeds. So, we get

B(2m) = (1,0,...,1,0,2,1,0,2m),

B(3m) = (1,0,...,1,0,1,1,2,1,0,3m),
B(4m) = (1,0,...,1,0,2,1,2,1,0,4m), ...

Observe that the bad state is occurring after every m — 1 row moves by the player. Hence, after
m(m — 1) row moves from B(m) on, we get B(m?) = (2,1,...,2,1,2,2,1,m?), i.e., each counter
is increased by one compared to B(m). The same pattern of moves will now be repeated. So,
after ({ — 1)(m — 1)m row moves from B(m) on, the state of the player will be

B((l-1)(m-1m+m) = (,I-1,....I-1,LL1-1,({—-1)(m—1)m+m).

(We assume that k& > (I — 1)(m — 1)m 4+ m.) Now, no more column moves are made, except
maybe in line 7.

Thus, for the remaining k& — (({ — 1)(m — 1)m + m) row moves, the player will encounter a
bad state after every m row moves (instead of m — 1) and it will have to make a bad move then.
Let k = dm+ k' where 0 <k’ < m. Then the player will make d — (I — 1)(m — 1) — 1 bad moves,
and one more if k' > m — 2. Since [k’ > m — 2] = [(k+ 2)/m] — d, the total number of good
row moves in strategy Bis k—(m —3)/2—(d—(I—-1)(m—-1)— 14 |[(k+2)/m] — d).

The number of column moves made is exactly ml{—(m—1)/2 excluding the (possible) column
move in line 7. The latter one is done if either &’ < m — 3 and is odd, or ¥ = m — 1. This can
be expressed as [k # |[(k+2)/m] (mod 2)].

Summing up the good moves of strategy B, we get

14127)
|

e (=) + [kﬂ’““J o2

- k—l—ml—(m—4)—|—<(l—1)(m { D + [kﬂkmﬁJ (mon)]

k—|—2ml—2m—l—|—4—{k7—;2J [k;é{ J (mod?)]

me(B)

[l
TN
B
|

w‘
|
S

QL

Consider the second equation. From the total number of possible moves, k 4+ ml, we subtract
m — 4 for the bad moves in the beginning and the missing column moves at the end, similar
as in strategy A. Then we get one bad move per every m row moves, i.e., |(k+ 2)/m], except
for the first (I — 1)(m — 1) number of times. Compared with strategy A when m is even, the
number of mind-changes decreased by roughly this latter term, [(k+ 2)/m| — (I — 1)(m — 1).
Intuitively, it seems as we cannot avoid these additional bad moves because the badness of any
state is at least 1 and we already used our column moves for this as far as possible. We show in
the next section that this intuition is correct and that strategy B is indeed optimal for odd m
and large enough k.

5 Proving the Strategies Optimal

In this section, we shall obtain an upper bound on the number of mind-changes of any optimal
strategy for large enough k. The upper bound we derive will match with the mind-changes for
our strategies A and B, thereby proving them optimal.

In the following, let & be any optimal strategy. At first glance it seems very hard to to
make any statements about the number of mind-changes § will have, because there are so many
possibilities of what moves § can do. The most important observation here is that we can
modify § in certain ways without decreasing the number of mind-changes. This will lead to a
normal form of a strategy that has at least as many mind-changes as the original one. Then,
counting the mind-changes of the normal form of § is in fact possible.

At first glance, the reader might get the impression that we are trying to count the ants
in an ant-hill. However, things finally settle very neat: strategies A and B turn out to be the
unique normalization of any optimal strategy for m even and odd, respectively.

5.1 Normalizing a Strategy

The column moves in § can be arbitrarily distributed between the row moves, and this makes
the direct counting of the mind-change of § a difficult task. So, we will rearrange the column
moves in § according to certain rules such that the number of mind-changes does not decrease.
This process we call the normalization of §. We arrive at the normal form of & when no more
rule is applicable. In the next section, we show how to count the mind-changes of the normalized
strategy.

Let & be a strategy of the player. By our first rule, a normalized strategy starts with a
column move.

Rule 1 (making a column move from the first state) Suppose that the first column move
of strateqy S is in the state S(j), for some j > 0. Let 8’ be the strategy obtained from S by
deleting the first 3 row moves of & and adding 7 row moves at the end.

Then &' starts with a column move in state S(0) and me(S’) > me(S), since the first j row
moves of § are all bad.

In the normalized strategy, we try to make the column moves as soon as possible. This is
ensured by the following rule.

Rule 2 (shifting column moves back) Suppose the player make a column move from a state
s = 8(1), with i > m, and such that either the state t = “S(i —m + 1) or the state ~S(i) is
a bad state. Let 8" be the strateqy obtained from S by removing the column move from s and
introducing a column move from t.

We show that me(S") > me(S). Assume first that state ¢ is bad. Then the strategy S’ gains
a mind-change over § due to the row move from ¢, a good state (in S this row move is from the
bad state t). 8" loses a mind-change if <S(7) is good, because then ~&'(7) is bad. Now assume
that the state ~S(i) is bad. Then <§'(i) is a good, thus adding an extra mind-change to &'.
However, 8’ may lose a mind-change if the state ¢ is good, since the row move from ¢| becomes
bad in that case. Since all other moves are not affected, this proves our claim.

The main objective of the player is to make good row moves. Therefore, it should not make
column move from a good state followed by a row move as this renders the row move bad. The
following rule eliminates all such moves.

10

Rule 3 (shifting column moves from good states) Suppose the player makes a column
move from a good state s, followed by a row move to the state S(i + 1). Let 8’ be the strategy
obtained from S by removing the column move from s and if i < k—m then introducing a column
move to S(i+ m).

Notice that there may be a conflict between the rules 2 and 3 (rule 2 may shift a column
move to an earlier state while rule 3 may shift the same column move to a later state). We shall
define the normalization process in such way that there is no conflict due to these rules. Also
notice that when ¢ > k£ — m, the above rule is actually reducing the number of column moves in
the strategy.

We claim that me(S') > me(S). The strategy S’ gains a mind-change over S due to the
row move from s, a good state (in S this row move is from the state s|, a bad state). On the
other hand, &’ loses a mind-change if the row move to the state 8'(i + m) is a bad one when
i <k—m. When 1 > k —m, & certainly loses a mind-change bacause it makes one less column
move than §. Since all other moves are not affected, this proves our claim.

Any even number of consecutive column moves does not change the parity of a counter.
Therefore, this has no effect on the row moves and we can shift such moves to an arbitrary
place. We define to make them at the beginning, that is, during the first m row moves.

Rule 4 (shifting two consecutive column moves) Suppose that the player makes two con-
secutive column moves from a state S(i), with i > m. Let 8" be the strategy obtained from S
that shifts these two moves to the state S(i —m).

Now we define the normal form of a strategy.

Definition 5.1 For a strategy S, the normalization of S is the strategy S’ that is obtained by
shifting moves of § in three stages. In the first stage, column moves of § are shifted according
to Rules 1, 2, and 4 until no move can be shifted. In the second stage, the column moves are
shifted according to the rule 3 until no move can be shifted. In the third stage, column moves
are shifted according to the rule J again until no more move can be shifted. The strateqy S’ is
called a normalized strategy.

First note that strategies A and B in Section 4 are both normalized. If we have any optimal
strategy &, then the normal form has the same number of mind-changes as §. This is because
we do not decrease the mind-changes when applying the above rules, and, on the other hand,
the mind-changes cannot increase, since § is optimal.

5.2 Properties of a Normalized Strategy

In the following let § be an optimal normalized strategy. We list some basic properties S.

Since our rules shift column moves upward in the table, only single column moves are made
from states S(¢) for ¢ > m. By Rule 3, column moves from good states are only possible when
the next move is a column move too, or there is no more move at all. The first case is handled by
Rule 4. The latter case corresponds to the extra column move we had at the end of strategies A
and B. There, we argued directly about the value of the last counter, ¢g, by inspecting the
strategies. Now, we need a more general tool. For an optimal strategy &, when the player
arrives at state S(k), the counter ¢, must have value [— 1 or [(since there can be at most 1
column move). Hence, we get an extra column move when ¢, = [— 1. The following lemma
characterizes this event.

11

Lemma 5.2 Let S’ be the strategy obtained from S by deleting the last column move from the
state S(k), if there is any (otherwise S = 8'). Then me(S) = me(S') + [£ me(S') (mod 2)].

Proof. We show by induction on the number of moves, that when the player is in state s, then
the sum of the mind-changes of all the moves up to s has the same parity as the active counter
of s. This is true in the beginning, when no moves are made yet, because ¢g = 0. Now, assume
the claim holds for s and let ¢ be the active counter of s. If the player makes a column move to
sl, then we get a mind-change. But also ¢; increases by 1. If the player makes a row move to
57, then we get an additional mind-change if and only if s is good, which in turn is equivalent
to ¢; # ¢;41 (mod 2). Hence the claim is true after any move from s.

Now the lemma follows, since the player makes a column move from S(k) if the active counter
of the state, ¢i, equals [— 1 modulo two. a

The above extra column move at the end and also the pairs of column moves shifted by
Rule 4 have no effect on the row moves. Therefore we distinguish them from the other column
moves.

Definition 5.3 For any state S(1), suppose the player makes ¢ column moves from S(i) before
making a row move, for ¢ > 2. If ¢ is even, we call these column moves ineffective, and if ¢
is odd, we call all but one (say, the first one) of them ineffective. Also the column move from
state S(k), if there is any, is called ineffective. All other column moves we call effective column
moves.

Our first property is now obvious.

Property 1 Between any two consecutive row moves, the player makes at most one effective
column move. Also, it makes exactly one effective column move before the first row move and
no effective column move after the last row move.

Rule 3 and 2 restrict the effective column moves of the player as follows.

Property 2 If the player makes an effective column move from S(1), then §(7) is bad. If i > m,
then additionally =S8(t) and ~S(i —m + 1) are good states.

Suppose the player makes a column move from S(i) to ¢t = S§(7)| and that ~S8(7) is good.
Then “tis bad, and therefore, S(i + m — 1) is bad. Hence, the column move has turned a bad
state, S(7), into a good state, but S(¢ + m — 1) into a bad state. It follows that S(¢) and S(7)1
have the same badness, b(S(7)) = b(S(7)1) (recall Definition 4.1 on page 7).

Only for ¢ < m we can have an effective column move from S(7) such that ~S5(¢) is bad. In

this case, “tis good, and hence S(i+ m — 1) is good. Therefore, we get b(S(i)1) = I))(S(z)) - 2.
Property 3 Let the player make an effective column move from s = §(i). Then either

1. b(sl) =0b(s)—2, “sisbad (ori=0), and i < m, or

2. b(sl) =b(s) and s is good (or i =0).
In the latter case, note that there are b(s)+ 1 bad states in the set {s,S(i+1),...,8(i+m—1)}.

The above property suggests that we can divide the effective column moves made by the
player into two types.

12

Definition 5.4 An effective column move from a state s, we call a reducing column move, if
b(sl) = b(s) — 2. Otherwise b(s|) = b(s) and we call it @ non-reducing column move.

By Property 3, all reducing column moves are done during the first m row moves. Since
b(s) < m for any state s, there cannot be more than [m/2| reducing column moves. Also note
that if the column move is reducing, then the row move to the state s must be bad (if it exists,
ie., if i > 1). So, just before making a reducing column move, the player makes a bad move.
The only exception is the first state s;,;; from which a reducing column move is made without
making a bad move.

A non-reducing column move allows the player to postpone making a bad move by m — 1
row moves. There can be as many non-reducing column moves as permitted by the bounds on
the counters of the states. Note that we used these moves in strategy B in the previous section.

The next property states that non-reducing column moves occur only in chains.

Property 4 If ¢ > m and the player makes a non-reducing column move from s = §(1), then
the player makes a non-reducing column move from the state S(i — (m — 1)).

Proof. By Property 2, “S(i —m+ 1) is good and s is bad. Hence, there must be a column
move from S(¢ — m 4 1), which must therefore be a bad state. Furthermore, this column move
must be non-reducing, since the state ~S(¢ —m 4 1) is good.]

Finally, we can argue on one more specific column move (besides the one from s;,).
Property 5 The player makes an effective column move from the state S(m — 2).

Proof. Since all counters are initially 0, S(m — 2) is a bad state. It’s neighbour S(m — 1) is
good, since there is a column move at s;,;; by Rule 1. Assume that the player doesn’t make an
effective column move from S(m — 2). By Lemma 5.5 below, S(m — 24 jm) is a bad state and
the player does not make a column move from S(m — 2 + jm), for 7 = 1,2,.... But this is not
possible, because we would obtain a strategy better than & by postponing one of the ineffective
column moves made from S(m — 2) to the last m row moves. O

Lemma 5.5 Let S(i) be a bad state and S(i+ 1) be good. If the player doesn’t make a column
move from S(1), then S(i+ jm) are all bad states and the player does not make a column move
from any of them, for j =1,2,....

Proof. Assume the lemma is not true. Then there must be a smallest 5 > 1 such that either
S(i+ jm) is a bad state and the player makes a column move from it or the state S(i + jm) is
a good state. In the first case, Rule 2 would have shifted the column move to S(¢ + (j — 1)m),
contradicting our choice of j. Therefore S(¢ + jm) must be a good state. Since there is no
column move from the bad state S(¢+ jm — m), there must have been a column move from the
state S(i + jm — (m —1)). Since “S(i+ jm — (m — 1)) = S(i + jm — m) is bad, we must have
i+ jm—m+ 1< m by Property 2. It follows that 7 = 1. But (7 + 1) is good by assumption
and hence, there is no column move from S(¢ 4 1). o

5.3 Counting the Mind-Changes

In this section, we derive an upper bound on the number of mind-changes of an optimal norma-
lized strategy S. For this, we provide a lower bound on the number of bad moves of the strategy.
Then we simply have to subtract it from the number of all moves made.

13

We start by considering how many moves are made in total. Clearly there are k row moves.
Potentially, there can be up to ml column moves. Let p denote the number of reducing column
moves of strategy S and 2 be the (even) number of ineffective column moves done during the
first m row moves. Recall that by Property 3, the player makes all the reducing column moves
during the first m row moves and therefore p < m/2. Since b(s;,;1) = m, we have b(s) > m —2p
for any state s, and b(S(2)) = m — 2p for all i > m.

Lemma 5.6 The player makes C.yp = ml — p — 1 effective column moves and My,yq1 = k4 1m —
p+[S(k) € 8] moves in total.

Proof. Consider the state S(k). Since S is optimal, all counters in state S(k) have value [— 1
or [. Because b(S(k)) = m — 2p, precisely p counters have value [— 1. Hence, there have been
ml — p column moves when reaching state S(k). All but ¢ many of these are effective.

For the total number of moves we have to add k row moves and a possible column move
from S(k). The latter is expressed by the predicate “S(k) € S”. 0

We partition the sequence of states during the whole game into four segments, S1, 52, §3
and $*, which we consider separately. To get at least some intuition for what follows, one should
keep in mind how our strategies A and B work. The bounds on the number of good, respectively,
bad moves we give below will depend on certain parameters. Then observe that if one plugs in
the values these parameters have in strategies A and B, all bounds are in fact tight. This way
we get that the strategies are optimal.

The segments are defined as follows. Let & = dm + k', where 0 < k&’ < m.

Segment | from state to state

St S(O) = Sinit <_5(77”0)

5? S(m) “S(m + k)
53 Stm+ k) | =Sk —m)
g4 Sk —m) ~S(k)

We leave out state S(k) here. The only possible move from S(k) is an ineffective column move
which we will simply add at the end.

We start by considering S!. Since every reducing column move must be preceded by a bad
move—except when it is made from state s;,;;—the player makes p — 1 bad moves to set up
these column moves.

For the remaining states of S, we don’t count the bad moves directly. This is because we
cannot say in beforehand when the player makes a column move from a bad state and when not.
Instead, we count the number of bad states and subtract the number of effective column moves
made from it. This gives us the number of bad moves. Since we have already counted the bad
moves made just before reducing column moves, there are m — p bad states left in this segment.
To these, we add the number of bad states of segments 52 and 53.

Next, we consider the second segment S2. The player makes &’ < m row moves while it is
in the states of this segment. We give a lower bound on the number of bad states in S2.

Lemma 5.7 5% has at least max{0, min{m — 2p, k" + 2 — 2p}} bad states.

Proof. The segment 52 has states from S(m) to ~S(m + &'). Since b(S(m)) = m — 2p, there
are m—2p bad states among S(m), S(m+1), ..., S(2m—1). However, S(2m—1) and S(2m—2)

14

are good states. To see this, note that S(m — 1) is a good state, since there is a column move
from the state s;,;;. S(m — 2) is a bad state. By Property 5, there is a column move from
the state S(m — 2). Therefore, the state “S(m — 1) is a good state. Hence, S(2m — 1) and
S(2m — 2) are good and thus there are m — 2p bad states among S(m), ..., S(2m — 3).

To get a lower bound on the number of bad states in $2, assume that the (2m—3)—(m+#%")+1
states S(m + k'), ..., S8(2m — 3) are all bad. Then there remain at least

m—2p—(2m—-3)—(m+E)+1) = K+2-2p

bad states in $2. Since the number must always be between 0 and m — 2p, the lemma follows.
O

Now take the third segment 52. It has states from S(m+#k") to “S(k — m). We subdivide the
segment into blocks of length m. There are precisely d —2 such blocks (recall that k& = dm+£').
The first state of each block is S(k' + jm), for j = 1,...,d — 2. Now we use Property 3: if
there is a column move from the state S(k" 4+ jm), for some j then the number of bad states
among S(k' + jm),...,S(k' 4+ jm+ m — 1) is exactly m — 2p + 1. On the other hand, if there
is no column move, then this number is exactly m — 2p. Therefore, the number of bad states in
segment S? is exactly (d — 2)(m — 2p) + ¢, where ¢ is the number of column moves made from
the states S(m + k — jm), for 1 < j < d — 1. The following lemma gives bounds on .

Lemma 5.8 [f2p = m then ¢ =0, otherwise [— [1/m] —m+2p <e<1—-1.

Proof. When 2p = m, then, since all the reducing column moves are made in the first segment,
all states are good after S(m — 1). Therefore, no non-reducing column moves are made, and so
c=0.

Now, assume that 2p < m. By Property 4, any non-reducing column move from a (bad)
state in the first segment starts a chain of non-reducing column moves: one after every m — 1
row moves. Any two such chains must be non-overlapping, and there are at most m — 2p such
chains, since there are exactly m — 2p bad states in the first segment. We define the length of
such a chain to be the number of column moves made in the chain. Let the lengths of these
chains be nq, ..., ny_g, (where some n; can be 0). Note the these are all the non-reducing
column moves in the whole game. By Lemma 5.6, we have Z;n:_lzp n;=Ceg—p=ml—2p—n.

The player will make a column move from a state in the set { S(K'4+jm)|j=1,...,d—2}
once for every m moves, for every chain. Therefore, we have

AV
-
M

v
—
|
- 1
|l\')
)
—_—
|
- 1
| =
—_—
|
~~
3
|
DO
)
|
—
~—

Y,
|
- 1
Bl
|
3
|
DO

s

For the second inequality, we used that |z] + |y| > | + y| — 1, and for the last one, recall
that we assume 2p < m. This proves the lower bound. The upper bound on ¢ simply follows

15

from the fact that any counter value can be at most [and the chains start from the first segment
which has no states in common with the third one. a

Finally, we consider the segment $4. The player makes exactly m row moves while it is in
the states of 5%, Assume that v < m — 2p of the non-reducing column moves are made in S*.
Hence, the player makes m — 2p — v bad moves in this segment.

Define B to be the sum of the m — p bad states from S! we have not yet counted, the lower
bound on the bad states of 5 given by Lemma 5.7, and the (d —2)(m —2p) + ¢ bad states of 52.
That is,

B = m—p+(d—2)(m-2p)+c+ max{0,min{m — 2p, k' + 2 — 2p}}. (1)

The total number of bad moves in the game, My,q, consists of the p — 1 bad moves from S,
the m — 2p — v bad moves from 5%, and the remaining bad moves in S, §2, and 5. The latter
ones we get by subtracting the number of non-reducing column moves made in these segments,
namely C.g — v, from the number of bad states, B, if this remains positive. That is

Myig > (p—1)+(m—2p—v)+max{0,B—(Cp —v)}

= m—p—-1l-v+max{0,B— (Cp—r)}

Now we get an upper bound on the number of good moves, i.e., the number of mind-changes
of strategy &, by subtracting the lower bound on the number of bad moves My,; on the number
of from the total number of moves, M;,1;. Therefore,

mc(S) Miotar — Mpad
(k+lm—p+[SkneS])—(m—-p—-—1—-—v+max{0,B - (C.g —1v)})

= k+lm—-—m+14+v—max{0,B—Im+1+p+rv}+[Sk)eS].

<
<

Suppose that & > 2m. Then d > 2, and this expression is maximized if p and v are chosen
as large as possible. We have the bound 0 < v < m — 2p, and therefore v 4+ 2p < m. However,
we will choose k large enough so that the expression in the above max-term, B —Im 411+ p+ v,
is nonnegative. Then me(S) is in fact independent of v. Therefore it is enough to maximize p.

We have two cases: if m is even, we have 2p = m (and hence, v = 0), and and m is odd,
we have 2p = m — 1. In the latter case, v could be 1. However, v must again be 0 for large
enough k.

Lemma 5.9 Let K = (I - 1)(m—1)m+2m. If k > K and2p > m — 1, then v = 0, i.e., the
player makes no column moves in segment S*.

Proof. Suppose that the player makes a (non-reducing) column move from the state S(k—m+t),
for some t € {0,...,m —1}. By Property 4, there must be a chain of column moves every m — 1
row moves, down to segment S'. Hence, there must be at least [(k—m+1t)/(m—1)] + 1
non-reducing column moves in the strategy. For k > K, we have

{Lxﬂﬁ {(l—n%:ll)mm
> (I-1)m+2.

v

o

But the number of non-reducing column moves available is only C'yp — p = ml —2p — 1 <
ml—2p <m(l—1)+ 1, since 2p > m — 1 by our assumption. O

16

Hence, for k > K we have the following bound on me(S):

me(S) < k+Im—m+1—max{0,B—Im+1+p}+[5(k) €S]. (2)

We treat the two cases whether m is even or odd separately.
Case 1: m is even. We choose 2p = m. By Lemma 5.8, we have ¢ = 0 and therefore B = m/2
by equation 1. Moreover, since there are no non-reducing column moves, ¢+ = I'm — m. For the
mind-changes of strategy 5, we get

me(S) < k+Im—m+1—max{0,m—Im+}+[S(k) € S]
= k+lm—m+1+[5k) €S].

If k4+1Im — m+ 1 would be the exact number of mind-changes of § without counting the last
extra column move, then, by Lemma 5.2, we get [S(k)l € S|=[lZk+Im—m+1 (mod 2)],
where this is equal to [l =k (mod 2)], since m is even. However, even though we don’t know
vet whether the two predicates coincides, we can anyway replace [S(k)| € S] and still have an
upper bound on me(S). Hence, our final bound on me(S) in this case is

me(S) < k+lm—m+1+[l=k (mod 2)].

But this bound matches precisely the mind-changes of strategy A described in the previous
section. Therefore, strategy A must be optimal for k > K.
Case 2: m is odd. Now 2p = m — 1. By Lemma 5.8, our bound on a now is [— 1 — [¢/m] <
a <!l—1. For B, we get from equation 1

1
B = %—|—(d—2)—|—c—|—max{0,min{1,k'—|—3—m}}. (3)
It is easy to verify that max{0, min{1,k" 4+ 3 — m} = [(k+2)/m]| — d. Next, consider the
max-term of inequality 2 and plug in B. We get

max{0,B —Im+ 1+ p} = max{0, (mT—I_l—I—(d—Q)—I—C—I— VCLQJ) —Im+ 14 p}
m

k+2
= max{O,m—Im—2+1+c+ {LJ}
m

Since k > K, we have that [(k 4+ 2)/m]| > Im —m+3—1[. Together with our lower bound on ¢, it
follows that the second argument in the max-term is nonnegative. Plugging this in equation 2,
we get

k42
me(S) < (k+im—m+1)—(m—Im—2+1+ct {%J)HS(ML € 5]
k42
= k—|—21m—2m—c—|—3—2—{%J—I—[S(lﬂ)ie‘?]. (4)
By the same argument as in case 1

above, we can replace [S(k)l € S] by [#k+2lm—2m—c+3—1— [(k+2)/m] (mod 2)].

17

The latter is equal to [= k — |[(k+2)/m] — ¢ (mod 2)], since 7 is even. Hence, the bound on
me(S) in equation 4 is maximized when ¢« = 0. This implies that ¢ =1 — 1, and we get

me(S) < k—l—2[m—2m—l—|—4—{k%2J—l—[k§éVC—I_QJ (mod?)]

m
The strategy B described in the previous section achieves this bound and is therefore is optimal
for k > K.
6 Summarizing the Results

Since strategies A and B are optimal for k > K = ([— 1)(m — 1)m 4 2m, the mind-changes
of these strategies give us the mind-changes of the underlying Boolean formula of the classes
NP(1)//Mod P Thus we can apply Theorem 3.1.

Theorem 6.1 For k > K, we have NP(1)//Mod X' = NP(1), where

E+lm—m+4+1+[l=k (mod2)] if m is even,
T kk2tm - 2m -l [E2] g k£ [E2] (mod 2)] if m s odd.

An interesting special case is if [= 1. This was solved for even m in [HT96]. Now, we also
have the result for odd m.

Corollary 6.2 For k > 2m, we have NP //Mod 'IFl = NP(t), where
kE+ 14 [k odd if m is even,
T Uk B2 s k2 [E2] (mod)| ifm is odd.

Another interesting case is for m = 2, i.e., considering classes NP(Z)//@NP[k]. Since @NFIX]
can be seen as a (characteristic function of a) set in NP(k), such classes represent 2 concatenated
computations in the Boolean hierarchy: an NP(/) set gets the result of an NP(k) computation.

Corollary 6.3 For k > 2(1+ 1),

NP()//aNPH = NP(k4+20—1+[l=k (mod 2)])

7 If Lk is small

For values of k less than K = (I — 1)(m — 1)m + 2m, the mind-change of an optimal strategy
can be derived in a similar way. For [= 1, this was done in [HT96], and for the general case,
we have:

Lemma 7.1 For2m < k < K, and for any optimal strategy S,
mc(S')§k—l—l—l—ml—m—l—a—l—[lzk—l—ml—m—l—a—l—l (mod 2)]
where a is the largest number satisfying the following conditions:
e 0<a<m-—2,

e a=m (mod 2), and

18

ea<m-(l-1)/|k/(m-1)

A strategy C that achieves the above bound is one in which the player makes (m — a)/2
reducing column moves in the first segment (segment as defined in Section 5), and then a reducing
column moves for every m — 1 row moves after the state C(k). We omit the calculations.

For m < k < 2m, it can be easily shown that the optimal strategy has a mind-change of
ml + m — 1 when [is odd, and ml + 2k — 2m when [is even. And for k£ < m, it is derived in
Section 3 (in this case, NP//ModNFIH is the same as NP //#NP[H]),

References

[BDGSS]

[Bei9l]

[CGHTSS]

[HT96]

[HUT79]

[KSWS7]

[KT94]

[LLS75]

[W90]

[Wec85]

J. Balcazar, J. Diaz, and J. Gabarré. Structural Complexity 1. EATCS Monographs
in Theoretical Computer Science. Springer-Verlag, 1988.

R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Computer
Science, 84:199-223, 1991.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,
and G. Wechsung. The boolean hierarchy I: Structural properties. STAM Journal on
Computing, 17(6):1232-1252, 1988.

T. Han and T. Thierauf. Information and Computation, 128(2), 119-125, 1996.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

J. Kobler, U. Schoning, and K. Wagner. The difference and truth-table hierarchies
of NP. R.A.L.R.O. Informatique théorique et Applications, 21(4):419-435, 1987.

J. Kébler and T. Thierauf. Complexity-restricted advice functions. STAM Journal
on Computing, 23(2):261-275, 1994.

R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1(2):103-124, 1975.

K. Wagner. Bounded query classes. SIAM J. on Computing 19(5), pages 833-846,
1990.

G. Wechsung. On the boolean closure of NP. In Proceedings of the 5th Conference
on Fundamentals of Computation Theory, pages 485-493. Springer-Verlag Lecture
Notes in Computer Science #199, 1985. (An unpublished precursor of this paper
was coauthored by K. Wagner).

19

