
Pinpointing Computation with Modular Queries in theBoolean HierarchyManindra Agrawal � Richard Beigel y Thomas Thierauf zMay 27, 1997AbstractA modular query consists of asking how many (modulo m) of k strings belong to a �xedNP language. Modular queries provide a form of restricted access to an NP oracle. Foreach k and m, we consider the class of languages accepted by NP machines that ask a singlemodular query. Han and Thierauf [HT96] showed that these classes coincide with levels ofthe Boolean hierarchy when m is even or k � 2m, and they determined the exact levels.Until now, the remaining case | odd m and large k | looked quite di�cult. We pinpointthe level in the Boolean hierarchy for the remaining case; thus, these classes coincide withlevels of the Boolean hierarchy for every k and m.In addition we characterize the classes obtained by using an NP(l) acceptor in place of anNP acceptor (NP(l) is the lth level of the Boolean hierarchy). As before, these all coincidewith levels in the Boolean hierarchy.1 IntroductionA set L is (polynomial-time) truth-table reducible to a set A [LLS75], if there exist twopolynomial-time bounded Turing machines, the generator and the evaluator . On a given inputstring x, the generator �rst generates a list of strings which are then asked of oracle A. Thenthe evaluator, getting x and the answers of A to the queries as input, decides the membershipof x in L. A truth-table reduction is called bounded if the number of queries produced by thegenerator is bounded by a constant for any x.In this paper, we consider a more restrictive version of a truth-table reduction. Namely,instead of giving the full information about the queries to the evaluator, that is, the characteristicsequence with respect to oracle A, the evaluator gets only some partial information about it.The point is that by comparing various kinds of partial information that can be given to anevaluator, one can study the kind of information an evaluator actually needs to solve a certainproblem. This setting has been studied in many papers [Bei91, HT96, KT94, W90, Wec85], andsome surprising results have been obtained. To describe this more formally, we use a notationintroduced by K�obler and Thierauf [KT94].�Department of Computer Science, Indian Institute of Technology, Kanpur 208016, India. Email: manin-dra@iitk.ernet.in. Work done while visiting Abteilung Theoretische Informatik, Universit�at Ulm, on an Alexandervon Humboldt Fellowship.yYale University, Dept. of Computer Science, P.O. Box 208285, New Haven, CT 06520-8285, USA. Email:beigel-richard@cs.yale.edu. On sabbatical leave 1996{97 at the Dept. of Computer Science, University of Mary-land, College Park, MD 20742-3251, USA. Email beigel@cs.umd.edu. Supported in part by U.S. National ScienceFoundation grants CCR-8952528 and CCR-9415410 and by NASA (NAG52895)zAbteilung Theoretische Informatik, Universit�at Ulm, Oberer Eselsberg, 89069 Ulm, Germany. Email:thierauf@informatik.uni-ulm.de. 1

De�nition 1.1 [KT94] Let C be a class of languages and let F be a class of functions from�� to ��. A set L is in the class C==F if and only if there are a set A 2 C and a function f 2 Fsuch that for all x 2 ��, it holds that x 2 L() (x; f(x)) 2 A.We consider the following function classes. Let A be a set, k � 0, and m � 2.f 2 �A[k] () 9g 2 FP 8x : g(x) = (x1; : : : ; xk) and f(x) = A(x1) � � �A(xk);f 2 #A[k] () 9g 2 FP 8x : g(x) = (x1; : : : ; xk) and f(x) = kXi=1A(xi);f 2 ModA[k]m () 9h 2 #A[k] 8x : f(x) = h(x) mod m;where A(�) denotes the characteristic function of A. For m = 2, we also write �A[k] insteadof ModA[k]m . For a class C of sets, �C[k] denotes SA2C �A[k], and analogously for the other twoclasses.In other words, �A[k] gives the sequence of answers to the queries to A produced by somegenerator g, #A[k] counts the number of queries that are in A, and ModA[k]m gives the laternumber modulo m. As an example, we have P==�NP[k] = PNP[k]tt .One of the motivations to consider such restricted truth-table reductions is a somewhatsurprising result that follows from a paper by Wagner and Wechsung [Wec85], see also in [Bei91].Theorem 1.2 [Wec85] For all k � 0,P==�NP[k] = P==#NP[k] = P==�NP[k] :In other words, one can drastically reduce the information a polynomial-time evaluator getswhen asking an NP oracle, namely from full information to a single bit information: the parityof the number of queries that are in the oracle, without changing the accepted class of sets,PNP[k]tt .It follows from Theorem 1.2 that instead of �NP[k], one can use ModNP[k]m , for any even m,and still get the same class, P==�NP[k]. This is, however, not clear when m is odd . Han andThierauf [HT96] showed that in this case the evaluator gets in fact less information (unless theBoolean hierarchy collapses).Theorem 1.3 [HT96] For all k � 0 and m > 2 odd,P==ModNP[k]m = P==�NP[k�bk=mc] :In other words, a parity function can ask bk=mc less queries to an NP oracle than a modulo mfunction, for odd m, and still give the same amount of information to a P evaluator.Extending the evaluator to a nondeterministic machine, we get a nondeterministic versionof the truth-table reduction. K�obler and Thierauf [KT94] showed that the counterpart of the�rst equality of Theorem 1.2 holds, and furthermore, that the resulting class coincides with the(2k + 1)-th level of the Boolean hierarchy.Theorem 1.4 [KT94] For all k � 0,NP==�NP[k] = NP==#NP[k] = NP(2k + 1):2

Note that NP(k) � P==�NP[k] � NP(k + 1) for all k � 1 [KSW87] (see also [Bei91]).Therefore, switching from a P to an NP evaluator roughly doubles the level of the Booleanhierarchy where the resulting classes are located.When we have a parity function given to an NP evaluator, Han and Thierauf [HT96] sho-wed that the resulting classes are located much lower in the Boolean hierarchy than with fullinformation.Theorem 1.5 [HT96] For all k � 0,NP==�NP[2k+1] = NP==�NP[2k+2] = NP(2k+ 3):For general modulo functions, again, when m is even, ModNP[k]m gives the same informationto an NP evaluator as �NP[k]. However, when m is odd, only lower and upper bound are knownfor the resulting classes, the precise location of NP==ModNP[k]m , when m is odd, remained open.Theorem 1.6 [HT96] For all k � 2m� 2,(i) NP==ModNP[k]m = NP==�NP[k], for m even,(ii) NP==�NP[k�bk=mc] � NP==ModNP[k]m � NP==�NP[k], for m odd.In this paper, we solve the open problem. Namely, we show that all classes NP==ModNP[k]min fact coincide with some level of the Boolean hierarchy, and we determine the level. Based onthe mind-change technique developed by Wagner and Wechsung [Wec85], we associate with eachclass NP==ModNP[k]m a certain game. The game consists of a table where one can make certainmoves according to rules, we will specify below. Some of the moves increase the counter for thegame. The maximum score the counter can reach by any playing strategy will be the level ofthe Boolean hierarchy the class NP==ModNP[k]m coincides with.Therefore, we will develop a playing strategy and then prove that this strategy is optimal.Since we also get again the results mentioned above (with NP evaluators), we have now a uniformway of proving results along these lines. Furthermore, our technique extends to more generalclasses: the evaluator can be in higher levels of the Boolean hierarchy. That is, we can handleclasses NP(l)==ModNP[k]m , for l � 1.Such classes look very technical. However, we think that our methods of locating such,somehow involved classes, in the, much simpler de�ned, Boolean Hierarchy are interesting enoughin its own and might �nd further applications in other settings.2 PreliminariesWe follow standard de�nitions and notations in computational complexity theory (see,e.g., [HU79] or [BDG88]). Throughout this paper, we use the alphabet � = f0; 1g. For apredicate P , let [P] denote 1 if P is true, and 0 if P is false.P (NP) denote the classes of languages that can be recognized by a polynomial-time de-terministic (nondeterministic) Turing machine. FP is the class of polynomial-time computabletotal functions.The Boolean hierarchy is the closure of NP under Boolean operations, and is usually de�nedin levels by allowing successively more Boolean operations. This can be done for example bysymmetric di�erences of NP sets [CGH+88]: a set L is in NP(k) (k � 1), the k-th level ofthe Boolean hierarchy , if there exist A1; : : : ; Ak 2 NP such that L = A14 � � �4Ak. A set3

L is in coNP(k), if L 2 NP(k). The Boolean hierarchy , BH, is the union of all the levels,BH = Sk�1NP(k).We note that in the above de�nition of NP(k), we can require in addition that the sets Aiform a decreasing chain A1 � � � � � Ak and we still get the same class, NP(k) [CGH+88].3 Providing the GameWagner and Wechsung [Wec85] have shown that any Boolean expression over NP sets coincideswith some level (or its complement) of the Boolean hierarchy. Since their proof technique is thekey also to our results, we include a proof of their theorem. Let us �rst de�ne some notions.Let � be a Boolean function with k variables, that is � : (x1; : : : ; xk) 2 f0; 1gk 7! f0; 1g.Then NP(�) be the class of sets L that can be expressed by k sets L1; : : : ; Lk 2 NP as follows.For any x 2 ��, set variable xi = 1 if and only if input x 2 Li, for i = 1; : : : ; k. Then we musthave x 2 L() �(x1; : : : ; xk) = 1.The result of Wagner and Wechsung [Wec85] says that for any � there is some m such thatNP(�) coincides with either NP(m) or coNP(m). A crucial point thereby is to determine thevalue of m.Let a = (a1; : : : ; at) be an increasing chain in f0; 1gk with respect to the bitwise order �.That is, ai 2 f0; 1gk, for i = 1; : : : ; t, and a1 � : : : � at. The number of mind-changes of � in a isthe number of positions i such that �(ai) 6= �(ai+1). By m(�) we denote the maximum numberof mind-changes of � in any increasing chain in f0; 1gk. The level of the Boolean hierarchyNP(�) coincides with is determined by m(�).Theorem 3.1 [Wec85] For any k-ary Boolean function �,NP(�) = (NP(m(�)); if �(0k) = 0coNP(m(�)); otherwise.Proof. Let L 2 NP(�) via L1; : : : ; Lk 2 NP. De�ne sets Ai, i = 1; : : : ; m(�), as followsx 2 Ai () there exists an increasing chain a = (a0; : : : ; ai) in f0; 1gkwhere � makes i mind-changes and such thatif there is a 1 at position j in ai, then x 2 Lj :Clearly, all sets Ai are in NP. Moreover, they form a decreasing inclusion chain: A1 � � � � �Am(�). Now, let A = A14 � � �4Am(�) 2 NP(m(�)). That is, x 2 A if and only if the maximum isuch that x 2 Ai is odd. In other words, x 2 A if and only if the maximum number of mind-changes that � can make with respect to x is odd. Therefore L = A if �(0k) = 0 and L = A if�(0k) = 1.For the reverse direction let L = A1 4 � � �4Am(�) 2 NP(m(�)), for NP sets A1 � � � � � Am(�).Furthermore, let (a0; : : : ; am(�)) be an in increasing chain in f0; 1gk where � makes m(�) mind-changes. We can assume that am(�) = 1k.Now we de�ne sets L1; : : : ; Lk that de�ne L via �. For all j 2 f1; : : : ; kg, if a1 has a 1 atposition j, then Lj = A1. In other words, we write A1 in all variable positions of � where a1has a 1. In the next step, we write A2 in all variable positions of � where a2 has a 1 that isnot already in a1. That is, for all j 2 f1; : : : ; kg, if a1 has a 0 at position j and a2 has a 1 atposition j then Lj = A2. Continuing that way up to m(�), we get k sets L1; : : : ; Lk that de�neL via � if �(0k) = 0, and that de�ne L if �(0k) = 1. 24

Let � be a k-ary Boolean function. An upper bound on the number of mind-changes of� is the number of variables, k, since no increasing chain in f0; 1gk can be longer than k + 1.Therefore, 0 � m(�) � k.Consider for example the k-ary parity function park. The sequence with ai = 1i0k�i fori = 0; : : : ; k forms an increasing chain. Since the number of mind-changes matches the upperbound, we have m(park) = k. Note that the class NP(k) is de�ned via the k-ary parity function.Since park(0k) = 0, we get back NP(k) by Theorem 3.1.As a more interesting example, consider classes NP(l)==#NP[k]. The Boolean function �associated with NP(l)==#NP[k] has k + l(k + 1) variables, namely, k variables x1; : : : ; xk for the#NP[k] function and l variables yi1; : : : ; yil, for each potential function value i 2 f0; : : : ; kg ofthe #NP[k] function. Then the value of � is parl(yi1; : : : ; yil), if i of the xj variables are one.Note that to evaluate �, we don't need to know the exact assignment to its variables: since � iscomposed out of symmetric functions, it is enough to know the number of ones in (x1; : : : ; xk)and each tuple (yi1; : : : ; yil), for i = 0; : : : ; k. The collection of these numbers, we call a state.De�nition 3.2 A state s is a k + 2 tuple of integers s = (c0; c1; : : : ; ck; i) such that 0 � cj � lfor 0 � j � k, and 0 � i � k. We refer to the last component of s (the number i) as the indexof s, and the numbers cj as the counters of s. When i is the index of s, counter ci is the activecounter of s.In a state s = (c0; : : : ; ck; i), the index i denotes the number of ones in (x1; : : : ; xk) and thecounter cj denotes the number of ones in (yj1; : : : ; yjl). The function � can now be thought ofas acting on states: �(s) = ci mod 2.An increasing chain of assignments becomes now an increasing sequence of states where wewant to maximize the number of mind-changes. We reformulate the problem in terms of a gameplayed on a table.De�nition 3.3 The table consists of k + 1 columns and kl + 1 rows. The entries in the tableare states. For 0 � C � kl and 0 � i � k, the entry at position (C; i) of the table can be anystate s = (c0; : : : ; ck; i) with Pkj=0 cj = C.For a state s = (c0; : : : ; ck; i), the row and column neighbours of s in the table are de�ned asfollows. The left and right row neighbours of s are s = (c0; : : : ; ck; i� 1); if i > 0, ands! = (c0; : : : ; ck; i+ 1); if i < k,respectively. Similarly, the upper and lower column neighbours of s ares" = (c0; : : : ; ci�1; ci � 1; ci+1; : : : ; ck; i); if ci > 0, ands# = (c0; : : : ; ci�1; ci + 1; ci+1; : : : ; ck; i); if ci < l,respectively.The game is played by a player on the table. When the game begins, the player is in thestate sinit = (0; : : : ; 0; 0), and consequently in position (0; 0) on the table. Now, the player isallowed to make the following two kinds of moves.De�nition 3.4 Let s = (c0; : : : ; ck; i) be a state. A row move from s takes the player to thestate s!. It is de�ned only when i < k. A column move from s takes the player to the state s#.It is de�ned only when ci < l. The game ends when no more move is possible.The mind-change for any move is de�ned to be 1 if the values of the active counters of thetwo adjacent states involved in the move have di�erent parity (i.e., are di�erent modulo 2), and0 otherwise. 5

So, for a column move, the mind-change is always one. And for a row move from the states = (c0; : : : ; ck; i), the mind-change equals (ci + ci+1) mod 2.The aim of the player is to make moves, starting from the state sinit , such that the sum ofthe mind-changes is maximized.De�nition 3.5 A playing strategy S for the player is a sequence of moves having exactly krow moves and such that when the player plays according to the strategy S, it remains withinthe table, i.e., no counter of any state reached during the game exceeds l. For the strategy S, wede�ne the mind-change of the strategy, mc(S), as the sum of the mind-changes of its moves.An optimal playing strategy for the player is a strategy that has the maximum number ofmind-changes.For a strategy S, let S(i) denote the state reached by the player immediately after the ith rowmove according to the strategy S.The mind-change of a column move is always one. Only for the row moves the mind-changecan be zero, and therefore, these have to be made carefully in order to arrive at an optimalplaying strategy.De�nition 3.6 A state s = (c0; : : : ; ck; i) is good if ci 6� ci+1 (mod 2), and bad otherwise. Arow move from a good (bad) state is a good (bad) move.Coming back to classes NP(l)==#NP[k], it is clear that the number of mind-changes of anoptimal strategy equals m(�). The optimal strategy is quite easy to see:Strategy for NP(l)==#NP[k]1 for i 0 to k do2 make l column moves3 if i < k then make a row moveAt any time, variable i contains the column of the table where column moves are made. Ineach column, we simply make the maximum number of column moves.Note that in case that l is odd, all our row moves are good, while they are bad in case thatl is even. Hence, when l is even, we get l(k + 1) mind-changes, and, when l is odd, we getadditionally k mind-changes, i.e., l(k + 1) + k in total.When l is odd, the number of mind-changes matches the upper bound, the number of va-riables of �. Therefore the strategy is optimal in this case. When l is even, observe that nostrategy can make more than l mind-changes in any column including the row move to the nextcolumn. This generalizes Theorem 1.4.Theorem 3.7 For k, l � 1,NP(l)==#NP[k] = (NP(l(k+ 1) + k); if l is odd,NP(l(k+ 1)); if l is even.The argument here was easy because every counter becomes active exactly once, and there-fore, it is obvious that a good strategy makes all possible column moves as soon as a counterbecomes active. However, when considering classes NP(l)==ModNP[k]m , this doesn't hold anymore.To adapt the de�nitions from above, we have now only m counters c0; : : : ; cm�1 in a state, and,for any i 2 f0; : : : ; kg, the counter cimodm is the active counter. Hence, after every m row movesthe counter ci becomes active again, for every i, 0 � i < m.The table still has k+ 1 columns, but now ml+1 rows. Column- and row moves and mind-changes are de�ned in the same way, just the indices of the counters have to be taken modulo mnow. To keep notation clean, we will mostly write ci instead of cimodm.6

4 Strategies for NP(l)==ModNP[k]mLet us start by naivly adapting the strategy for NP(l)==#NP[k] to classes NP(l)==ModNP[k]m . Thatis, during the �rst m row moves we �ll up all the m counters. Then all our column moves areused and all states in the remaining k � m row moves will be bad. Hence, we get lm mind-changes when l is even, and lm+m� 1 when l is odd. This seems to be a good strategy onlyif k = m because then we make no bad moves.For larger k, a better strategy is to spend just one column move to turn a bad state into agood state. That is, we make one column move per every row move. Hence, after the �rst m rowmoves all counters have value 1, after the second m row moves all counters have value 2, and soon. After ml row moves, all counters have value l. Except when cm�1 is the avtive counter, thecolumn move turns the bad actual state into a good state, then making a good row move. Still,the remaining k � lm row moves are all bad. We get 2ml � l mind-changes by this strategy,because on ml � l of the column moves we make a good row move. Observe that we obtainedroughly twice as many mind-changes as in the naive strategy from above. This is clearly a goodstrategy as long as k is small, e.g., k = lm. The case of small k is treated in detail in Section 7.For larger k we can in fact do better.Suppose now that k is large compared to m and l (we will determine later how large precislyk should be) and consider the above strategy (the second one). The initial part, where we makeall our good row moves, is small, and we spend most of the time in the second part where wemake only bad row moves. Therefore it would be better if there are many good states presentwhen the second part starts. In order to have many good states, neighbouring counters musthave di�erent parity. This motivates the following de�nition.De�nition 4.1 For any state s = (c0; : : : ; cm�1; i), we de�ne the badness of s, b(s), as thenumber of counters cj such that cj � c(j+1) modm (mod 2), for j = 0; : : : ; m� 1.For example in the initial state sinit , all counters have value 0, and therefore b(sinit) = mwhich is clearly the maximum value for b for any state. Note also that b(s) is the number of badstates the player will see during the next m row moves. In other word, for s = (c0; : : : ; cm�1; i)and any strategy S, there are b(s) bad states in fs;S(i+ 1); : : : ;S(i+m� 1)g.How small can b become? Consider the counters that have alternating values 0 and 1. Nowwe get a di�erence of whether m is even or odd. If m is even, we get an alternating cycle andthe badness b is 0. However, if m is odd, we cannot avoid to have a pair of counters with thesame parity. Therefore the smallest value for b in this case is 1. Because of this di�erence, wedistinguish the case whether m is even or odd, and give two strategies: strategy A for even mand strategy B for odd m. We will show in Section 5 that these strategies are optimal for largeenough k.4.1 For m evenThe player plays according to the following strategy A.Strategy A1 for i 0 to m� 1 do2 make l � 1 column moves3 if i 6� l (mod 2) then make a column move4 make a row move 7

5 for i m to k � 1 do make a row move6 if ck = l� 1 then make column moveThe for-loop in line 1 to 4 put alternating the value l�1 and l in the counters. That is, stateA(m) has the formA(m) = (l; l�1; : : : ; l; l�1; m) if l is odd, and A(m) = (l�1; l; : : : ; l�1; l; m) ifl is even. From them row moves made so far,m=2�1 are bad moves. Now, we have b(A(m)) = 0,and therefore all row moves made in line 5 are good. In total, there are k� (m=2� 1) good rowmoves.In the �rst for-loop, we also make ml �m=2 column moves. Depending on the value of ck,there can be one more column move in line 6. When do we get an extra column move in thelast column? Let 0 � k0 < m such that k0 � k (mod m). Thus ck0 is the active counter atthe end and we want to know whether ck0 = l � 1 before executing line 6. By the condition inline 3, this is the case when k0 � l (mod 2). Since m is even, k0 � k (mod 2). Hence, we getan extra column move precisely when k � l (mod 2).In summery, the number of mind-changes of strategy A ismc(A) = �k � (m2 � 1)� + �ml� m2 � + [k � l (mod 2)]= k +ml�m+ 1 + [k � l (mod 2)] :Observe the improvement over our �rst approaches when k is large. Recall that the numberof variables of the underlying formula, i.e., k+ml in this case, is an upper bound on the numbermind-changes of any formula. Hence mc(A) is o� by less then m from the upper bound. We lostthese mind-changes by spending half of them to set up the �rst m columns, and for the otherhalf, we did less column moves than possible. In the beginning examples, we have already seenthat the player can avoid making any bad moves for small k. However, for large k, we will showthat bad moves cannot be avoided and that strategy A is optimal.4.2 For m oddWe will develop a strategy B when m is odd. As already explained before Section 4.1, thesmallest badness we can achieve for a state s in this case is b(s) = 1. In strategy A we did allcolumn moves (except may be one) during the �rst m row moves. Now we are more careful withour column moves since we might be able to use them to decrease the number of bad moves wehave to make. Hence, we will produce a state with badness 1, which is the best we can achieve,but keeping our column moves as small as possible. That is, we start by producing alternatingcounter values 1, 0, 1, 0, : : : . If we simply continue that way for the �rst m columns, we willend with a 1, i.e., cm�1 = 1. Observe now that because of our column move in the �rst column,i.e., c0 = 1, the state B(m� 1) is good. Making a column move there, turns a good state intoa bad state. Hence, this doesn't look like a good idea. Instead, we do the following: we keepB(m�1) as a good state and make a column move already in column m�2. Then b(B(m)) = 1.If we make only row moves from now on, as it is done in strategy A, then one move out ofevery m will be a bad move. But we can do even better by using column moves: if we makea column move in the bad state, the state is turned into a good state, and the badness of thisgood state is still 1! So we can continue that way until our counters are �lled up.Strategy B1 for i 0 to m� 2 do2 if i is even or i = m� 2 then make a column move8

3 make a row move4 for i m� 1 to k do5 if B(i) is bad and ci < l then make a column move6 make a row move7 if ck = l� 1 then make a column moveBy the for-loop in line 1 to 3, we get B(m) = (1; 0; 1; 0; : : : ; 1; 0; 1; 1; 0; m) and the number ofbad moves made so far is (m� 3)=2. As the player proceeds from B(m), the �rst bad state thatit encounters is B(2m� 3). Then it makes a column move (line 5) and proceeds. So, we getB(2m) = (1; 0; : : : ; 1; 0; 2; 1; 0; 2m);B(3m) = (1; 0; : : : ; 1; 0; 1; 1; 2; 1; 0; 3m);B(4m) = (1; 0; : : : ; 1; 0; 2; 1; 2; 1; 0; 4m); : : :Observe that the bad state is occurring after every m� 1 row moves by the player. Hence, afterm(m� 1) row moves from B(m) on, we get B(m2) = (2; 1; : : : ; 2; 1; 2; 2; 1; m2), i.e., each counteris increased by one compared to B(m). The same pattern of moves will now be repeated. So,after (l � 1)(m� 1)m row moves from B(m) on, the state of the player will beB((l� 1)(m� 1)m+m) = (l; l� 1; : : : ; l; l� 1; l; l; l� 1; (l� 1)(m� 1)m+m):(We assume that k � (l � 1)(m � 1)m + m.) Now, no more column moves are made, exceptmaybe in line 7.Thus, for the remaining k � ((l� 1)(m� 1)m+m) row moves, the player will encounter abad state after every m row moves (instead of m� 1) and it will have to make a bad move then.Let k = dm+k0 where 0 � k0 < m. Then the player will make d� (l� 1)(m� 1)� 1 bad moves,and one more if k0 � m � 2. Since [k0 � m� 2] = b(k + 2)=mc � d, the total number of goodrow moves in strategy B is k � (m� 3)=2� (d� (l� 1)(m� 1)� 1 + b(k + 2)=mc � d).The number of column moves made is exactlyml�(m�1)=2 excluding the (possible) columnmove in line 7. The latter one is done if either k0 � m� 3 and is odd, or k0 = m� 1. This canbe expressed as [k 6� b(k + 2)=mc (mod 2)].Summing up the good moves of strategy B, we getmc(B) = �k � m� 32 � (d� (l� 1)(m� 1)� 1 + �k + 2m �� d)�+ �ml� m� 12 � + �k 6� �k + 2m � (mod 2)�= k +ml� (m� 4) + �(l � 1)(m� 1)� �k + 2m �� + �k 6� �k + 2m � (mod 2)�= k + 2ml� 2m� l+ 4� �k + 2m �+ �k 6� �k + 2m � (mod 2)�Consider the second equation. From the total number of possible moves, k+ml, we subtractm � 4 for the bad moves in the beginning and the missing column moves at the end, similaras in strategy A. Then we get one bad move per every m row moves, i.e., b(k + 2)=mc, exceptfor the �rst (l � 1)(m � 1) number of times. Compared with strategy A when m is even, thenumber of mind-changes decreased by roughly this latter term, b(k+ 2)=mc � (l � 1)(m � 1).Intuitively, it seems as we cannot avoid these additional bad moves because the badness of anystate is at least 1 and we already used our column moves for this as far as possible. We show inthe next section that this intuition is correct and that strategy B is indeed optimal for odd mand large enough k. 9

5 Proving the Strategies OptimalIn this section, we shall obtain an upper bound on the number of mind-changes of any optimalstrategy for large enough k. The upper bound we derive will match with the mind-changes forour strategies A and B, thereby proving them optimal.In the following, let S be any optimal strategy. At �rst glance it seems very hard to tomake any statements about the number of mind-changes S will have, because there are so manypossibilities of what moves S can do. The most important observation here is that we canmodify S in certain ways without decreasing the number of mind-changes. This will lead to anormal form of a strategy that has at least as many mind-changes as the original one. Then,counting the mind-changes of the normal form of S is in fact possible.At �rst glance, the reader might get the impression that we are trying to count the antsin an ant-hill. However, things �nally settle very neat: strategies A and B turn out to be theunique normalization of any optimal strategy for m even and odd, respectively.5.1 Normalizing a StrategyThe column moves in S can be arbitrarily distributed between the row moves, and this makesthe direct counting of the mind-change of S a di�cult task. So, we will rearrange the columnmoves in S according to certain rules such that the number of mind-changes does not decrease.This process we call the normalization of S. We arrive at the normal form of S when no morerule is applicable. In the next section, we show how to count the mind-changes of the normalizedstrategy.Let S be a strategy of the player. By our �rst rule, a normalized strategy starts with acolumn move.Rule 1 (making a column move from the �rst state) Suppose that the �rst column moveof strategy S is in the state S(j), for some j > 0. Let S0 be the strategy obtained from S bydeleting the �rst j row moves of S and adding j row moves at the end.Then S0 starts with a column move in state S(0) and mc(S0) � mc(S), since the �rst j rowmoves of S are all bad.In the normalized strategy, we try to make the column moves as soon as possible. This isensured by the following rule.Rule 2 (shifting column moves back) Suppose the player make a column move from a states = S(i), with i � m, and such that either the state t = S(i�m+ 1) or the state S(i) isa bad state. Let S0 be the strategy obtained from S by removing the column move from s andintroducing a column move from t.We show that mc(S0) � mc(S). Assume �rst that state t is bad. Then the strategy S 0 gainsa mind-change over S due to the row move from t#, a good state (in S this row move is from thebad state t). S 0 loses a mind-change if S(i) is good, because then S0(i) is bad. Now assumethat the state S(i) is bad. Then S0(i) is a good, thus adding an extra mind-change to S0.However, S 0 may lose a mind-change if the state t is good, since the row move from t# becomesbad in that case. Since all other moves are not a�ected, this proves our claim.The main objective of the player is to make good row moves. Therefore, it should not makecolumn move from a good state followed by a row move as this renders the row move bad. Thefollowing rule eliminates all such moves. 10

Rule 3 (shifting column moves from good states) Suppose the player makes a columnmove from a good state s, followed by a row move to the state S(i + 1). Let S 0 be the strategyobtained from S by removing the column move from s and if i � k�m then introducing a columnmove to S(i+m).Notice that there may be a con
ict between the rules 2 and 3 (rule 2 may shift a columnmove to an earlier state while rule 3 may shift the same column move to a later state). We shallde�ne the normalization process in such way that there is no con
ict due to these rules. Alsonotice that when i > k�m, the above rule is actually reducing the number of column moves inthe strategy.We claim that mc(S0) � mc(S). The strategy S0 gains a mind-change over S due to therow move from s, a good state (in S this row move is from the state s#, a bad state). On theother hand, S0 loses a mind-change if the row move to the state S0(i + m) is a bad one wheni � k�m. When i > k�m, S0 certainly loses a mind-change bacause it makes one less columnmove than S. Since all other moves are not a�ected, this proves our claim.Any even number of consecutive column moves does not change the parity of a counter.Therefore, this has no e�ect on the row moves and we can shift such moves to an arbitraryplace. We de�ne to make them at the beginning, that is, during the �rst m row moves.Rule 4 (shifting two consecutive column moves) Suppose that the player makes two con-secutive column moves from a state S(i), with i � m. Let S0 be the strategy obtained from Sthat shifts these two moves to the state S(i�m).Now we de�ne the normal form of a strategy.De�nition 5.1 For a strategy S, the normalization of S is the strategy S0 that is obtained byshifting moves of S in three stages. In the �rst stage, column moves of S are shifted accordingto Rules 1, 2, and 4 until no move can be shifted. In the second stage, the column moves areshifted according to the rule 3 until no move can be shifted. In the third stage, column movesare shifted according to the rule 4 again until no more move can be shifted. The strategy S0 iscalled a normalized strategy.First note that strategies A and B in Section 4 are both normalized. If we have any optimalstrategy S, then the normal form has the same number of mind-changes as S. This is becausewe do not decrease the mind-changes when applying the above rules, and, on the other hand,the mind-changes cannot increase, since S is optimal.5.2 Properties of a Normalized StrategyIn the following let S be an optimal normalized strategy. We list some basic properties S.Since our rules shift column moves upward in the table, only single column moves are madefrom states S(i) for i � m. By Rule 3, column moves from good states are only possible whenthe next move is a column move too, or there is no more move at all. The �rst case is handled byRule 4. The latter case corresponds to the extra column move we had at the end of strategies Aand B. There, we argued directly about the value of the last counter, ck, by inspecting thestrategies. Now, we need a more general tool. For an optimal strategy S, when the playerarrives at state S(k), the counter ck must have value l � 1 or l (since there can be at most 1column move). Hence, we get an extra column move when ck = l � 1. The following lemmacharacterizes this event. 11

Lemma 5.2 Let S0 be the strategy obtained from S by deleting the last column move from thestate S(k), if there is any (otherwise S = S0). Then mc(S) = mc(S0) + [l 6� mc(S0) (mod 2)].Proof. We show by induction on the number of moves, that when the player is in state s, thenthe sum of the mind-changes of all the moves up to s has the same parity as the active counterof s. This is true in the beginning, when no moves are made yet, because c0 = 0. Now, assumethe claim holds for s and let i be the active counter of s. If the player makes a column move tos#, then we get a mind-change. But also ci increases by 1. If the player makes a row move tos!, then we get an additional mind-change if and only if s is good, which in turn is equivalentto ci 6� ci+1 (mod 2). Hence the claim is true after any move from s.Now the lemma follows, since the player makes a column move from S(k) if the active counterof the state, ck, equals l� 1 modulo two. 2The above extra column move at the end and also the pairs of column moves shifted byRule 4 have no e�ect on the row moves. Therefore we distinguish them from the other columnmoves.De�nition 5.3 For any state S(i), suppose the player makes c column moves from S(i) beforemaking a row move, for c � 2. If c is even, we call these column moves ine�ective, and if cis odd, we call all but one (say, the �rst one) of them ine�ective. Also the column move fromstate S(k), if there is any, is called ine�ective. All other column moves we call e�ective columnmoves.Our �rst property is now obvious.Property 1 Between any two consecutive row moves, the player makes at most one e�ectivecolumn move. Also, it makes exactly one e�ective column move before the �rst row move andno e�ective column move after the last row move.Rule 3 and 2 restrict the e�ective column moves of the player as follows.Property 2 If the player makes an e�ective column move from S(i), then S(i) is bad. If i � m,then additionally S(i) and S(i�m+ 1) are good states.Suppose the player makes a column move from S(i) to t = S(i)# and that S(i) is good.Then t is bad, and therefore, S(i+m� 1) is bad. Hence, the column move has turned a badstate, S(i), into a good state, but S(i+m� 1) into a bad state. It follows that S(i) and S(i)#have the same badness, b(S(i)) = b(S(i)#) (recall De�nition 4.1 on page 7).Only for i � m we can have an e�ective column move from S(i) such that S(i) is bad. Inthis case, t is good, and hence S(i+m� 1) is good. Therefore, we get b(S(i)#) = b(S(i))� 2.Property 3 Let the player make an e�ective column move from s = S(i). Then either1. b(s#) = b(s)� 2, s is bad (or i = 0), and i < m, or2. b(s#) = b(s) and s is good (or i = 0).In the latter case, note that there are b(s)+1 bad states in the set fs;S(i+1); : : : ;S(i+m�1)g.The above property suggests that we can divide the e�ective column moves made by theplayer into two types. 12

De�nition 5.4 An e�ective column move from a state s, we call a reducing column move, ifb(s#) = b(s)� 2. Otherwise b(s#) = b(s) and we call it a non-reducing column move.By Property 3, all reducing column moves are done during the �rst m row moves. Sinceb(s) � m for any state s, there cannot be more than bm=2c reducing column moves. Also notethat if the column move is reducing, then the row move to the state s must be bad (if it exists,i.e., if i � 1). So, just before making a reducing column move, the player makes a bad move.The only exception is the �rst state sinit from which a reducing column move is made withoutmaking a bad move.A non-reducing column move allows the player to postpone making a bad move by m � 1row moves. There can be as many non-reducing column moves as permitted by the bounds onthe counters of the states. Note that we used these moves in strategy B in the previous section.The next property states that non-reducing column moves occur only in chains .Property 4 If i � m and the player makes a non-reducing column move from s = S(i), thenthe player makes a non-reducing column move from the state S(i� (m� 1)).Proof. By Property 2, S(i�m+ 1) is good and s is bad. Hence, there must be a columnmove from S(i�m+ 1), which must therefore be a bad state. Furthermore, this column movemust be non-reducing, since the state S(i�m+ 1) is good. 2Finally, we can argue on one more speci�c column move (besides the one from sinit).Property 5 The player makes an e�ective column move from the state S(m� 2).Proof. Since all counters are initially 0, S(m � 2) is a bad state. It's neighbour S(m � 1) isgood, since there is a column move at sinit by Rule 1. Assume that the player doesn't make ane�ective column move from S(m� 2). By Lemma 5.5 below, S(m� 2 + jm) is a bad state andthe player does not make a column move from S(m� 2 + jm), for j = 1; 2; : : : . But this is notpossible, because we would obtain a strategy better than S by postponing one of the ine�ectivecolumn moves made from S(m� 2) to the last m row moves. 2Lemma 5.5 Let S(i) be a bad state and S(i+ 1) be good. If the player doesn't make a columnmove from S(i), then S(i+ jm) are all bad states and the player does not make a column movefrom any of them, for j = 1; 2; : : : .Proof. Assume the lemma is not true. Then there must be a smallest j � 1 such that eitherS(i+ jm) is a bad state and the player makes a column move from it or the state S(i+ jm) isa good state. In the �rst case, Rule 2 would have shifted the column move to S(i+ (j � 1)m),contradicting our choice of j. Therefore S(i + jm) must be a good state. Since there is nocolumn move from the bad state S(i+ jm�m), there must have been a column move from thestate S(i+ jm� (m� 1)). Since S(i+ jm� (m� 1)) = S(i+ jm�m) is bad, we must havei+ jm�m+ 1 < m by Property 2. It follows that j = 1. But S(i+ 1) is good by assumptionand hence, there is no column move from S(i+ 1). 25.3 Counting the Mind-ChangesIn this section, we derive an upper bound on the number of mind-changes of an optimal norma-lized strategy S. For this, we provide a lower bound on the number of bad moves of the strategy.Then we simply have to subtract it from the number of all moves made.13

We start by considering how many moves are made in total. Clearly there are k row moves.Potentially, there can be up to ml column moves. Let � denote the number of reducing columnmoves of strategy S and { be the (even) number of ine�ective column moves done during the�rst m row moves. Recall that by Property 3, the player makes all the reducing column movesduring the �rst m row moves and therefore � � m=2. Since b(sinit) = m, we have b(s) � m� 2�for any state s, and b(S(i)) = m� 2� for all i � m.Lemma 5.6 The player makes Ce� = ml��� { e�ective column moves and Mtotal = k+ lm��+ [S(k)# 2 S] moves in total.Proof. Consider the state S(k). Since S is optimal, all counters in state S(k) have value l� 1or l. Because b(S(k)) = m� 2�, precisely � counters have value l � 1. Hence, there have beenml� � column moves when reaching state S(k). All but { many of these are e�ective.For the total number of moves we have to add k row moves and a possible column movefrom S(k). The latter is expressed by the predicate \S(k)# 2 S". 2We partition the sequence of states during the whole game into four segments, S1, S2, S3and S4, which we consider separately. To get at least some intuition for what follows, one shouldkeep in mind how our strategies A and B work. The bounds on the number of good, respectively,bad moves we give below will depend on certain parameters. Then observe that if one plugs inthe values these parameters have in strategies A and B, all bounds are in fact tight. This waywe get that the strategies are optimal.The segments are de�ned as follows. Let k = dm+ k0, where 0 � k0 < m.Segment from state to stateS1 S(0) = sinit S(m)S2 S(m) S(m+ k0)S3 S(m+ k0) S(k�m)S4 S(k �m) S(k)We leave out state S(k) here. The only possible move from S(k) is an ine�ective column movewhich we will simply add at the end.We start by considering S1. Since every reducing column move must be preceded by a badmove|except when it is made from state sinit|the player makes � � 1 bad moves to set upthese column moves.For the remaining states of S1, we don't count the bad moves directly. This is because wecannot say in beforehand when the player makes a column move from a bad state and when not.Instead, we count the number of bad states and subtract the number of e�ective column movesmade from it. This gives us the number of bad moves. Since we have already counted the badmoves made just before reducing column moves, there are m� � bad states left in this segment.To these, we add the number of bad states of segments S2 and S3.Next, we consider the second segment S2. The player makes k0 < m row moves while it isin the states of this segment. We give a lower bound on the number of bad states in S2.Lemma 5.7 S2 has at least maxf0;minfm� 2�; k0+ 2� 2�gg bad states.Proof. The segment S2 has states from S(m) to S(m+ k0). Since b(S(m)) = m� 2�, therearem�2� bad states among S(m), S(m+1), : : :, S(2m�1). However, S(2m�1) and S(2m�2)14

are good states. To see this, note that S(m � 1) is a good state, since there is a column movefrom the state sinit . S(m � 2) is a bad state. By Property 5, there is a column move fromthe state S(m � 2). Therefore, the state S(m� 1) is a good state. Hence, S(2m � 1) andS(2m� 2) are good and thus there are m� 2� bad states among S(m), : : :, S(2m� 3).To get a lower bound on the number of bad states in S2, assume that the (2m�3)�(m+k0)+1states S(m+ k0); : : : ;S(2m� 3) are all bad. Then there remain at leastm� 2�� �(2m� 3)� (m+ k0) + 1� = k0 + 2� 2�bad states in S2. Since the number must always be between 0 and m � 2�, the lemma follows.2Now take the third segment S3. It has states from S(m+k0) to S(k �m). We subdivide thesegment into blocks of length m. There are precisely d�2 such blocks (recall that k = dm+k0).The �rst state of each block is S(k0 + jm), for j = 1; : : : ; d � 2. Now we use Property 3: ifthere is a column move from the state S(k0 + jm), for some j then the number of bad statesamong S(k0 + jm); : : : ;S(k0 + jm+m � 1) is exactly m � 2�+ 1. On the other hand, if thereis no column move, then this number is exactly m� 2�. Therefore, the number of bad states insegment S3 is exactly (d� 2)(m� 2�) + c, where c is the number of column moves made fromthe states S(m+ k � jm), for 1 � j < d� 1. The following lemma gives bounds on c.Lemma 5.8 If 2� = m then c = 0, otherwise l � d{=me �m+ 2� � c � l � 1.Proof. When 2� = m, then, since all the reducing column moves are made in the �rst segment,all states are good after S(m� 1). Therefore, no non-reducing column moves are made, and soc = 0.Now, assume that 2� < m. By Property 4, any non-reducing column move from a (bad)state in the �rst segment starts a chain of non-reducing column moves: one after every m � 1row moves. Any two such chains must be non-overlapping, and there are at most m� 2� suchchains, since there are exactly m � 2� bad states in the �rst segment. We de�ne the length ofsuch a chain to be the number of column moves made in the chain. Let the lengths of thesechains be n1, : : :, nm�2� (where some nj can be 0). Note the these are all the non-reducingcolumn moves in the whole game. By Lemma 5.6, we have Pm�2�j=1 nj = Ce� � � = ml� 2�� {.The player will make a column move from a state in the set f S(k0+ jm) j j = 1; : : : ; d� 2 gonce for every m moves, for every chain. Therefore, we havec � m�2�Xj=1 bnj=mc� 6664m�2�Xj=1 nj=m7775� (m� 2�� 1)= �ml � 2�� {m �� (m� 2�� 1)� l � �2�m �� � {m� � (m� 2�� 1)� l � � {m� �m+ 2�:For the second inequality, we used that bxc + byc � bx+ yc � 1, and for the last one, recallthat we assume 2� < m. This proves the lower bound. The upper bound on c simply follows15

from the fact that any counter value can be at most l and the chains start from the �rst segmentwhich has no states in common with the third one. 2Finally, we consider the segment S4. The player makes exactly m row moves while it is inthe states of S4. Assume that � � m� 2� of the non-reducing column moves are made in S4.Hence, the player makes m� 2�� � bad moves in this segment.De�ne B to be the sum of the m� � bad states from S1 we have not yet counted, the lowerbound on the bad states of S2 given by Lemma 5.7, and the (d�2)(m�2�)+c bad states of S3.That is, B = m� �+ (d� 2)(m� 2�) + c+ maxf0;minfm� 2�; k0+ 2� 2�gg: (1)The total number of bad moves in the game, Mbad , consists of the �� 1 bad moves from S1,the m� 2�� � bad moves from S4, and the remaining bad moves in S1, S2, and S3. The latterones we get by subtracting the number of non-reducing column moves made in these segments,namely Ce� � �, from the number of bad states, B, if this remains positive. That isMbad � (�� 1) + (m� 2�� �) + maxf0; B � (Ce� � �)g= m� �� 1� � +maxf0; B � (Ce� � �)gNow we get an upper bound on the number of good moves, i.e., the number of mind-changesof strategy S, by subtracting the lower bound on the number of bad moves Mbad on the numberof from the total number of moves, Mtotal . Therefore,mc(S) � Mtotal �Mbad� (k + lm� �+ [S(k)# 2 S])� (m� �� 1� � + maxf0; B � (Ce� � �)g)= k + lm�m+ 1+ � �maxf0; B � lm+ {+ �+ �g+ [S(k)# 2 S] :Suppose that k � 2m. Then d � 2, and this expression is maximized if � and � are chosenas large as possible. We have the bound 0 � � � m � 2�, and therefore � + 2� � m. However,we will choose k large enough so that the expression in the above max-term, B � lm+ {+ �+ �,is nonnegative. Then mc(S) is in fact independent of �. Therefore it is enough to maximize �.We have two cases: if m is even, we have 2� = m (and hence, � = 0), and and m is odd,we have 2� = m � 1. In the latter case, � could be 1. However, � must again be 0 for largeenough k.Lemma 5.9 Let K = (l � 1)(m� 1)m+ 2m. If k � K and 2� � m � 1, then � = 0, i.e., theplayer makes no column moves in segment S4.Proof. Suppose that the player makes a (non-reducing) column move from the state S(k�m+t),for some t 2 f0; : : : ; m� 1g. By Property 4, there must be a chain of column moves every m� 1row moves, down to segment S1. Hence, there must be at least b(k �m+ t)=(m� 1)c + 1non-reducing column moves in the strategy. For k � K, we have�k �m+ tm� 1 �+ 1 � �(l� 1)(m� 1)m+mm� 1 �+ 1� (l� 1)m+ 2:But the number of non-reducing column moves available is only Ce� � � = ml � 2� � { �ml� 2� � m(l� 1) + 1, since 2� � m� 1 by our assumption. 216

Hence, for k � K we have the following bound on mc(S):mc(S) � k + lm�m+ 1�maxf0; B � lm+ {+ �g+ [S(k)# 2 S] : (2)We treat the two cases whether m is even or odd separately.Case 1: m is even. We choose 2� = m. By Lemma 5.8, we have c = 0 and therefore B = m=2by equation 1. Moreover, since there are no non-reducing column moves, { = lm�m. For themind-changes of strategy S, we getmc(S) � k + lm�m+ 1�maxf0; m� lm+ {g+ [S(k)# 2 S]= k + lm�m+ 1 + [S(k)# 2 S] :If k+ lm�m+1 would be the exact number of mind-changes of S without counting the lastextra column move, then, by Lemma 5.2, we get [S(k)# 2 S] = [l 6� k + lm�m+ 1 (mod 2)],where this is equal to [l � k (mod 2)], since m is even. However, even though we don't knowyet whether the two predicates coincides, we can anyway replace [S(k)# 2 S] and still have anupper bound on mc(S). Hence, our �nal bound on mc(S) in this case ismc(S) � k + lm�m+ 1 + [l � k (mod 2)] :But this bound matches precisely the mind-changes of strategy A described in the previoussection. Therefore, strategy A must be optimal for k � K.Case 2: m is odd . Now 2� = m � 1. By Lemma 5.8, our bound on a now is l � 1 � d{=me �a � l� 1. For B, we get from equation 1B = m+ 12 + (d� 2) + c+maxf0;minf1; k0 + 3�mgg: (3)It is easy to verify that maxf0;minf1; k0 + 3 � mg = b(k + 2)=mc � d. Next, consider themax-term of inequality 2 and plug in B. We getmaxf0; B � lm+ {+ �g = maxf0;�m+ 12 + (d� 2) + c+ �k + 2m ��� lm+ {+ �g= maxf0; m� lm� 2 + {+ c+ �k + 2m �g:Since k � K, we have that b(k + 2)=mc � lm�m+3� l. Together with our lower bound on c, itfollows that the second argument in the max-term is nonnegative. Plugging this in equation 2,we get mc(S) � (k + lm�m+ 1)� (m� lm� 2 + {+ c+ �k + 2m �) + [S(k)# 2 S]= k + 2lm� 2m� c+ 3� {� �k + 2m �+ [S(k)# 2 S] : (4)By the same argument as in case 1above, we can replace [S(k)# 2 S] by [l 6� k + 2lm� 2m� c+ 3� {� b(k+ 2)=mc (mod 2)].17

The latter is equal to [l � k � b(k + 2)=mc � c (mod 2)], since { is even. Hence, the bound onmc(S) in equation 4 is maximized when { = 0. This implies that c = l � 1, and we getmc(S) � k + 2lm� 2m� l+ 4� �k + 2m � + �k 6� �k + 2m � (mod 2)�The strategy B described in the previous section achieves this bound and is therefore is optimalfor k � K.6 Summarizing the ResultsSince strategies A and B are optimal for k � K = (l � 1)(m � 1)m + 2m, the mind-changesof these strategies give us the mind-changes of the underlying Boolean formula of the classesNP(l)==ModNP[k]m . Thus we can apply Theorem 3.1.Theorem 6.1 For k � K, we have NP(l)==ModNP[k]m = NP(t), wheret = (k + lm�m+ 1 + [l � k (mod 2)] if m is even,k + 2lm� 2m� l+ 4� jk+2m k+ hk 6� jk+2m k (mod 2)i if m is odd.An interesting special case is if l = 1. This was solved for even m in [HT96]. Now, we alsohave the result for odd m.Corollary 6.2 For k � 2m, we have NP==ModNP[k]m = NP(t), wheret = (k + 1 + [k odd] if m is even,k � jk+2m k+ 3 + hk 6� jk+2m k (mod 2)i if m is odd.Another interesting case is for m = 2, i.e., considering classes NP(l)==�NP[k]. Since �NP[k]can be seen as a (characteristic function of a) set in NP(k), such classes represent 2 concatenatedcomputations in the Boolean hierarchy: an NP(l) set gets the result of an NP(k) computation.Corollary 6.3 For k � 2(l+ 1),NP(l)==�NP[k] = NP(k + 2l� 1 + [l � k (mod 2)])7 If k is smallFor values of k less than K = (l � 1)(m � 1)m + 2m, the mind-change of an optimal strategycan be derived in a similar way. For l = 1, this was done in [HT96], and for the general case,we have:Lemma 7.1 For 2m � k � K, and for any optimal strategy S,mc(S0) � k + 1+ml�m+ a+ [l � k +ml �m+ a+ l (mod 2)]where a is the largest number satisfying the following conditions:� 0 � a � m� 2,� a � m (mod 2), and 18

� a � m � (l� 1)= bk=(m� 1)c.A strategy C that achieves the above bound is one in which the player makes (m � a)=2reducing column moves in the �rst segment (segment as de�ned in Section 5), and then a reducingcolumn moves for every m� 1 row moves after the state C(k). We omit the calculations.For m � k � 2m, it can be easily shown that the optimal strategy has a mind-change ofml +m � 1 when l is odd, and ml + 2k � 2m when l is even. And for k < m, it is derived inSection 3 (in this case, NP==ModNP[k]m is the same as NP==#NP[k]).References[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I. EATCS Monographsin Theoretical Computer Science. Springer-Verlag, 1988.[Bei91] R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical ComputerScience, 84:199{223, 1991.[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal onComputing, 17(6):1232{1252, 1988.[HT96] T. Han and T. Thierauf. Information and Computation, 128(2), 119-125, 1996.[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-putation. Addison-Wesley, 1979.[KSW87] J. K�obler, U. Sch�oning, and K. Wagner. The di�erence and truth-table hierarchiesof NP. R.A.I.R.O. Informatique th�eorique et Applications, 21(4):419{435, 1987.[KT94] J. K�obler and T. Thierauf. Complexity-restricted advice functions. SIAM Journalon Computing, 23(2):261{275, 1994.[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.Theoretical Computer Science, 1(2):103{124, 1975.[W90] K. Wagner. Bounded query classes. SIAM J. on Computing 19(5), pages 833-846,1990.[Wec85] G. Wechsung. On the boolean closure of NP. In Proceedings of the 5th Conferenceon Fundamentals of Computation Theory, pages 485{493. Springer-Verlag LectureNotes in Computer Science #199, 1985. (An unpublished precursor of this paperwas coauthored by K. Wagner).
19

