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generator and the evaluator , such that for any input string x, the member-ship of x in L can be determined as follows. First, the generator generatesa list of strings which are then asked to oracle A. (This type of querying iscalled nonadaptive because all query strings are produced before any answeris given by the oracle.) Now, the evaluator, getting x and the answers ofA to the queries as input, decides the membership of x in L. A truth-tablereduction is called bounded if the number of queries produced by the gene-rator is bounded by a constant. For example, every set is reducible to itscomplement via a bounded truth-table reduction that asks only one query(namely, the input itself), but this does not hold in general with respect tomany-one reductions.In this paper, we are interested in the classes PNP[k]tt of sets that arebounded truth-table reducible to some NP set, where the generator pro-duces at most k queries, for some k � 0. These bounded query classesfor NP are central topics of investigations in computational complexitytheory [ABG90, Bei91, BH88, CGH+88, Ka88a, Ka88b, KT94, W90, Wec85].Especially the (extended version of the) paper by Amir, Beigel, and Ga-sarch [ABG90] gives a very broad overview on this topic and also providesan extensive list of references. Let us point out the following, rather obvious,property of truth-table reductions: the evaluator, by getting all the answersto the queries produced by the generator, gets full information about thequeries with respect to the oracle. However, Wagner and Wechsung [Wec85]obtained a remarkable result that the information an evaluator needs canbe dramatically reduced without changing the classes PNP[k]tt : it su�ces togive an evaluator just the parity of the number of queries that are in theoracle, i.e., one bit of information! To describe this result more formally, weintroduce some notation.We modify the truth-table reduction explained above in such a way that,for a given function f , instead of the list of answers to the queries, theevaluator gets the outcome of f when applied to this list. This is kindof a function composition. We use a notation introduced by K�obler andThierauf [KT94] to express this.De�nition 1.1 [KT94] Let C be a class of languages and let F be a classof functions from �� to ��. A set L is in the class C==F if and only if thereexist a set A 2 C and a function f 2 F such that for all x 2 ��, it holdsthat x 2 L () hx; f(x)i 2 A. 11The de�nition is motivated by the advice classes originally introduced by Karp and2



We consider the following function classes. Let A be a set, k � 0, andm � 2. f 2 �A[k] () 9g 2 FP 8x : g(x) = hx1; : : : ; xki andf(x) = A(x1) � � �A(xk);f 2 #A[k] () 9g 2 FP 8x : g(x) = hx1; : : : ; xki andf(x) = kXi=1A(xi);f 2 ModA[k]m () 9h 2 #A[k] 8x : f(x) = h(x) mod m;where A(�) denotes the characteristic function of A. For m = 2 we write�A[k] instead of ModA[k]2 . By �NP[k], we denote SA2NP �A[k], and analo-gously for the other two classes.In other words, the outcome of a function in �A[k] is the sequence ofanswers to the queries to A produced by some generator g. A function in#A[k] counts the number of queries that are in A, and a function in ModA[k]mgives this number modulo m. As an example, we have P==�NP[k] = PNP[k]tt .The result of Wagner and Wechsung can now be stated as follows.Theorem 1.2 [Wec85] For all k � 0, we haveP==�NP[k] = P==#NP[k] = P==�NP[k] :In other words, given a �NP[k] function value of k (appropriately chosen)strings, a P evaluator can recover the result of the computation of another Pevaluator which gets full information about k queries, i.e., a �NP[k] functionvalue. Beigel [Bei91] and Wagner [W95] give a very elegant proof of Theo-rem 1.2 using the so-called mind change technique. Essentially they showthat any set in P==�NP[k] can be expressed as the symmetric di�erence ofk NP sets and one P set. An immediate consequence of this representationis that P==�NP[k] is contained in consecutive levels of the Boolean hierarchy(see next section for de�nitions), namelyNP(k) � P==�NP[k] � NP(k + 1);Lipton [KL82] and denoted with a single slash, i.e., C=F . Note that the advice functionsof Karp and Lipton depend on the length of the input, whereas in this paper, the functionsdepend on the input itself.Note also that the classes introduced by Karp and Lipton are nonuniform, because ofthe use of noncomputable functions as advice. Here, we use computable functions, andtherefore the resulting classes are uniform. 3



for all k � 1 [KSW87].Considering Theorem 1.2, one might ask whether one can replace theparity functions in P==�NP[k] by ModNP[k]m , for values of m other than 2,and still maintain the equivalence to the class P==�NP[k]. By Theorem 1.2,we have P==ModNP[k]m � P==�NP[k], for all m � 2, since a ModNP[k]m functioncannot give more information to the evaluator than a #NP[k] function. Onthe other hand, when the modulus m is even, an evaluator can easily extractthe parity bit from any ModNP[k]m function. Hence, for even m, we haveP==ModNP[k]m = P==�NP[k]. However, the case when m is odd is not so clear.The various proofs for Theorem 1.2 all rely heavily on properties of the parityfunction and do not seem to be extendable to an odd modulus. We show inSection 4 that in fact, for odd m, ModNP[k]m provides less information to Pevaluators than ModNP[k]2 (unless the Boolean hierarchy collapses). Namely,we show for all k � 0,P==ModNP[k]m = P==�NP[k�bk=mc]; for m odd. (1)In other words, a parity function can ask bk=mc fewer queries to an oraclethan a ModNP[k]m function and still give the same amount of information toa P evaluator.Motivated by Theorem 1.2, K�obler and Thierauf [KT94] studied the casewhen functions in �NP[k] or #NP[k] are given to nondeterministic polynomial-time evaluators instead of deterministic polynomial-time evaluators. Theyshowed that the counterpart of the �rst equality of Theorem 1.2 holds, andfurthermore, that the resulting class coincides with the (2k + 1)-th level ofthe Boolean hierarchy.Theorem 1.3 [KT94] For all k � 0, we haveNP==�NP[k] = NP==#NP[k] = NP(2k+ 1):As already mentioned, the class P==�NP[k] is located between the kth and(k + 1)th level of the Boolean hierarchy. Therefore, when �NP[k] or #NP[k]functions are given to NP evaluators instead of P evaluators, this roughlydoubles the level of the Boolean hierarchy where the resulting classes arelocated.What happens when parity information is given to NP evaluators? It iseasy to see that the second equation in Theorem 1.2 cannot carry over to NPevaluators, unless the Boolean hierarchy collapses. It has been asked [KT94]whether the NP==�NP[k] classes also coincide with levels of the Boolean4



hierarchy. In Section 3, we answer this question a�rmatively. We showthat when k is odd, both NP==�NP[k] and NP==�NP[k+1] coincide with the(k + 2)-th level of the Boolean hierarchy; i.e., for all k � 0,NP==�NP[2k+1] = NP==�NP[2k+2] = NP(2k + 3): (2)As in the case of P evaluators, it is interesting to investigate the casewhen ModNP[k]m functions are given to NP evaluators for values of m otherthan 2. We have already seen that P==ModNP[k]m coincides with P==�NP[k]for even m. The nontrivial inclusion here, that P==ModNP[k]m is containedin P==�NP[k], was given by Theorem 1.2. Since we don't have an analogoustheorem for NP evaluators, we cannot argue so easily in this case. However,we show that the equation indeed carries over to NP evaluators. Namely,we have for all k � 2m� 2,NP==ModNP[k]m = NP==�NP[k]; for m even. (3)Again, there seems to be a di�erence depending on whether the modu-lus m is odd or even. In case m is odd, we will give a lower and an upperbound as follows. For all k � 2m� 2,NP==�NP[k�bk=mc] � NP==ModNP[k]m � NP==�NP[k]; for m odd. (4)We note that the exact location of NP==ModNP[k]m , for odd m, in the Boo-lean hierarchy has been settled very recently by Agrawal, Beigel, and Thier-auf [ABT96].We want to point out one interesting consequence of our results. ByTheorem 1.2, #NP[k] functions contain the same amount of information forP evaluators as ModNP[k]2 functions, and we have already argued that thisdoes not carry over to NP evaluators unless the Boolean hierarchy collapses.However, the following weaker version holds: let m = 2l for some l � 1 andk � 2m� 2 = 2l+1 � 2. Then, by equation (3), we haveNP==ModNP[k]2l = NP==�NP[k] :Note that a ModNP[k]2l function consists exactly of the l least signi�cant bits inthe binary representation of a #NP[k] function. It follows that if as few as thetwo most signi�cant bits are discarded from the binary representation of a#NP[k] function value, their information content for NP evaluators abruptlydrops down to the level of a parity function. Indeed, when 2l+1 � 2 � k �5



2l+1 � 1, even omitting only the most signi�cant bit from a #NP[k] functionleaves NP evaluators essentially with parity information only.The paper is organized as follows. In Section 3, we start by consideringNP evaluators that get parity information and show equation (2). Parityfunctions turn out to be technically simpler to handle than ModNP[k]m func-tions for values m larger than 2. In Section 4, we extend the techniques fromSection 3 to study the classes NP==ModNP[k]m . We also consider P evaluatorsand show equation (1).2 PreliminariesWe follow standard de�nitions and notations in computational complexitytheory. Readers are referred to a standard reference (see, e.g., [HU79] or[BDG88]) for the de�nitions of common notations and concepts such asalphabets, strings, languages, Turing machines, polynomial-time boundedcomputation, and nondeterminism. Throughout this paper, we use the al-phabet � = f0; 1g. If A is a set, we use A(�) to denote the characteristicfunction of A. h�; �i is a one-to-one pairing function from ����� to �� thatis computable and invertible in polynomial time.For any two sets A and B, A4B denotes the symmetric di�erence of Aand B. For the intersection A \ B, we often omit the intersection symboland simply write AB.P (NP) denote the classes of languages that can be recognized by apolynomial-time deterministic (nondeterministic) Turing machine. FP isthe class of polynomial-time computable total functions.The Boolean hierarchy is de�ned as the closure of NP under Booleanoperations. There are many equivalent ways of de�ning the levels of theBoolean hierarchy [CGH+88]. We use the following.De�nition 2.1 Let k � 1. A set L is in NP(k), the k-th level of the Booleanhierarchy, if there exist A1; : : : ; Ak 2 NP such that L = A14 � � �4Ak.A set L is in coNP(k), if L 2 NP(k). The Boolean hierarchy, BH, isthe union of all the levels, Sk�1NP(k).In the de�nition of NP(k), we can require in addition that the sets Aiform a decreasing chain A1 � � � � � Ak [CGH+88]. We will often use thisadditional property.The Boolean hierarchy has a downward separation property, i.e., for allk � 1, NP(k) = coNP(k) implies BH = NP(k). The levels of the Boolean6



hierarchy interleave with the levels of the (bounded) query hierarchy of NP,that is, NP(k) � P==�NP[k] � NP(k + 1)for all k � 1 [KSW87] (see also [Bei91]). It follows from the downwardseparation property that the Boolean hierarchy collapses if any of theseinclusions is an equality.Finally, we want to derive a Boolean expression in terms of NP sets forsets in NP==ModNP[k]m , for m � 2 and k � 0. Let L 2 NP==ModNP[k]m . Byde�nition, there exist a set E 2 NP and a function f 2 ModNP[k]m such thatfor all x 2 ��, x 2 L if and only if hx; f(x)i 2 E. Let g be an FP functionsuch that g(x) = hx1; : : : ; xki and f(x) = Pki=1 SAT(xi) (mod m). Weassociate the following NP sets Ai and Ej with f , g, and E, for i = 0; : : : ; kand j = 0; : : : ; m.Ai = f x j at least i of the strings generated by g(x) are in SAT g:Sets Ai form a decreasing chain, i.e., we have �� = A0 � A1 � � � � � Ak.Furthermore, for a given x, let i0 be the maximum i such that x 2 Ai. Notethat i0 can be expressed as the unique i such that x 2 Ai � Ai+1. Clearly,we have f(x) = i0 (mod m).There are only m possibilities for the value of f(x). For each potentialvalue j, where 0 � j < m, we de�ne NP set Ej as the set of strings that isin E assuming f(x) = j. That is, for j = 0; : : : ; m� 1,Ej = f x j hx; ji 2 E g:Now, we can express L in terms of the sets Ai and Ej , since, by the abovediscussion, an x is in L if and only if there is an i such that x 2 Ai � Ai+1and hx; ii is in Ei. That isL = k�1[i=0�(Ai �Ai+1)Ei� [ Ak Ek;where the indices of sets Ei are taken modulo m. (Recall that we omit theintersection symbol.) Since A0 � � � � � Ak , all the terms in the union aremutually disjoint and we can rewrite this expression in terms of symmetricdi�erences, thereby getting an analog of the ring sum expansion of Booleanfunctions. L = k�14i=0�AiEi 4Ai+1Ei�4Ak Ek7



= A0E04 k4i=1�AiEi�1 4AiEi�: (5)The latter equation holds since symmetric di�erence is an associative opera-tion. From this representation we can already conclude that L is containedin the (2k + 1)th level of the Boolean hierarchy. As we will show in thefollowing sections, in fact, L is located much lower in the Boolean hierarchy.3 Parity FunctionsIn this section, we consider NP evaluators that get parity information. Ourgoal is to locate the classes NP==�NP[k], for all k � 0, in the Boolean hier-archy which is posed as an open problem in [KT94]. Before stating ourresult, we will argue that for each class NP==�NP[k], one can easily excludeall except one level of the Boolean hierarchy as a possible candidate it cancoincide with. Note �rst that we haveP==�NP[k] � NP==�NP[k] � P==�NP[k+2]:The �rst inclusion follows from Theorem 1.2. To show the second inclusion,let L be a language in NP==�NP[k]. Given an input string x, its membershipin L is decided by an NP evaluator E that has access to a parity bit that iscomputed from the result of k queries, say, y1; : : : ; yk, to SAT. Let further-more z0 and z1 be two strings such that zj 2 SAT () E accepts inputhx; ji, for j = 0; 1. Since parity has a value of either 0 or 1, a P evaluatorthat gets the list of answers of SAT to the k+2 queries y1; : : : ; yk; z0; z1, candecide the membership of x in L.Since the levels of the query hierarchy to NP and the Boolean hierarchyinterleave, there remain only NP(k+ 1) and NP(k+ 2) as possible candida-tes for NP==�NP[k] to coincide with. Observe furthermore that NP==�NP[k],like the odd levels of the Boolean hierarchy [CGH+88], is closed underunion with NP sets. That is, for L0 2 NP==�NP[k] and L1 2 NP, we haveL0 [ L1 2 NP==�NP[k]. On the other hand, even-numbered levels of theBoolean hierarchy are closed under union with NP sets only if the Booleanhierarchy collapses [CGH+88]. Hence, if NP==�NP[k] coincides with a levelof the Boolean hierarchy, we expect the level to be odd. Therefore, fromthe above two candidates just one remains and we show in the next theoremthat indeed each class NP==�NP[k] coincides with the next odd level of theBoolean hierarchy, that is NP(k+1), if k is even and NP(k+2), if k is odd.8



Theorem 3.1 For all k � 0, we haveNP==�NP[2k+1] = NP==�NP[2k+2] = NP(2k + 3):Proof . Clearly NP==�NP[2k+1] is contained in NP==�NP[2k+2]. To show thatNP==�NP[2k+2] � NP(2k + 3), let L 2 NP==�NP[2k+2]. By equation (5), wecan express L asL = A0E04 2k+24i=1 �AiE(i�1)mod24AiEimod2�;for NP sets Ai, for i = 0; : : : ; 2k+2, E0, and E1 as de�ned in Section 2. Thecrucial observation now is that we can somehow fold any two consecutiveterms of the big symmetric di�erence in the way stated explicitly in thefollowing lemma. The proof is elementary and thus omitted.Lemma 3.2 (Folding Lemma) For all sets B0, B1, F0, and F1 such thatB0 � B1, we haveB0 F04B0 F1 4B1 F0 4B1 F1 = (B0 F0 [B1 F1) 4 (B0 F1 [ B1 F0):Note that while the left part of this equation has the form of a set inNP(4), this set is in fact in NP(2) by the right part of the equation.We apply the Folding Lemma as described above and getL = A0E0 4 k+14i=1�A2i�1E0 [ A2iE1�4�A2i�1E1 [A2iE0�:Hence, we have L 2 NP(2k + 3).To show NP(2k + 3) � NP==�NP[2k+1], let L 2 NP(2k + 3). Then,there exist sets A1; : : : ; A2k+3 in NP such that A1 � � � � � A2k+3 and L =A1 4 � � �4A2k+3. Because of the inclusion structure of the sets Ai,L = �A1 � (A24 � � �4A2k+2)� [A2k+3:Let us de�ne f asf(x) = (A2(x) + � � � + A2k+2(x)) mod 2:Clearly, f 2 �NP[2k+1] and we have� if f(x) = 0 then x 2 L () x 2 A1, and9



� if f(x) = 1 then x 2 L () x 2 A2k+3.Therefore, given f(x), an NP machine can decide membership of x in L.Hence, L 2 NP==�NP[2k+1]. 2From Theorems 1.2 and 3.1, we getCorollary 3.3 For all k � 0, we haveNP==PNP[2k+1]tt = NP==PNP[2k+2]tt = NP(2k + 3):Here, a class of sets (as PNP[2k+1]tt ) has to be read as a class of zero-onevalued functions.4 Modulo FunctionsIn this section, we study the classes NP==ModNP[k]m and P==ModNP[k]m witharbitrary values of m � 2.First of all, note that if the number of queries, k, is smaller than themodulus m, then a Mod function is in fact a # function; i.e., ModNP[k]m =#NP[k] for 1 � k < m. It follows from Theorems 1.3 and 3.1 thatNP==ModNP[k]m = NP==�NP[2k]; for 1 � k < m.As a consequence of the next theorem, it follows that NP==ModNP[k]mremains unchanged for all k = m � 1; : : : ; 2m � 2; i.e., NP==ModNP[k]m =NP==ModNP[m�1]m = NP==�NP[m�1] for m � 1 � k � 2m � 2. For largervalues of k, the classes NP==ModNP[k]m show their \normal" behavior. Our�rst result states that no ModNP[k]m function class gives more information toNP evaluators than �NP[k].Theorem 4.1 For all m � 2 and k � 2m� 2, we haveNP==ModNP[k]m � NP==�NP[k] :Proof . By Theorem 3.1, it su�ces to show this claim for even k. Assumethat k is even. Let L 2 NP==ModNP[k]m . By equation (5), we can write L asL = A0E0 4 k4i=1�AiEi�14AiEi�;for NP sets Ai forming a decreasing chain, for i = 1; : : : ; k, and Ej, forj = 0; : : : ; m� 1, where indices of sets Ei are taken modulo m.10



We will show by induction on k that, by appropriately applying theFolding Lemma, we can cut down to half the number of symmetric di�erencesneeded to express L, thereby getting L 2 NP(k+ 1) = NP==�NP[k]. For theinductive argument, we slightly weaken our assumption on the sets Ai asdone in the following lemma. This will complete the proof. 2Lemma 4.2 Let L be a set that can be written asL = A0E0 4 k4i=1�AiEi�14AiEi�;for NP sets Ai, for i = 1; : : : ; k, and Ej, for j = 0; : : : ; m� 1, k � 2m � 2is even, and (A0 \ A1 \ � � � \ Am�1) � Am � Am+1 � � � � � Ak. ThenL 2 NP(k + 1).Proof . Let k = 2m � 2 for the base case. We can apply the FoldingLemma as follows. For i = 1; : : : ; m � 2, we fold AiEi�1 4AiEi andAi+m Ei�14Ai+mEi.But there remain now �ve terms where the Folding Lemma doesn't applyto, namely A0E0, Am�1Em�1, AmE0, AmEm�1, and Am�1Em�2. Howe-ver, with the following generalized version, we can fold the �rst four terms,so that there remains only Am�1Em�2 unfolded.Lemma 4.3 (Generalized Folding Lemma) For all sets B0, B1, B2,F0, and F1 such that B0 \ B1 � B2, we haveB0 F04B1 F1 4B2 F0 4B2 F1 = (B0 F0 [B2 F1) 4 (B1 F1 [ B2 F0):Therefore, we haveL = (A0E0 [ AmEm�1)4(Am�1Em�1 [ AmE0)4 m�24i=1 (AiEi�1 [Am+iEi)4(AiEi [Am+i Ei�1)4 Am�1Em�2:Thus, L 2 NP(2m� 1).For the induction step, let k > 2m � 2 be even. Here, we foldA0E04A2E1 with Am+1E04Am+1E1, gettingL = (A0E0 [Am+1E1) 4 (A2E1 [Am+1 E0)11



4 A1E04A1E14 A2E2 4 m4i=3(AiEi�14AiEi)4 k4i=m+2(AiEi�14AiEi):(Indices of sets Ei have to be taken modulo m.) Now, we only have torenumber the sets appropriately so that we can apply the induction hypo-thesis. That is, we de�ne sets A0i for i = 0; : : : ; k�2 as follows. For i 6= m�1,let A0i = Ai+2. That is, we shift all the indices by two. Note that Am+1 isalready folded. But this can be replaced by A1 because E(m+1)modm = E1.Therefore, we de�ne A0m�1 = A1. Note that, by this rearrangement, weagain have (A00 \A01 \ � � � \A0m�1) � A0m � A0m+1 � � � � � A0k�2.Now, we de�ne sets E0j for j = 0; : : : ; m � 1 by simply shifting all theindices by two, i.e., E0j = E(j+2)modm. Then L can be written asL = (A0E0 [Am+1E1) 4 (A2E1 [Am+1 E0)4 A00E 00 4 k�24i=1(A0iE 0i�14A0iE 0i):By the induction hypothesis, the second line corresponds to a set in NP(k�1). Hence, L is in NP(k + 1). 2From Theorems 1.3, 3.1, and 4.1, it follows that all the NP==ModNP[k]mclasses are identical for k = m� 1; : : : ; 2m� 2.Corollary 4.4 For all m � 2 and m� 1 � k � 2m� 2, we haveNP==ModNP[k]m = NP==ModNP[m�1]m = NP==�NP[m�1] :Clearly, for all n;m � 2 such that n divides m, we have NP==ModNP[k]n �NP==ModNP[k]m (and the same holds for the corresponding P== classes). The-refore, for evenm, the inclusion relation in Theorem 4.1 becomes an equality.Corollary 4.5 For all even m � 2 and k � 2m� 2, we haveNP==ModNP[k]m = NP==�NP[k] :Corollary 4.5 provides a tight characterization of the NP==ModNP[k]m clas-ses for even moduli. For odd moduli, we will show upper and lower bounds(Corollary 4.7). The upper bound is given by Theorem 4.1 and the lowerbound follows from the next theorem.12



Theorem 4.6 For all odd m > 2 and k � 0, (slightly abusing notation) wehave �NP[k�bk=mc] � P==ModNP[k]m :Proof . Let l = k � bk=mc. Let f 2 �NP[l] and let A1; : : : ; Al be the NPsets associated with f . For any x, if i0 is the maximal i such that x 2 Ai,then f(x) = i0 mod 2. Let hi be a many-one reduction from Ai to SAT, fori = 1; : : : ; l. Then i0 is the maximal i such that hi(x) 2 SAT.We construct a #NP[k] function f 0 such that f(x) = (f 0(x) mod m) mod2. Since m is odd, we cannot just ask hi(x), for i = 1; : : : ; l, because, forexample, (i0 mod m) mod 2 6= i0 mod 2 for m � i0 � 2m � 1. The ideanow is to introduce an extra query per every m queries, thereby correctingthe parity. That is, f 0(x) asks all the queries hi(x), for i = 1; : : : ; l, and,in addition, it asks the queries hj(m�1)+1(x) once more, for j = 1; 2; : : : , aslong as j(m� 1) + 1 � l. That is, the queries of f 0 are as follows.h1; h2; : : : ; hm�1; hm;hm; hm+1; : : : ; h2m�2; h2m�1;h2m�1; h2m; : : : ; h3m�3; h3m�2...: : : ; hlThen the total number of queries is k and we have f(x) = (f 0(x) modm) mod 2. Hence, f is in P==ModNP[k]m . 2Corollary 4.7 For all odd m > 2 and k � 2m� 2, we haveNP==�NP[k�bk=mc] � NP==ModNP[k]m � NP==�NP[k] :Very recently, classes NP==ModNP[k]m have been characterized in terms ofNP==�NP[k], for odd m > 2 [ABT96].An analog of Corollary 4.7 clearly holds for classes P==ModNP[k]m , forodd m. However, in this case we can even show that the lower boundis indeed a tight characterization. Thus, for odd m, ModNP[k]m functionsprovide less information to P evaluators than �NP[k] functions, unless theBoolean hierarchy collapses.Theorem 4.8 For all odd m > 2 and k � 0, we haveP==ModNP[k]m = P==�NP[k�bk=mc] :13



Proof . Given Theorems 4.6 and 1.2, it su�ces to prove P==ModNP[k]m �P==#NP[k�bk=mc]. Let L 2 P==ModNP[k]m via a function f 2 ModNP[k]m and aset E 2 P. Let furthermoreA1; : : : ; Ak be the NP sets associated with f , andlet hi be a many-one reduction from Ai to SAT. Then f(x) = SAT(h1(x))+� � �+ SAT(hk(x)) (mod m). Since the sets Ai form a decreasing chain, wehave for all x and for all i such that 1 � i < k, hi+1(x) 2 SAT implieshi(x) 2 SAT.The key point to observe is that, since m is odd, for any x there mustbe an index j0 < m such that hx; j0i 2 E () hx; (j0+ 1) mod mi 2 E.Moreover, since E is in P, we can compute j0 in polynomial time in jxj. Inother words, to decide x, we don't need to distinguish between values j0 andj0 + 1, because the result with respect to E is the same for these values.Therefore, when asking the oracle, we can skip one of them. That is, weask all the queries hi(x) to SAT for i = 1; : : : ; k, except when i � j0 + 1(mod m). Thus, we ask at most k�bk=mc queries. Let f 0(x) be the numberof these queries that are in SAT. Obviously, f 0 is a #NP[k�bk=mc] function.Note that, given f 0(x), one can in polynomial time either compute f(x),if f(x) 62 fj0; (j0+1) mod mg, or determine that f(x) 2 fj0; (j0+1) mod mg.By our choice of j0, in both cases we can decide whether x is in L. Thus,L 2 P==#NP[k�bk=mc]. 25 SummaryWe have considered the computational model where a P or an NP evaluatorgets in addition to the input a function value from a ModNP[k]m function, forvarious k and m. We have seen that of all ModNP[k]m classes, the class ofparity functions, i.e., for m = 2, provide most information for both P andNP evaluators. In fact, for even m, ModNP[k]m is as powerful as ModNP[k]2(Theorem 1.2 and Corollary 4.5).For odd m, when ModNP[k]m functions are given to a P evaluator, theresulting class becomes weaker (Theorem 4.8). When ModNP[k]m functionsare given to an NP evaluator, the resulting class is mostly weaker as well.Agrawal, Beigel, and Thierauf [ABT96] show that for odd m > 2 and k �2m, we have NP==ModNP[k]m = NP(t), wheret = k � b(k + 2)=mc+ 3 + (k + b(k + 2)=mc)(mod2):Note that the lower bound of Corollary 4.7 is fairly close: it is at most o�by four from the correct value. 14
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