Restricted Information from Nonadaptive

Queries to NP *

Yenjo Han | Thomas Thierauf ¥
University of Rochester Universitdat Ulm

Abstract

We investigate classes of sets that can be decided by bounded truth-
table reductions to an NP set in which evaluators do not have full access
to the answers to the queries but get only restricted information such
as the number of queries that are in the oracle set or even just this
number modulo m, for some m > 2. We also investigate the case in
which evaluators are nondeterministic.

We show that when we vary the information that the evaluators get,
this can change the resulting power of the evaluators. We locate all
these classes within levels of the Boolean hierarchy which allows us to
compare the complexity of such classes.

1 Introduction

Truth-table reductions were introduced in recursion theory as a type of
reduction that is more flexible than the many-one reducibility, yet more re-
strictive than the Turing reducibility. Ladner, Lynch, and Selman [LLS75]
introduced and investigated the polynomial-time analog of the truth-table
reductions. We give an informal definition: a set L is truth-table reducible
to set A, if there exist two polynomial-time bounded Turing machines, the

*Supported in part by the National Science Foundation under grants CCR-8957604
and NSF-INT-9116781/JSPS-ENG-207.

"Department of Computer Science, University of Rochester, Rochester, NY 14627,
USA.

tAbteilung Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, 89069 Ulm,
Germany. Email: thierauf@informatik.uni-ulm.de. Part of the work done while visiting
the University of Rochester. Supported in part by DFG Postdoctoral Stipend Th 472/1-1.

generator and the evaluator, such that for any input string z, the member-
ship of in L can be determined as follows. First, the generator generates
a list of strings which are then asked to oracle A. (This type of querying is
called nonadaptive because all query strings are produced before any answer
is given by the oracle.) Now, the evaluator, getting z and the answers of
A to the queries as input, decides the membership of x in L. A truth-table
reduction is called bounded if the number of queries produced by the gene-
rator is bounded by a constant. For example, every set is reducible to its
complement via a bounded truth-table reduction that asks only one query
(namely, the input itself), but this does not hold in general with respect to
many-one reductions.

In this paper, we are interested in the classes ng[k] of sets that are
bounded truth-table reducible to some NP set, where the generator pro-
duces at most k queries, for some k > 0. These bounded query classes
for NP are central topics of investigations in computational complexity
theory [ABG90, Bei91, BH8S, CGH ™88, Ka88a, Ka88b, KT94, W90, WecS85].
Especially the (extended version of the) paper by Amir, Beigel, and Ga-
sarch [ABG90] gives a very broad overview on this topic and also provides
an extensive list of references. Let us point out the following, rather obvious,
property of truth-table reductions: the evaluator, by getting all the answers
to the queries produced by the generator, gets full information about the
queries with respect to the oracle. However, Wagner and Wechsung [Wec85]
obtained a remarkable result that the information an evaluator needs can
be dramatically reduced without changing the classes ng[k]: it suffices to
give an evaluator just the parity of the number of queries that are in the
oracle, i.e., one bit of information! To describe this result more formally, we
introduce some notation.

We modify the truth-table reduction explained above in such a way that,
for a given function f, instead of the list of answers to the queries, the
evaluator gets the outcome of f when applied to this list. This is kind
of a function composition. We use a notation introduced by Ko&bler and
Thierauf [KT94] to express this.

Definition 1.1 [KT94] LetC be a class of languages and let F be a class
of functions from X* to ¥*. A set L is in the class C [/ F if and only if there
exist a set A € C and a function f € F such that for all x € ¥*, it holds
that v € I < (z, f(z)) € A. !

!The definition is motivated by the advice classes originally introduced by Karp and

We consider the following function classes. Let A be a set, kK > 0, and
m > 2.

fe XA[k] < dgeFPVa: g(a)=(21,...,24) and
f(z) = Az1) - - Alzp),
fe #A[k] < dgeFPVa: g(a)=(21,...,24) and

k
fla) =2 Alwi),
=1
feMod2W «— Jnec #AM va: f(z) = h(z) mod m,

where A(-) denotes the characteristic function of A. For m = 2 we write
@Ak instead of Mod’;[k] . By \NPIH we denote Usene YA and analo-
gously for the other two classes.

In other words, the outcome of a function in y** is the sequence of
answers to the queries to A produced by some generator g. A function in
#4K counts the number of queries that are in A, and a function in Modfl[k]
gives this number modulo m. As an example, we have P // NPl = ng[k].
The result of Wagner and Wechsung can now be stated as follows.

Theorem 1.2 [Wec85] For all k > 0, we have
P//XNP[k] _ P//#NP[k] _ P// @NP[k]]

In other words, given a & NP function value of & (appropriately chosen)

strings, a P evaluator can recover the result of the computation of another P
evaluator which gets full information about k queries, i.e., a NPT function
value. Beigel [Bei91] and Wagner [W95] give a very elegant proof of Theo-
rem 1.2 using the so-called mind change technique. Essentially they show
that any set in P//XNP[k] can be expressed as the symmetric difference of
k NP sets and one P set. An immediate consequence of this representation
is that P//xNPlH is contained in consecutive levels of the Boolean hierarchy
(see next section for definitions), namely

NP(k) C P//XNH C NP(k + 1),

Lipton [KL82] and denoted with a single slash, i.e., C/F. Note that the advice functions
of Karp and Lipton depend on the length of the input, whereas in this paper, the functions
depend on the input itself.

Note also that the classes introduced by Karp and Lipton are nonuniform, because of
the use of noncomputable functions as advice. Here, we use computable functions, and
therefore the resulting classes are uniform.

for all k> 1 [KSW8T].

Considering Theorem 1. 2 one might ask whether one can replace the
parity functions in P//@NP by ModNP[], for Values of m other than 2,
and still maintain the equlvalence to the class P//xNP [F]. By Theorem 1.2,
we have P //ModNPIH C P //gNPI for all m > 2, since a ModNP[I function
cannot give more information to the evaluator than a # NI function. On
the other hand, when the modulus m is even, an evaluator can easily extract
the parity blt from any ModNP[I function. Hence, for even m, we have
P//ModNPIE = P //gNPIH However, the case when m is odd is not so clear.
The various proofs for Theorem 1.2 all rely heavily on properties of the parity
function and do not seem to be extendable to an odd modulus. We show in
Section 4 that in fact, for odd m, Modglp[k] provides less information to P

evaluators than MongP[k] (unless the Boolean hierarchy collapses). Namely,
we show for all k£ > 0,

P//ModNPUH = p /@ NPE=LE/md] - for m odd. (1)

In other words, a parity function can ask |k/m] fewer queries to an oracle
than a Mod%P[k] function and still give the same amount of information to
a P evaluator.

Motivated by Theorem 1.2, Kébler and Thierauf [KT94] studied the case
when functions in YN or #NPIH] are given to nondeterministic polynomial-
time evaluators instead of deterministic polynomial-time evaluators. They
showed that the counterpart of the first equality of Theorem 1.2 holds, and
furthermore, that the resulting class coincides with the (2k 4 1)-th level of
the Boolean hierarchy.

Theorem 1.3 [KT94] For all k > 0, we have
NP /NP = Np //#8PIH = NP(2k 4 1).

As already mentioned, the class P //x""" is located between the kth and
(k 4+ 1)th level of the Boolean hierarchy. Therefore, when YNPUE op #NPIA]
functions are given to NP evaluators instead of P evaluators, this roughly
doubles the level of the Boolean hierarchy where the resulting classes are
located.

What happens when parity information is given to NP evaluators? It is
easy to see that the second equation in Theorem 1.2 cannot carry over to NP
evaluators, unless the Boolean hierarchy collapses. It has been asked [KT94]
whether the NP//@NPI classes also coincide with levels of the Boolean

hierarchy. In Section 3, we answer this question affirmatively. We show
that when k is odd, both NP//@NFI¥ and NP //@NPIE+1 coincide with the
(k 4 2)-th level of the Boolean hierarchy; i.e., for all £ > 0,

As in the case of P evaluators, it is interesting to investigate the case
when Mod%P[k] functions are given to NP evaluators for values of m other
than 2. We have already seen that P//Mod NI coincides with P//@NPIH
for even m. The nontrivial inclusion here, that P//Modgf)[k] is contained
in P//@NPH was given by Theorem 1.2. Since we don’t have an analogous
theorem for NP evaluators, we cannot argue so easily in this case. However,
we show that the equation indeed carries over to NP evaluators. Namely,
we have for all k > 2m — 2,

NP //ModNFIEL = NP /NP for m, even. (3)

Again, there seems to be a difference depending on whether the modu-
lus m is odd or even. In case m is odd, we will give a lower and an upper
bound as follows. For all k£ > 2m — 2,

NP //@NP=lr/m]l c NP //ModNPIH ¢ NP//gNPEL for m odd. (4)

We note that the exact location of NP//Mod P for odd m, in the Boo-
lean hierarchy has been settled very recently by Agrawal, Beigel, and Thier-
auf [ABT96].

We want to point out one interesting consequence of our results. By
Theorem 1.2, #NPI functions contain the same amount of information for
P evaluators as Modglp[k] functions, and we have already argued that this
does not carry over to NP evaluators unless the Boolean hierarchy collapses.
However, the following weaker version holds: let m = 2! for some [> 1 and
k> 2m —2 =21 —2 Then, by equation (3), we have

NP //Mody ™ = Npj/ @I

Note that a Modg]lP[k] function consists exactly of the [least significant bits in
the binary representation of a #NPI] function. It follows that if as few as the
two most significant bits are discarded from the binary representation of a
#NPIF function value, their information content for NP evaluators abruptly
drops down to the level of a parity function. Indeed, when 241 — 2 < k <

21+1 _ 1, even omitting only the most significant bit from a # NP function
leaves NP evaluators essentially with parity information only.

The paper is organized as follows. In Section 3, we start by considering
NP evaluators that get parity information and show equation (2). Parity
functions turn out to be technically simpler to handle than Modng[k] func-
tions for values m larger than 2. In Section 4, we extend the techniques from
Section 3 to study the classes NP//Mod%P[k]. We also consider P evaluators
and show equation (1).

2 Preliminaries

We follow standard definitions and notations in computational complexity
theory. Readers are referred to a standard reference (see, e.g., [HU79] or
[BDG88]) for the definitions of common notations and concepts such as
alphabets, strings, languages, Turing machines, polynomial-time bounded
computation, and nondeterminism. Throughout this paper, we use the al-
phabet ¥ = {0,1}. If A is a set, we use A(-) to denote the characteristic
function of A. (-,-) is a one-to-one pairing function from ¥* x ¥* to ¥* that
is computable and invertible in polynomial time.

For any two sets A and B, AA B denotes the symmetric difference of A
and B. For the intersection A N B, we often omit the intersection symbol
and simply write A B.

P (NP) denote the classes of languages that can be recognized by a
polynomial-time deterministic (nondeterministic) Turing machine. FP is
the class of polynomial-time computable total functions.

The Boolean hierarchy is defined as the closure of NP under Boolean

operations. There are many equivalent ways of defining the levels of the
Boolean hierarchy [CGH'88]. We use the following.

Definition 2.1 Letk > 1. A set L isin NP(k), the k-th level of the Boolean
hierarchy, if there exist Ay, ..., Ap € NP such that L = Ay a---a Ay,

A set L is in coNP(k), if L € NP(k). The Boolean hierarchy, BH, is
the union of all the levels, |J;~, NP(k).

In the definition of NP(k), we can require in addition that the sets A;
form a decreasing chain A; D --- D Ay [CGH'88]. We will often use this
additional property.

The Boolean hierarchy has a downward separation property, i.e., for all
k> 1, NP(k) = coNP(k) implies BH = NP(k). The levels of the Boolean

hierarchy interleave with the levels of the (bounded) query hierarchy of NP,
that is,
NP(k) C P//XNPH € NP(k +1)

for all £ > 1 [KSWS8T] (see also [Bei91]). It follows from the downward
separation property that the Boolean hierarchy collapses if any of these
inclusions is an equality.

Finally, we want to derive a Boolean expression in terms of NP sets for
sets in NP//Mod P for m > 2 and k > 0. Let L € NP//ModFlE, By
definition, there exist a set £/ € NP and a function f € ModynP[k] such that
for all # € ¥*, 2 € L if and only if (z, f(2)) € £. Let g be an FP function
such that g(z) = (21,...,2;) and f(z) = Y5, SAT(z;) (mod m). We
associate the following NP sets A; and F; with f, g, and E/, fori =0,...,k
and j =0,...,m.

A; = {a|at least ¢ of the strings generated by g(z) are in SAT }.

Sets A; form a decreasing chain, i.e., we have ¥* = Ag D A4y D --- D Ag.
Furthermore, for a given z, let ip be the maximum 7 such that 2 € A;. Note
that ¢y can be expressed as the unique ¢ such that z € A; — A; 1. Clearly,
we have f(z) =19 (mod m).

There are only m possibilities for the value of f(z). For each potential
value j, where 0 < j < m, we define NP set F; as the set of strings that is
in £ assuming f(z) = j. Thatis, for j =0,...,m—1,

Ej = {x|{z,j)e L}

Now, we can express L in terms of the sets A; and £, since, by the above
discussion, an z is in L if and only if there is an 7 such that x € A; — A; 4
and (z,¢) is in F;. That is

L = kol((Ai—AH_l)EZ’) U Ap Ep,

=0

where the indices of sets E; are taken modulo m. (Recall that we omit the
intersection symbol.) Since Ag O --- D Ay, all the terms in the union are
mutually disjoint and we can rewrite this expression in terms of symmetric
differences, thereby getting an analog of the ring sum expansion of Boolean
functions.

k=1
L = A (AZ EiAAi-l—l EZ) AAk Ek

=0

k
= Ao EOA A (AZ Ei—l AAZ' EZ) (5)
=1

The latter equation holds since symmetric difference is an associative opera-
tion. From this representation we can already conclude that L is contained
in the (2k + 1)th level of the Boolean hierarchy. As we will show in the
following sections, in fact, L is located much lower in the Boolean hierarchy.

3 Parity Functions

In this section, we consider NP evaluators that get parity information. Qur
goal is to locate the classes NP //@NPI for all k£ > 0, in the Boolean hier-
archy which is posed as an open problem in [KT94]. Before stating our
result, we will argue that for each class NP//@NP[k], one can easily exclude
all except one level of the Boolean hierarchy as a possible candidate it can
coincide with. Note first that we have

P//XNP[k] C NP//@NP[k] C P//XNP[]H_Q].

The first inclusion follows from Theorem 1.2. To show the second inclusion,
let L be alanguage in NP //@NPIE. Given an input string z, its membership
in L is decided by an NP evaluator £ that has access to a parity bit that is
computed from the result of k& queries, say, y1,...,yx, to SAT. Let further-
more zg and z; be two strings such that z; € SAT <= FE accepts input
(z,7), for j = 0,1. Since parity has a value of either 0 or 1, a P evaluator
that gets the list of answers of SAT to the k+ 2 queries yq, ..., Yy, 20, 21, Can
decide the membership of z in L.

Since the levels of the query hierarchy to NP and the Boolean hierarchy
interleave, there remain only NP(k + 1) and NP(k + 2) as possible candida-
tes for NP //@NPI] to coincide with. Observe furthermore that NP //@NPIE,
like the odd levels of the Boolean hierarchy [CGHTS8S], is closed under
union with NP sets. That is, for Ly € NP//@NPIE and L; € NP, we have
Lo U Ly € NP//@NP. On the other hand, even-numbered levels of the
Boolean hierarchy are closed under union with NP sets only if the Boolean
hierarchy collapses [CGHT88]. Hence, if NP//@&NPIH coincides with a level
of the Boolean hierarchy, we expect the level to be odd. Therefore, from
the above two candidates just one remains and we show in the next theorem
that indeed each class NP //@ NP coincides with the next odd level of the
Boolean hierarchy, that is NP(k + 1), if k is even and NP(k + 2), if k is odd.

Theorem 3.1 For all k > 0, we have
NP//@NPREH] — Np/gNPRR2 = NP(2k 4 3).

Proof. Clearly NP //@NPRF+1 i contained in NP //@NPRA+2] To show that
NP //@NPRE2 € NP(2k + 3), let I € NP//@NPF+2] By equation (5), we
can express L as
2k+42
L = Ay FEoa A (AZ E(i—l)mod? A A; Eimod?)v

=1

for NP sets A;, fort: =0,...,2k+2, Fy, and F; as defined in Section 2. The
crucial observation now is that we can somehow fold any two consecutive
terms of the big symmetric difference in the way stated explicitly in the
following lemma. The proof is elementary and thus omitted.

Lemma 3.2 (Folding Lemma) For all sets By, By, Fy, and Fy such that
By O By, we have

BoFoABoFlABlFoABlFl = (BoF()UBlFl) A(B()FlUBlFo).

Note that while the left part of this equation has the form of a set in
NP(4), this set is in fact in NP(2) by the right part of the equation.
We apply the Folding Lemma as described above and get

L = Aokp o]:éll (A2i—1 FoU Ay; El) A(Azi—1 Ih U Ay Eo)-

Hence, we have L € NP(2k + 3).

To show NP(2k + 3) C NP//@NPIE+1] let I € NP(2k + 3). Then,
there exist sets Aq,..., Aggys in NP such that 47 O --- D Aggyz and L =
Ay A-- oA Agrys. Because of the inclusion structure of the sets A;,

L= (A= (Aya--8 Aygn)) U Ageys.
Let us define f as
f@) = (Ax(@) + -+ + Ageya()) mod 2
Clearly, f € @NPRAH1] and we have

o if f(x)=0thenz €l < 2 € Ay, and

o if f()=1thenz €l < z € Aypys.
Therefore, given f(), an NP machine can decide membership of z in L.

Hence, L € NP //@NPIE+1], 0
From Theorems 1.2 and 3.1, we get

Corollary 3.3 For all k > 0, we have
NP /PN — Np yPRPERRE NP2k + 3).

NP[2k4+1
[2k+]) has to be read as a class of zero-one

Here, a class of sets (as Py
valued functions.

4 Modulo Functions

In this section, we study the classes NP//ModNF* and P//ModNPIH with
arbitrary values of m > 2.

First of all, note that if the number of queries, k, is smaller than the
modulus m, then a Mod function is in fact a # function; i.e., ModynP[k] =
#NPU] for 1 < k < m. Tt follows from Theorems 1.3 and 3.1 that

NP //ModNPH = Np//aNPRHL - for 1 < k < m.

As a consequence of the next theorem, it follows that NP//Mod%P[k]
remains unchanged for all ¥ = m — 1,...,2m — 2; i.e., NP//ModTNnP[k] =
NP //ModRFlm=1 = Np//@NPlm=1] for m — 1 < k < 2m — 2. For larger
values of k, the classes NP//Mod%P[k] show their “normal” behavior. Our
first result states that no Mod%P[k] function class gives more information to
NP evaluators than @NF,

Theorem 4.1 Forallm > 2 and k > 2m — 2, we have
NP //Mod P c Np /7 gNPIEL

Proof. By Theorem 3.1, it suffices to show this claim for even k. Assume
that k is even. Let L € NP//ModNFIEl. By equation (5), we can write L as

k
L = AOEO A A (AiEi_lAAiEi),

=1
for NP sets A; forming a decreasing chain, for «+ = 1,...,k, and £;, for
7=0,...,m— 1, where indices of sets F; are taken modulo m.

10

We will show by induction on k that, by appropriately applying the
Folding Lemma, we can cut down to half the number of symmetric differences
needed to express I, thereby getting I € NP(k + 1) = NP //@NPIE, For the
inductive argument, we slightly weaken our assumption on the sets A; as
done in the following lemma. This will complete the proof. a

Lemma 4.2 Let L be a set that can be written as

k
L = AOEO A A(AiEi_lAAiEi),
=1
for NP sets A;, for v =1,...,k, and E;, for j =0,....m—1, k> 2m -2
is even, and (Ag N Ay N---NAn_1) D Apn 2O A1 2 -+ 2 Ag. Then
L e NP(k+1).

Proof. Let k = 2m — 2 for the base case. We can apply the Folding
Lemma as follows. For ¢ = 1,...,m — 2, we fold A; F;_1 2 A; F; and
Ai-l—m Ei—l AN Ai-l—m Ei-

But there remain now five terms where the Folding Lemma doesn’t apply
to, namely Ag Fo, Api_1 Fo_1, A Fo, Ay Eri_q, and A, F,,_o. Howe-
ver, with the following generalized version, we can fold the first four terms,
so that there remains only A,,_1 F,,_o unfolded.

Lemma 4.3 (Generalized Folding Lemma) For all sets By, By, Bs,
Fo, and Fy such that By N By 2 By, we have

BoFoaBi FiaByFoaBy by = (BoloU By Fy) a (B Fy U By Fy).
Therefore, we have
L = (AgFEoUA, En1)a(Ap1Enm_1UA, Eo)
A WZIQ(AZ» Eiy U Apgs B (A Ei U Ay Eiy)

A Am—l Em—?-

Thus, L € NP(2m — 1).
For the induction step, let & > 2m — 2 be even. Here, we fold
AO E()A A2 E1 with Am_|_1 EO AN Am_|_1 El, getting

L = (AO EO U Am_|_1 El) A (A2 E1 U Am_|_1 Eo)

11

A Al EO A Al El
A Ay Ey o K(Ai Eio10 A E;)
1=3

AN K (AZ Ei_lAAZ' EZ)
1=m-+2

(Indices of sets F; have to be taken modulo m.) Now, we only have to
renumber the sets appropriately so that we can apply the induction hypo-
thesis. That is, we define sets A’ fori =0,...,k—2 as follows. Fori # m—1,
let AL = A;4o. That is, we shift all the indices by two. Note that A,,41 is
already folded. But this can be replaced by A; because E(,41)ymodm = F1-
Therefore, we define A/ _, = A;. Note that, by this rearrangement, we
again have (AGNAN---NA_|) DA DA ., DDA,

Now, we define sets E; for 7 = 0,...,m — 1 by simply shifting all the
indices by two, i.e., E; = E(j4+2)modm- Then L can be written as

L = (AO EO U Am_|_1 El) A (A2 E1 U Am_|_1 Eo)

k=2
A AGEL o A(ALEL_ A ALED.
=1

By the induction hypothesis, the second line corresponds to a set in NP(k —

1). Hence, L is in NP(k +1).]
From Theorems 1.3, 3.1, and 4.1, it follows that all the NP//ModTNnP[k]
classes are identical for k = m — 1,...,2m — 2.

Corollary 4.4 For allm > 2 and m — 1 < k <2m — 2, we have
NP //ModNFIH = NP //ModNPIm=1 = Np j/ gNPIm=1] |

Clearly, for all n,m > 2 such that n divides m, we have NP//ModSP[k] C
NP //ModNFIE (and the same holds for the corresponding P// classes). The-
refore, for even m, the inclusion relation in Theorem 4.1 becomes an equality.

Corollary 4.5 For all even m > 2 and k > 2m — 2, we have
NP //ModYFIH = Np /7 gNPIEL

Corollary 4.5 provides a tight characterization of the NP//Mod%P[k] clas-
ses for even moduli. For odd moduli, we will show upper and lower bounds
(Corollary 4.7). The upper bound is given by Theorem 4.1 and the lower
bound follows from the next theorem.

12

Theorem 4.6 For all odd m > 2 and k > 0, (slightly abusing notation) we
have

gNPlE=LE/mI] ¢ p //Mod NP,
Proof. Let I =k — |k/m]. Let f € @I and let Ay,..., A; be the NP

sets associated with f. For any =z, if ¢g is the maximal 7 such that = € A;,
then f(2) = ip mod 2. Let h; be a many-one reduction from A; to SAT, for
i=1,...,1. Then ip is the maximal ¢ such that h;(z) € SAT.

We construct a # I function f/ such that f(z) = (f'(#) mod m) mod
2. Since m is odd, we cannot just ask h;(z), for ¢ = 1,...,1, because, for
example, (ip mod m)mod 2 # igmod 2 for m < ig < 2m — 1. The idea
now is to introduce an extra query per every m queries, thereby correcting
the parity. That is, f'(«) asks all the queries h;(z), for ¢ = 1,...,l, and,
in addition, it asks the queries hj(m—1)+1(95) once more, for j = 1,2,..., as
long as j(m — 1)+ 1 <. That is, the queries of f’ are as follows.

hy, ha, coey hp_1, B,

hm7 hm—|—17 s h2m—27 h2m—17

h2m—17 h2m7 R h3m—37 h3m—2
Ly

Then the total number of queries is k& and we have f(z) = (f(x) mod
m) mod 2. Hence, f is in P //ModNP[E, a

Corollary 4.7 For all odd m > 2 and k > 2m — 2, we have

Very recently, classes NP//ModynP[k] have been characterized in terms of
NP //@NPHL for odd m > 2 [ABT96].

An analog of Corollary 4.7 clearly holds for classes P//Modglp[k], for
odd m. However, in this case we can even show that the lower bound
is indeed a tight characterization. Thus, for odd m, Modﬁf[k] functions
provide less information to P evaluators than @Np[k]
Boolean hierarchy collapses.

functions, unless the

Theorem 4.8 For all odd m > 2 and k > 0, we have

P//MOdTNnP[k] _ P// @NP[k—l_k/mJ])

13

Proof. Given Theorems 4.6 and 1.2, it suffices to prove P//Modglp[k] -
P #NP=Uk/m]] et I € P//ModNPIH via a function f € ModYFH and a
set F2 € P. Let furthermore Ay, ..., Ay be the NP sets associated with f, and
let h; be a many-one reduction from A; to SAT. Then f(2) = SAT(hy(2)) +
-+ SAT(hg(z)) (mod m). Since the sets A; form a decreasing chain, we
have for all @ and for all 7 such that 1 < ¢ < k, hjz1(z) € SAT implies
hz(x) € SAT.

The key point to observe is that, since m is odd, for any = there must
be an index jo < m such that (x,j0) € £ <= (z,(jo+ 1) mod m) € .
Moreover, since F is in P, we can compute jy in polynomial time in |z|. In
other words, to decide z, we don’t need to distinguish between values jo and
jJo + 1, because the result with respect to F is the same for these values.
Therefore, when asking the oracle, we can skip one of them. That is, we
ask all the queries h;(x) to SAT for ¢ = 1,...,k, except when i = jo + 1
(mod m). Thus, we ask at most k— |k/m] queries. Let f'(z) be the number
of these queries that are in SAT. Obviously, f'is a #NPE=1*/ml] function.

Note that, given f'(x), one can in polynomial time either compute f(z),
if f(z) & {jo, (Jo+1) mod m}, or determine that f(z) € {jo, (jo+1) mod m}.
By our choice of jg, in both cases we can decide whether x is in L. Thus,

L' Pj#NPlk= /] 0

5 Summary

We have considered the computational model where a P or an NP evaluator
gets in addition to the input a function value from a Modng[k] function, for
various k and m. We have seen that of all Modﬁf[k] classes, the class of
parity functions, i.e., for m = 2, provide most information for both P and
NP evaluators. In fact, for even m, Modﬁf[k] is as powerful as MongP[k]
(Theorem 1.2 and Corollary 4.5).

For odd m, when Mod%P[k] functions are given to a P evaluator, the
resulting class becomes weaker (Theorem 4.8). When ModXF* functions
are given to an NP evaluator, the resulting class is mostly weaker as well.
Agrawal, Beigel, and Thierauf [ABT96] show that for odd m > 2 and & >

2m, we have NP //ModNFIHl = NP(1), where
t=k—[(k+2)/m]+34+(k+ |(k+2)/m])(mod2).

Note that the lower bound of Corollary 4.7 is fairly close: it is at most off
by four from the correct value.

14

Acknowledgements

For helpful discussions, we are grateful to Lane Hemaspaandra and Joel
Seiferas.

References

[ABT96] M. Agrawal, R. Beigel, and T. Thierauf. Modulo Information from
Nonadaptive Queries to NP. Technical Report ECCC TR96-001.
Available at http://www.eccc.uni-trier.de/eccc/

[ABG90] A. Amir, R. Beigel, and W. Gasarch. Some Connections between
Bounded Query Classes and Non-Uniform Complexity. In Procee-
dings of the 5th Conference in Structure in Complexity Theory, 232-
243, 1990. To appear in Information and Computation.

[BDGS88] J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I.
EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 1988.

[Bei91] R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theo-
retical Computer Science, 84:199-223, 1991.

[BH88] S. Buss and L. Hay. On truth table reducibilities to SAT and the
difference hierrachy over NP. In Proceedings of the 3rd Conference
in Structure in Complexity Theory, 224-233, 1988.

[CGHT88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Se-
welson, K. Wagner, and G. Wechsung. The boolean hierarchy I:
Structural properties. SIAM Journal on Computing, 17(6):1232—
1252, 1988.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Ka88a] J. Kadin. Restricted Turing Reducibilities and the Structure of the
Polynomial Time Hierarchy. PhD thesis, Cornell University, Fe-
bruary 1988.

[Ka88b] J. Kadin. The polynomial hierarchy collapses if the Boolean hierar-
chy collapses. SIAM Journal on Computing, 17(6):1263-1282, 1994.

15

[KL82] R. Karp and R. Lipton. Turing machines that take advice.
L’Fnseignement Mathématique, 28:191-209, 1982.

[KSW8T7] J. Kébler, U. Schoning, and K. Wagner. The difference and truth-
table hierarchies of NP. R.A.LR.O. Informatique théorique et App-
lications, 21(4):419-435, 1987.

[KT94] J. K6bler and T. Thierauf. Complexity-restricted advice functions.
SIAM Journal on Computing, 23(2):261-275, 1994.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polyno-
mial time reducibilities. Theoretical Computer Science, 1(2):103~
124, 1975.

[W90] K. Wagner. Bounded query classes. SIAM J. on Computing 19(5),
pages 833-846, 1990.

[WO5] K. Wagner. Personal Communication, 1995.

[Wec85] G. Wechsung. On the boolean closure of NP. In Proceedings of
the 5th Conference on Fundamentals of Computation Theory, pages
485-493. Springer-Verlag Lecture Notes in Computer Science #1939,
1985. (An unpublished precursor of this paper was coauthored by
K. Wagner).

16

