
Parallel Algorithms for Bipartite Perfect Matching

Stephen Fenner
University of South Carolina

USA
fenner.sa@gmail.com

Rohit Gurjar
California Institute of

Technology
USA

rohitgurjar0@gmail.com

Thomas Thierauf
∗

Aalen University
Germany

thomas.thierauf@uni-
ulm.de

ABSTRACT
One of the fundamental questions in theory of computing
is to understand the power of randomness. It is not known
whether every problem with an efficient randomized algo-
rithm also has one that does not use randomness. One of the
extensively studied problems under this theme is that of per-
fect matching. The perfect matching problem has a random-
ized parallel (NC) algorithm based on the Isolation Lemma
of Mulmuley, Vazirani and Vazirani. It is a long-standing
open question whether this algorithm can be derandomized.
In this work, we give an almost complete derandomization
of the Isolation Lemma for perfect matchings in bipartite
graphs. This gives us a deterministic parallel (quasi-NC)
algorithm for the bipartite perfect matching problem.

Derandomization of the Isolation Lemma means that we
deterministically construct a weight assignment so that the
minimum weight perfect matching is unique. We present
three different ways of this construction with a common
main idea.

1. INTRODUCTION
A perfect matching in a graph is a subset of edges such

that every vertex has exactly one edge incident on it from the
subset. The perfect matching problem, PM, asks whether a
given graph contains a perfect matching. The problem has
played an important role in the study of algorithms and com-
plexity. The first polynomial-time algorithm for the problem
was given by Edmonds [6], which, in fact, motivated him to
propose polynomial time as a measure of efficient computa-
tion.

Perfect matching was also one of the first problems to be
studied from the perspective of parallel algorithms. A par-
allel algorithm is one where we allow use of polynomially
many processors running in parallel. And to consider a par-
allel algorithm as efficient, we require the running time to
be much smaller than a polynomial. In particular, the com-

The original version of this paper is entitled “Bipartite Per-
fect Matching is in quasi-NC” and was published in the Pro-
ceedings of the 48th ACM Symposium on the Theory of
Computing (STOC), 2016
∗Supported by DFG grant TH 472/4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

plexity class NC is defined as the set of problems which can
be solved by a parallel computer with polynomially many
processors in poly-logarithmic time.

Lovász [16] gave an efficient randomized parallel algo-
rithm for the matching problem, putting it in the complex-
ity class RNC (randomized NC). The essence of his parallel
algorithm was a randomized reduction from the matching
problem to a determinant computation. A determinant com-
putation in turn reduces to matrix multiplication (see [3]),
which is well-known to have parallel algorithms.

One of the central themes in the theory of computation
is to understand the power of randomness, i.e., whether
all problems with an efficient randomized algorithm also
have a deterministic one. The matching problem has been
widely studied under this theme. It has been a long-standing
open question whether randomness is necessary for a parallel
matching algorithm, i.e., whether the problem is in NC.

One can also ask for a parallel algorithm to construct a
perfect matching in the graph if one exists (Search-PM).
Note that there is a standard search-to-decision reduction
for the matching problem, but it does not work in parallel.
Karp, Upfal, and Wigderson [15] and later, Mulmuley, Vazi-
rani, and Vazirani [18] gave RNC algorithms for Search-PM.
The latter work introduced the celebrated Isolation Lemma
and used it to solve Search-PM in RNC. They assign some
weights to the edges of the graph, call a weight assignment
isolating for a graph G if there is a unique minimum weight
perfect matching in G. Here, the weight of a perfect match-
ing is simply the sum of the weights of the edges in it. Given
an isolating weight assignment with polynomially bounded
integer weights, they can find the minimum weight perfect
matching in G in NC (again via determinant computations).

Note that if we allow exponentially large weights then it
is trivial to construct an isolating weight assignment: assign
weight 2i to the i-th edge for 1 ≤ i ≤ m, where m is the
number of edges. This, in fact, ensures a different weight for
each perfect matching. The challenge, however, is to find
an isolating weight assignment with polynomially bounded
weights. This is where the Isolation Lemma comes in: it
states that if each edge is assigned a random weight from a
polynomially bounded range then such a weight assignment
is isolating with high probability.

Lemma 1.1 (Isolation Lemma [18]). Let G(V,E) be
a graph and w ∈ {1, 2, . . . , k|E|}E be a uniformly random
weight assignment on its edges, for some k ≥ 2. Then w is
isolating with probability at least 1− 1/k.

Note that since there can be exponentially many per-
fect matchings in a graph, under a polynomially bounded



weight assignment, there will definitely be many collisions,
i.e., many perfect matchings will get the same weight. The
beauty of the Isolation Lemma is that for the minimum
weight, there will be a unique perfect matching with high
probability.

One way to obtain a deterministic parallel (NC) algorithm
for the perfect matching problem is to derandomize this
lemma. That is, to deterministically construct such a poly-
nomially bounded isolating weight assignment in NC. This
has remained a challenging open question.

Derandomization of the Isolation Lemma has been known
for some special classes of graphs, for example, planar bipar-
tite graphs [5, 22], strongly chordal graphs [4], and graphs
with a small number of perfect matchings [11, 1]. Here, we
present an almost complete derandomization of the Isolation
Lemma for bipartite graphs. The class of bipartite graphs
appears very naturally in the study of perfect matchings. A
graph is bipartite if there is a partition of its vertex set into
two parts such that each edge connects a vertex from one
part to a vertex from the other. Thus, a perfect matching in
a bipartite graph matches every vertex in one part to exactly
one vertex in the other.

In Section 3, we construct an isolating weight assignment
for bipartite graphs with quasi-polynomially large (nO(logn))
weights, where n is the number of vertices in the graph. Note
that this is slightly worse than what we would have ide-
ally liked, which is – polynomially bounded weights. Hence,
we do not get an NC algorithm. Instead, we get that for
bipartite graphs, the problems PM and Search-PM are in
quasi-NC2. That is, the problems can be solved in O(log2 n)

time using nO(logn) parallel processors. A more detailed ex-
position is in the conference version of the paper [8].

Theorem 1.2. For bipartite graphs, PM and Search-PM
are in quasi-NC2.

The isolation technique
At the heart of our isolation approach is a cycle elimination
technique. It is easy to see that if we take a union of two
perfect matchings, we get a set of disjoint cycles and single-
ton edges. Each of these cycles has edges alternating from
the two perfect matchings. And thus, cycles play an impor-
tant role in isolating a perfect matching. Given a weight
assignment on the edges, let us define the circulation of a
(even) cycle C to be the difference of weights between the
set of odd-numbered edges and the set of even-numbered
edges in cyclic order around C. Clearly, if all the cycles in
the union of two perfect matchings have zero circulations,
then the two perfect matchings will have the same weight.
It turns out that the converse is also true when the two
perfect matchings under consideration are of the minimum
weight [5]. This observation is the starting point of our cycle
elimination technique.

In case of bipartite graphs, this observation can be further
generalized. We show that for any weight assignment w
on the edges of a bipartite graph, if we consider the union
of all the minimum weight perfect matchings, then it has
only those cycles which have zero circulation (Lemma 2.2).
This means that if we design the weights w such that a
particular cycle C has a nonzero circulation, then C does not
appear in the union of minimum weight perfect matchings,
i.e., at least one of the edges in C does not participate in
any minimum weight perfect matchings. This is the way we
will be eliminating cycles.

If we eliminate all cycles this way, we will get a unique
minimum weight perfect matching, for if there were two min-
imum weight perfect matchings, their union would contain
a cycle with zero circulation. However, it is not possible
to ensure nonzero circulations simultaneously for all cycles
while keeping the edge weights small (proved in [14]). What
we can get is nonzero circulation for any polynomially large
set of cycles using well-known hashing techniques. In short,
we can eliminate any desired set of a small number of cycles
at once. With this tool in hand we would like to eliminate
all cycles—whose number can be exponentially large—in a
small number of rounds.

We present three different ways of achieving this. The first
two of these have appeared before in different versions of our
paper [8]. The third has not appeared anywhere before.

1. In the first approach, in the i-th round, we eliminate
all cycles of length at most 2i+1. Hence, we eliminate
all cycles in logn rounds. Each round is efficient be-
cause if a graph does not have any cycles of length at
most `, then the number of cycles up to length 2` is
polynomially bounded [21, 19].

2. In the second approach, first we eliminate all cycles
of length at most 4 logn. The bound we have on
the number of such cycles is quasi-polynomial in n.
Alon, Hoory, and Linial [2] have shown that any graph
which does not contain any cycle of length ≤ 4 logn
must have average degree at most 2.5, and thus must
have at least a constant fraction of nodes with de-
gree 2 or less. From the obtained graph, we ignore
degree-1 vertices, and we revise our notion of cycle
length to ignore degree-2 vertices in the cycle. We then
repeat the procedure of eliminating cycles of length
at most 4 logn, based on this revised notion of cy-
cle length. The number of such cycles remains quasi-
polynomially bounded. In each round the number of
degree > 2 nodes decreases by a constant fraction, and
thus, after O(logn) rounds, we are left with all the
nodes having degree ≤ 2. At this stage, we have O(n)
cycles left, which can be eliminated in one more round.

3. In the third approach, instead of considering the lengths
of the cycles, we try to pick as many edge-disjoint cy-
cles as possible and eliminate them. Note that edge-
disjointness ensures that we will eliminate at least as
many edges as cycles. Erdős and Pósa [7] showed
that any graph with m edges and n nodes contains
Ω( m−n

log(m−n) ) edge-disjoint cycles. A careful argument

shows that in O(log2 n) rounds, we eliminate enough
edges so that no cycles are left.

As we will see later, the first approach is more efficient
than the other two. We still think it is interesting to see
different ways of achieving isolation, as they might lead to
better ideas for getting isolation with polynomially bounded
weights or isolation in other settings. Another interesting
point is that our second approach was used in designing
a pseudo-deterministic-NC algorithm for bipartite match-
ing [10].

Our crucial technical result (Lemma 2.2) about eliminat-
ing cycles has a geometric proof that is based on the perfect
matching polytope of a bipartite graph. In the next section,
we define the perfect matching polytope and use its prop-
erties to prove the result. Then in Section 3, we formally



describe the weight construction and the three approaches
to eliminate all cycles.

2. THE PERFECT MATCHING POLYTOPE
Perfect matchings have an associated polytope, called the

perfect matching polytope. The perfect matching polytope
PM(G) of a graph G(V,E) is a polytope in the (real) edge
space, i.e., PM(G) ⊆ RE . For any perfect matching M of G,
consider its incidence vector xM = (xMe )e∈E ∈ RE given by

xMe =

{
1, if e ∈M,

0, otherwise.

This vector is referred as a perfect matching point for any
perfect matching M . The perfect matching polytope of a
graph G is defined to be the convex hull of all its perfect
matching points:

PM(G) = conv{xM |M is a perfect matching in G }.

The corners of PM(G) are exactly the perfect matching
points of G. For any weight function w : E → R on the
edges of a graph G, consider the linear function

w · x =
∑
e∈E

w(e)xe

on RE . Clearly, for any perfect matching M , we have

w(M) = w · xM .

In particular, let M∗ be a perfect matching in G of minimum
weight. Then

w(M∗) = min{w · x | x ∈ PM(G) }.

The task to isolate a perfect matching can now be rephrased
as: construct a weight function w : E → N such that w ·x has
a unique minimum point in PM(G).

It is well known that for bipartite graphs, the perfect
matching polytope has a simple description in terms of linear
inequalities.

Lemma 2.1 (See [17]). Let G(V,E) be a bipartite graph.
The perfect matching polytope PM(G) is given by∑

e∈δ(v)

xe = 1 v ∈ V, (1)

xe ≥ 0 e ∈ E, (2)

where δ(v) denotes the set of edges incident on vertex v.

It is easy to see that any integer solution to (1) and (2)
is a perfect matching point. The conditions simply say that
each vertex should have exactly one edge incident to it. The
non-trivial part of the lemma is that the perfect matching
points are all the corners of the polytope. That is, any
real solution to (1) and (2) is a convex combination of some
perfect matching points.

For general graphs, the polytope described by (1) and (2)
can have corners which are not perfect matchings points.
Thus, the description does not capture the perfect matching
polytope for general graphs.

Here we depart from the usual definition of “edge space” as
a vector space over Z/2Z.

2.1 Faces of the perfect matching polytope
Since w · x is a linear function, the points in PM(G) that

minimize w · x will form a face of PM(G). The corners of
this minimizing face will all correspond to minimum weight
perfect matchings. Any face of a polytope can be obtained
by replacing some of the inequalities in its description by
equalities. In the case of PM(G), these inequalities are just
the non-negativity constraints (2). Thus, by Lemma 2.1, for
any face F of PM(G), there exists a set S ⊆ E of edges such
that F is described by (1) and (2), and xe = 0 for e ∈ S.

Now, for any weight function w, let Fw be the face of the
polytope PM(G) minimizing w · x. Let

Sw = { e ∈ E | Fw satisfies xe = 0 }.

Intuitively, the edges in Sw do not participate in any min-
imum weight perfect matching with respect to w. Define
Ew = E − Sw and Gw = (V,Ew). Hence, Gw is the sub-
graph of G that contains exactly those edges that participate
in some minimum weight perfect matching in G.

2.2 Cycles and their circulations
As mentioned before, cycles play an important role in the

context of perfect matchings, and also in our arguments. For
an even cycle C = (e1, e2, . . . , ep), we define its circulation
vector χC = (χCe )e∈E by

χCe =

{
(−1)j if e = ej , for some 1 ≤ j ≤ p,
0, otherwise.

Note that the definition actually depends on the starting
edge e1. For our purposes, it does not matter which edge of
a cycle is chosen as e1. Observe that χC satisfies∑

e∈δ(v)

χCe = 0 v ∈ V. (3)

By equation (3), the circulation vector χC lies parallel to
the affine subspace of RE defined by (1). More general, we
define the circulation of C with respect to weight w by

w · χC =

p∑
j=1

(−1)jw(ej).

The following lemma is crucial for our weight construction.
It shows that for any cycle C in Gw (i.e., the union of mini-
mum weight perfect matchings w.r.t. w), we have w ·χC = 0.

Lemma 2.2. Let w be a weight function on the edges of
a graph G. Let C be a cycle in the subgraph Gw. Then
w · χC = 0.

Proof. Recall that Fw is described by (1) and (2), and
xe = 0, for e ∈ Sw. By definition of Gw, the cycle C does not
have any edge from Sw. Thus, χC also satisfies xe = 0 for
all e ∈ Sw, and furthermore,

∑
e∈δ(v) χ

C
e = 0 for all v ∈ V

by equation (3). Therefore χC lies parallel to Fw.
By definition, all points x ∈ Fw have the same weight,

i.e., w · x = c0, for some constant c0. Hence, vector w is
orthogonal to the affine span of Fw. We conclude that w is
also orthogonal to χC , and therefore w · χC = 0.

3. CONSTRUCTING AN ISOLATING
WEIGHT ASSIGNMENT



Lemma 2.2 gives us a way to eliminate cycles. Suppose C
is a cycle in graph G. If we construct a weight assignment
w such that w · χC 6= 0 then the cycle C will not be present
in Gw, i.e., at least one edge of C will be missing.

We will be applying this technique on a small set of cho-
sen cycles. As mentioned earlier, there are standard ways
to construct a weight function which ensures nonzero cir-
culations for any small set of cycles simultaneously, see for
example [9].

Lemma 3.1. Let C be any set of s cycles in graph G(V,E)
and let E = {e1, e2, . . . , em}. For j ∈ N, we define weights

w(mod j)(ei) := 2i−1 mod j, for i = 1, 2, . . . ,m.

Then there exists a j ≤ ms such that

w(mod j) · χC 6= 0, for all C ∈ C.
Note that the above lemma actually gives a list of weight

functions such that for any desired set of cycles, at least one
of the weight functions in the list works. Also observe that
weight of any edge under any of these functions is bounded
by ms. That is, the weights are polynomially bounded as
long as the number of cycles is.

The isolating weight assignment is now constructed in
rounds. The strategy is to keep eliminating a small num-
ber (poly or quasi-poly) of cycles in each round by giving
them nonzero circulations. This is repeated until we are
left with no cycles. In every round, we add the new weight
function to the current weight function on a smaller scale.
This is to ensure that the new weights do not interfere sig-
nificantly with the circulations of cycles which have been
already eliminated in earlier rounds.

In more detail, if wi is the current weight function in the i-
th round, then in the next round, we will consider the weight
function wi+1 = Nwi +w′, for some weight function w′ and
a large enough number N . The number N is chosen to
be larger than n ·maxe w

′(e), which ensures that Nwi gets
precedence over w′. The weight function w′ is designed to
ensure nonzero circulations for a desired set of cycles in Gwi .
These cycles will not appear in Gwi+1 . We will keep elimi-
nating cycles in this way until we obtain a w such that Gw
has no cycles. Recall that Gw is defined to be the union of
minimum weight perfect matchings with respect to w, and
thus, contains at least one perfect matching. Since Gw has
no cycles, it must have a unique perfect matching, and so,
w is isolating for G. Figure 1 shows a graph where an isolat-
ing weight assignment is constructed in 3 rounds using our
Approach 1, described below.

Bound on the weights.
If we want to assign nonzero circulations to at most s

cycles in each round, then the weights are bounded by ms
by Lemma 3.1. If there are k such rounds, the bound on
the weights becomes O((nms)k). As we will see later, the
quantity (nms)k will be quasi-polynomially bounded.

Recall that Lemma 3.1 gives a list of ms candidate weight
functions such that at least one of them gives nonzero circu-
lations to all the s cycles chosen in a round. We need to try
all possible (ms)k combinations of these candidate functions
coming from each round. Our quasi-NC algorithm tries all
these combinations in parallel.

Now, the crucial question left in our isolating weight con-
struction is this: how to eliminate all cycles, which are possi-
bly exponentially many, in a small number of rounds, while

in each round, only eliminating a small number of cycles.
We present three different approaches for this. Each ap-
proach will have a different criterion for choosing a small set
of cycles which are to be eliminated in a round. The rest of
the procedure is common to all three approaches. The fol-
lowing table gives, for each approach, the number of cycles
chosen in each round and the number of rounds required to
eliminate all cycles. Here we use m ≤ n2.

Number of cycles Number Bound on
in each round of rounds the weights

Approach 1 n4 O(logn) nO(logn)

Approach 2 nO(logn) O(logn) nO(log2 n)

Approach 3 O(n2) O(log2 n) nO(log2 n)

3.1 Approach 1: Doubling the lengths of the
cycles

Here, the idea is to double the length of the cycles which
we want to eliminate in each round. There will be logn
rounds. In the i-th round we eliminate all cycles of length at
most 2i+1, and thus eliminate all cycles in logn rounds. The
following lemma shows that if we have already eliminated all
the cycles of length at most 2i then the number of cycles of
length 2i+1 is polynomially bounded, for any i.

Lemma 3.2 ([19]). Let H be a graph with n nodes that
has no cycles of length at most r, for some even number
r ≥ 4. Then H has at most n4 cycles of length at most 2r.

Proof. Let C be a cycle of length ≤ 2r in G. We
choose 4 vertices u0, u1, u2, u3 on C which divide it into 4
almost equal parts. We associate the tuple (u0, u1, u2, u3)
with C. We claim that C is the only cycle associated with
(u0, u1, u2, u3). For the sake of contradiction, let there be
another such cycle C′. Let p 6= p′ be paths of C and C′, re-
spectively, that connect the same u-nodes. As the four seg-
ments of C and C′ are of equal length, we have |p|, |p′| ≤ r/2.
Thus p and p′ create a cycle of length ≤ r, which is a con-
tradiction. Hence, a tuple is associated with only one cycle.
The number of tuples of four nodes is bounded by n4, and
so is the number of cycles of length ≤ 2r.

3.2 Approach 2: Eliminating small cycles im-
plies a small average degree

Here the idea is to use a result of Alon, Hoory, & Linial [2]
which states that a graph with no small cycles must have
many nodes of degree 2. To get an intuitive understanding
of this, consider a graph where each node has degree at
least 3: do a breadth-first search of the graph starting from
an arbitrary node until depth logn. When one reaches a
node v via an edge e, there are at least 2 edges incident
on v other than e. So, the search tree contains a binary
tree of depth logn. The nodes in the tree cannot be all
distinct, because otherwise we would have strictly more than
2logn = n nodes. A node that appears twice in the search
tree gives us a cycle of length at most 2 logn. In other
words, if there are no cycles of length at most 2 logn, then
the graph must have a node with degree 2 or less. Alon,
Hoory, & Linial [2] generalize this intuition to show that as
the length of the shortest cycle increases, the average degree
gets closer to 2.

Lemma 3.3 ([2]). Let H be a graph with no cycles of
length < 4 logn− 2. Then H has average degree < 2.5.



The initial weights are w(ei) := 2i.

(the green does not survive).
the union of the blue and red matchings

only e11 is removed in the derived graph—

Take w mod 7. The 6-cycles are gone, but

union of 3 min matchings (blue, red, green).

only e5 is removed in the derived graph—the

Take w mod 3. The 4-cycles are gone, but

derived graph.

and only the blue matching survives in the

Take w mod 5. The 10-cycle is now gone

1

1024

e6 e1 e7 e8

e2

e4 e10 e9 e3

e0 e5 e11

64 2 128 256

4

16 512 8

2048321

1

1

2

1

2

2

1

1

2

22

2

2

1

2

2 4

1 1

4441

4 2

41

3

2

1

3

4321

114 222 223 141

144

121 124 212 213

243242111

G is a 10-node graph with 12 edges

e0, . . . , e11.

interpreted in any radix ≥ 5 in this example.

Combining the reduced weights gives us a

weight function that isolates the blue matching

as unique with min weight. Numbers can be

Figure 1: Iterative construction of an isolating weight assignment on a bipartite graph



Now, in this approach we eliminate all cycles of length less
than 4 logn − 2 in the first round. The Lemma 3.3 implies
that after the first round, a constant fraction of the nodes
in the graph have degree ≤ 2. In the subsequent rounds, we
again eliminate cycles of length less than 4 logn− 2, except
that while counting the length of a cycle, we ignore degree-2
vertices (thus treating paths with degree-2 interior vertices
as single edges). It is easy to see that the number of such
cycles will be always bounded by n4 logn−2. The following
lemma shows that in each round, we reduce the number of
degree > 2 nodes by a constant fraction.

Lemma 3.4. Let G(V,E) be a graph with n nodes. Let
U ⊆ V be its set of degree > 2 nodes. Let G1(V,E1) be a
subgraph of G such that any cycle in G1 contains at least
` = 4 logn − 2 nodes from U . Then a constant fraction of
the nodes in U have degree ≤ 2 in G1.

Proof. Let T = V −U be the set of nodes of degree ≤ 2
in G. In the following, by degree of a node we mean its
degree in G1. First, we delete all degree 1 nodes from G1.
For the degree 2 nodes in T , let us identify them with one
of their two neighbors. More specifically, if there is a path
consisting of degree 2 nodes of T , we delete all the nodes
in the path and connect its two endpoints outside T by an
edge.

In summary, we deleted all nodes in T and the nodes of
degree 1 in U from G1. Let G′1 be the resulting graph. The
nodes in G′1 are exactly those nodes in U whose degree is > 1
in G1. Note that the degree of any node in G′1 is the same
as in G1.

By the assumption of the lemma, any cycle in G′1 has
length ≥ ` . From Lemma 3.3 we have that G′1 has average
degree < 2.5. it follows that at least a constant fraction
of its nodes have degree 2. This, in turn, means that at
least a constant fraction of the nodes in U have degree ≤ 2
in G1.

After repeating this procedure for O(logn) rounds, we will
reach a constant number of degree > 2 nodes. That is, there
will be only O(n) cycles, which can be eliminated in the next
round.

3.3 Approach 3: Eliminating a maximum size
set of edge-disjoint cycles

In this approach we do not consider the length of the
cycles. Instead, in each round we pick as many edge-disjoint
cycles as possible. Recall that eliminating a cycle means that
at least one of its edges will not be present in the graph in the
next round. Hence when we eliminate a set of edge-disjoint
cycles, we will eliminate at least as many edges. Once we
remove enough edges, we will be left with no cycles.

Let G be a graph with n vertices and m edges. The num-
ber of cycles picked in each round is trivially bounded by m.
The non-trivial part is to come up with a lower bound. Erdős
and Pósa [7] showed that G has at least m−n

O(log(m−n)) edge-

disjoint cycles. We will argue that if we eliminate a max-
imum size set of edge-disjoint cycles in a round, then the
quantity m − n decreases by a significant fraction in every
round.

Lemma 3.5. Let G be a connected graph with n vertices
and m edges. Let C be a maximum size set of edge-disjoint
cycles in G. Let H be any subgraph of G obtained by deleting

at least one edge from each cycle in C. Then for any con-
nected component H1 of H with n1 vertices and m1 edges,

m1 − n1 ≤ (m− n)

(
1− 1

O(log(m− n))

)
.

Proof. Let |C| = k. Define a graph H ′ to be a subgraph
of G such that H is a subgraph of H ′ and for each cycle
in C, exactly one edge is missing in H ′. Note that H ′ is
still connected, since the cycles in C are edge-disjoint. The
difference between the number of edges and vertices of H ′

is m− n− k.
Since H is obtained by deleting possibly some more edges

from H ′, for any connected component of H, the difference
between the number of edges and vertices cannot be larger
than m−n−k. Now, the lemma follows from the above lower
bound of Erdős and Pósa [7] on the number of edge-disjoint
cycles.

Let us repeat the procedure of eliminating a maximum
size set of edge-disjoint cycles. It follows from the lemma
that after O(log2 n) rounds, each component of the obtained
graph will have a constant difference between the number of
edges and vertices. At this stage, each component will have
only constantly many cycles. And so, in one more round we
will eliminate all cycles.

A different view on the third approach is by considering
the dimension of the perfect matching polytope. For a con-
nected bipartite graph, where each of its edges belong to
some perfect matching, the perfect matching polytope has
dimension m − n + 1 [17, Theorem 7.6.2]. Thus, the argu-
ment of this approach can also be viewed as decreasing the
dimension of the perfect matching polytope by a fraction in
each round and eventually reaching dimension zero, i.e., just
one perfect matching point.

4. FURTHER GENERALIZATIONS
In a series of follow-up works our isolation approach was

generalized to the broader settings of matroid intersection
and polytopes with totally unimodular faces, respectively [12,
13]. For a these general settings, the right substitute for
the cycle circulation vectors are integer vectors parallel to
a face of the polytope. Following our first approach, if one
eliminates vectors of length ≤ 2i, then there are only poly-
nomially many vectors of length ≤ 2i+1, in their respective
settings (see [12, 13] for details). However, it is not clear if
our second and third approaches work in these settings. It
will be interesting to find other polytopes for which these
isolation approaches work.

In another direction, Svensson and Tarnawaki [20] gen-
eralized the isolation result to perfect matchings in general
graphs. They use the basic framework of our first approach
as the starting point. However, the approach does not seem
to work as it is and they need several other ideas. In partic-
ular, it is not clear if one can show the desired upper bound
on the number of vectors parallel to a face. To overcome
this issue, they use the technique of contraction. They grad-
ually contract larger and larger sets of vertices which enables
them to just work with an upper bound on the number of
cycles (or closed walks).

Acknowledgments
We would like to thank Manindra Agrawal and Nitin Sax-
ena for their constant encouragement and very helpful dis-



cussions. We thank Arpita Korwar for discussions on some
other techniques used in this research, and Jacobo Torán for
discussions on the number of shortest cycles.

5. REFERENCES
[1] M. Agrawal, T. M. Hoang, and T. Thierauf. The

polynomially bounded perfect matching problem is in
NC2. In 24th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 4393
of Lecture Notes in Computer Science, pages 489–499.
Springer Berlin Heidelberg, 2007.

[2] N. Alon, S. Hoory, and N. Linial. The Moore bound
for irregular graphs. Graphs and Combinatorics,
18(1):53–57, 2002.

[3] S. J. Berkowitz. On computing the determinant in
small parallel time using a small number of processors.
Information Processing Letters, 18(3):147 – 150, 1984.

[4] E. Dahlhaus and M. Karpinski. Matching and
multidimensional matching in chordal and strongly
chordal graphs. Discrete Applied Mathematics,
84:79–91, 1998.

[5] S. Datta, R. Kulkarni, and S. Roy. Deterministically
isolating a perfect matching in bipartite planar graphs.
Theory of Computing Systems, 47:737–757, 2010.

[6] J. Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[7] P. Erdős and L. Pósa. On the maximal number of
disjoint circuits of a graph. Publ. Math. Debrecen,
9:3–12, 1962.

[8] S. Fenner, R. Gurjar, and T. Thierauf. Bipartite
Perfect Matching is in quasi-NC. In Proceedings of the
48th ACM Symposium on the Theory of Computing
(STOC), 2016. arXiv:1601.06319; ECCC TR15-177.

[9] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time. J.
ACM, 31(3):538–544, June 1984.

[10] S. Goldwasser and O. Grossman. Bipartite perfect
matching in pseudo-deterministic NC. In 44th
International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, pages 87:1–87:13, 2017.

[11] D. Grigoriev and M. Karpinski. The matching
problem for bipartite graphs with polynomially
bounded permanents is in NC (extended abstract). In
28th Annual Symposium on Foundations of Computer
Science (FOCS), pages 166–172, 1987.

[12] R. Gurjar and T. Thierauf. Linear matroid
intersection is in quasi-NC. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 821–830, 2017.

[13] R. Gurjar, T. Thierauf, and N. K. Vishnoi. Isolating a
vertex via lattices: Polytopes with totally unimodular
faces. CoRR, abs/1708.02222, 2017.

[14] D. Kane, S. Lovett, and S. Rao. The independence
number of the birkhoff polytope graph, and
applications to maximally recoverable codes. In 58th
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 252–259, 2017.

[15] R. M. Karp, E. Upfal, and A. Wigderson.
Constructing a perfect matching is in random NC.

Combinatorica, 6(1):35–48, 1986.

[16] L. Lovász. On determinants, matchings, and random
algorithms. In Fundamentals of Computation Theory,
pages 565–574, 1979.

[17] L. Lovász and M. D. Plummer. Matching Theory.
North-Holland mathematics studies. Elsevier Science
Ltd, 1986.

[18] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani.
Matching is as easy as matrix inversion.
Combinatorica, 7:105–113, 1987.

[19] A. Subramanian. A polynomial bound on the number
of light cycles in an undirected graph. Information
Processing Letters, 53(4):173 – 176, 1995.

[20] O. Svensson and J. Tarnawski. The matching problem
in general graphs is in quasi-NC. In 58th IEEE Annual
Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 696–707, 2017.

[21] C. P. Teo and K. M. Koh. The number of shortest
cycles and the chromatic uniqueness of a graph.
Journal of Graph Theory, 16(1):7–15, 1992.

[22] R. Tewari and N. Vinodchandran. Green’s theorem
and isolation in planar graphs. Information and
Computation, 215:1–7, 2012.


	Introduction
	The Perfect Matching Polytope
	Faces of the perfect matching polytope
	Cycles and their circulations

	Constructing an Isolating  Weight Assignment
	Approach 1: Doubling the lengths of the cycles
	Approach 2: Eliminating small cycles implies a small average degree
	Approach 3: Eliminating a maximum size set of edge-disjoint cycles

	Further Generalizations
	References

