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Abstract

To compare the complexity of the perfect matching problem for
general graphs with that for planar graphs, one might try to come
up with a reduction from the perfect matching problem to the planar
perfect matching problem. The obvious way to construct such a reduc-
tion is via a planarizing gadget , a planar graph which replaces all edge
crossings of a given graph. We show that no such gadget exists. This
provides a further indication that the complexity of the two problems
is different.

1 Introduction

The perfect matching problem is a very fundamental computational problem
(see e.g. [KR98, LP86]). Edmonds [Edm65] developed a polynomial-time
algorithm, but still it is unknown whether there is an efficient parallel algo-
rithm for the perfect matching problem, i.e. whether it is in NC. In their
seminal result, Mulmuley, Vazirani and Vazirani [MVV87] isolated a perfect
matching by assigning random weights to the edges. This yields a random-
ized parallel algorithm for the problem, it is in RNC. A derandomization of
this algorithm is a challenging open problem.
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There are NC-algorithms for the perfect matching problem for special
graph classes. For example for regular bipartite graphs [LPV81], dense
graphs [DHK93], and strongly chordal graphs [DK86].

Here we consider planar graphs. Planarity is an intriguing property
with respect to the perfect matching problems which seems to change the
complexity of the problem drastically:

• Valiant [Val79] showed that counting the number of perfect matchings
in a graph is a hard problem, namely it is #P-complete,

• whereas for planar graphs, Kastelyn [Kas67] showed that a Pfaf-
fian orientation can be computed in polynomial time, which leads to
polynomial-time algorithm for counting the number of perfect match-
ings. Vazirani [Vaz89] argued that the problem is in fact in NC.

In contrast, no NC-algorithm is known for the construction of a perfect
matching in planar graphs. This is a puzzling state of affairs because intu-
itively counting seems to be a harder problem than construction. There is
however an RNC-algorithm for the construction problem [MVV87].

Much work has been done on the perfect matching for bipartite planar
graphs [MN95, MV00, KMV08, DKR10, Hoa10, DKT11]. The current best
bound on the problem is unambiguous logspace, UL, for decision and con-
struction [DKT11]. Note that bipartiteness on its own doesn’t seem to make
the perfect matching problem easier: counting the number of perfect match-
ings in bipartite graphs is still #P-complete. But the combination bipartite
+ planar seems to make a difference.

In this paper, we investigate the question whether there is logspace-
or NC-reduction from the perfect matching problem to the planar perfect
matching problem. Despite the differences of the problems mentioned above,
such a reduction is quite possible to exist.

• Such a reduction would be a break-through result because it would
derandomize the RNC-algorithm for perfect matching. Many people
conjecture that such a derandomization is possible. Hence this could
be one way of doing it.

• A reduction does not necessarily maintain the number of perfect
matchings. Hence it does not imply an unexpected collapse of com-
plexity classes.

An obvious approach to construct such a reduction is to come up with
a planarizing gadget , a planar graph that locally replaces the crossing edges
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of a given drawing of a graph. Any other, more globally acting reduction
should be very involved to construct. A recent example for the use of pla-
narizing gadget is provided by Datta et al. [DKLM10]. They investigated the
complexity of computing the determinant of a matrix which is the adjacency
matrix of a planar graph. Datta et al. construct a gadget which provides a
reduction from the general determinant to the planar determinant. There-
fore both problems have the same complexity, they are GapL-complete. The
analogous result is shown for the permanent, again via some gadget. There-
fore the permanent and the planar permanent are #P-complete.

Our main result is to put an obstacle on the way to get an NC-algorithm
for the perfect matching problem: we show that planarizing gadgets for
perfect matching do not exist. We extend the result to the weighted perfect
matching problem and the exact perfect matching problem.

2 Preliminaries

Let G = (V,E) be an undirected graph. A matching in G is a set M ⊆ E,
such that no two edges in M have a vertex in common. A matching M is
called perfect if every vertex occurs as an endpoint of some edge in M . In
the decission problem perfect matching one has to decide, whether G has a
perfect matching,

PM = {G | G has a perfect matching }.

For a weight function w : E 7→ N of the graph, the weight of a matching M
is defined as w(M) =

∑

e∈M w(e).
Sequential algorithms to compute maximum matchings use augmenting

path techniques [HK73]. They are described in many textbooks, see for ex-
ample [Koz91, KR98]. We mention some easy facts. Let M and M ′ be
matchings in a graph G = (V,E). Consider the subgraph G′ = (V,M △M ′)
of G that contains only the edges of the symmetric difference of M and M ′.
This graph consists of alternating paths and cycles (with respect to M
and M ′). That is, the paths and cycles have edges alternating from M
and M ′. Also, they are simple and pairwise disjoint. If M and M ′ are
perfect matchings in G, then M △M ′ consists of alternating cycles only, i.e.
there are no alternating paths.

We also consider the following matching problems.

• Unique perfect matching : Given a graph G, decide whether G has
precisely one perfect matching.
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• Weighted perfect matching : Given a graph G and a weight function w,
compute a perfect matching of minimum weight in G.

• Weighted exact perfect matching : Given a graph G, a weight func-
tion w on the edges, and a number W , decide whether there is a
perfect matching in G of weight exactly W .

• Exact perfect matching : Given a graph G where every edge is colored
either red or blue, and a number k, decide whether there is a perfect
matching in G with exactly k red edges.

The unique perfect matching problem is in P [GKT99]. For bipar-
tite graphs it is in NC [KVV85, HMT06], and for planar graphs it is also
in NC [Vaz89]. It is a challenging open problem whether the unique perfect
matching problem is in NC.

The weighted perfect matching problem is in P [MV80, Vaz94]. If the
weights are polynomially bounded, then the problem is in NC for planar
graphs [Vaz89].

The exact perfect matching problem is a very puzzling problem: it is
not even known to be in P (see e.g. [PY82, Yus07]). It is known to be
in RNC [MVV87] and in NC for planar graphs [Vaz89]. It can be seen as
special case of the weighted exact perfect matching problem: in a given red-
blue graph G, assign each red edge weight 1 and each blue edge weight 0.
Then a perfect matching with weight k is a perfect matching with k red
edges in G.

The weighted exact perfect matching problem with polynomially
bounded weights is (logspace-) equivalent to the exact perfect matching
problem: in a given weighted graph G, replace each edge e = (a, b) with a
simple path of length 2w(e) − 1 from a to b. Color the edges of the path
alternating red and blue with w(e) red and w(e)− 1 blue edges. Only poly-
nomial number of edges are added. A perfect matching with W red edges
corresponds to a perfect matching of weight W in G.

In contrast, the weighted exact perfect matching problem in general, i.e.
with exponential weights in the number n of nodes, is NP-complete [ZLM08].
In Figure 1 we present a reduction from the subset sum problem which
shows that the problem becomes hard already with a trivial underlying
graph structure.

The subset sum problem is known to be NP-complete even under
logspace-reductions, like all the NP-complete problems in [Kar72]. Clearly,
also the reduction in Figure 1 is computable in logspace, and the constructed
graph is bipartite and planar. Therefore the bipartite planar weighted exact
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Figure 1: Reduction from subset sum to exact perfect matching. Given an
instance a1, a2, . . . , an, b of integers for the subset sum problem, we construct
the weighted graph G shown above, which consists of n copies of K2,2 with
weights as indicated. The subset sum instance has a solution, i.e. there is
an S ⊆ {1, . . . , n} with

∑

i∈S ai = b, if and only if G has a perfect matching
of weight b.

perfect matching problem is NP-complete under logspace reducibility. In
particular, we obtain a logspace-reduction from the weighted exact perfect
matching problem to its bipartite planar version. Our reduction, however,
does not use any gadgets. The graph G constructed consists always of a
bunch of K2,2’s, just their number varies. Hence it is safe to say that, all
the information from an instance of the general exact matching problem is
encoded into the weights a1, a2, . . . , an of the graph G. This requires large
weights (unless P = NP). With small weights only, it intuitively seems
necessary that the original graph has to be encoded into the planar graph
constructed in the reduction. An obvious way to do so is by an appropriate
gadget!

3 Planarizing Gadgets

Let G be a given non-planar graph and consider a drawing of G in the plane.
A planarizing gadget is a planar graph which is used to replace crossing edges
of G as shown in Figure 2. The gadget is independent of the structure of
the graph. Hence, every crossing of edges is replaced by a copy of the same
gadget. Let G′ be the resulting planar graph.

The task of the gadget is to preserve certain properties of G. In our case,
we want to have:

G ∈ PM ⇐⇒ G′ ∈ PM.

A gadget for which this condition holds for all graphs is called a planarizing
gadget for the perfect matching problem.
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Figure 2: Planarizing gadget: the two crossing edges on the left are re-
placed by a planar graph which is indicated by the gray box on the right.

3.1 Properties of the gadget

Next, we look more closely at the properties that a planarizing gadget should
fulfill. As shown in Figure 3 let e = (v2, v4) and e′ = (v1, v3) be crossing
edges in G and let v′i be the node in the gadget that is connected with vi
via edge ei, for i = 1, . . . , 4.

v3

v2 v1

v4

v3

v2

v4

v1
e1

e

e2

v′
4

v′
3

v′
2

v′
1

e′

e4e3

Figure 3: More details on the planarizing gadget. Nodes v′
1
, . . . , v′

4
belong

to the gadget, whereas we consider edges e1, . . . , e4 as external for the gadget.

In the positive case, when G,G′ ∈ PM, the perfect matchings of G and G′

should correspond to each other as follows: for a perfect matching M in G
there is a perfect matching M ′ in G′ such that

• e ∈ M ⇐⇒ e2, e4 ∈ M ′ and

• e′ ∈ M ⇐⇒ e1, e3 ∈ M ′

This enforces that if e is an edge in M that matches nodes v2 and v4,
then these two nodes are matched by the gadget-replacement of e, namely
e2, e4. Matching M ′ might contain further edges from inside the gadget. An
analogous statement can be made for e′.

Definition 1. Let M ′ be a matching that covers all nodes inside a gadget.
Then we call M ′ legal for the gadget, if one of the following conditions hold:
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1. e1, e2, e3, e4 ∈ M ′,

2. e1, e3 ∈ M ′ and e2, e4 6∈ M ′,

3. e1, e3 6∈ M ′ and e2, e4 ∈ M ′,

4. e1, e2, e3, e4 6∈ M ′.

Otherwise M ′ is called illegal.

Now we can characterize planarizing gadgets for the perfect matching
problem.

Lemma 2. A gadget is planarizing if and only if

• there are legal matchings for all four cases described in Definition 1,

• there is no illegal matching.

Proof. Consider Figure 4. Parts (a), (b), and (c) show that the four legal
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Figure 4: Graphs G with a perfect matching that contains (a) both, (b)
one, and (c) none of the crossing edges. Matching edges are drawn with
bold lines. In G′ this yields the legal matchings that contain (a) all four,
(b) two opposite, and (c) none of the edges e1, . . . , e4.
In (d), graph G has no perfect matching. If the gadget would allow the
illegal perfect matching that contains e3, e4 and not e1, e2, then the resulting
graph G′ would have a perfect matching. Hence such a gadget does not work.

cases described in Definition 1 are necessary. The case which is symmetric
to part (b) is omitted.
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Note that the legal matchings imply that the gadget has an even number
of nodes. Therefore we do not need to consider the case that an odd number
of e1, . . . , e4 are in the matching, Part (d) shows that a gadget which allows
an illegal matching is not correct. The cases where two other neighboring
edges of e1, . . . , e4 are used are symmetric. Therefore no illegal matching is
allowed to exist.

In the proof of Lemma 2, we argue with the graphs shown in Figure 4. For
simplicity, these graphs are planar, but are drawn with two edges crossing.
Clearly, the gadget has to work also in such cases, and hence we do not
need to deal with more complicated non-planar graphs. However, it is easy
to extend our graphs to non-planar graphs in such a way, that the perfect
matchings are preserved: Let G be one of the above graphs. For every
pair of non-adjacent nodes u, v in G, we add two additional nodes xu,v, yu,v
which are connected by an edge, and connect u and v with yu,v. Let G

∗ be
the resulting graph. Since the only neighbor of xu,v is yu,v, every perfect
matching in G∗ has to use edge (xu,v, yu,v). The other edges in the perfect
matching are all from G. Hence perfect matchings in G and G∗ differ only
by the newly introduced edges (xu,v, yu,v).

IfG has n nodes, then G∗ has the complete graphKn as minor. Therefore
G∗ is non-planar for n ≥ 5. Only the graph in Figure 4 (a) has just 4 nodes.
But it is easy to enlarge it by a few extra nodes and still cover the same
case. Hence things do not change if we would restrict our arguments to
non-planar graphs only.

Let us also note, that it suffices to consider the case where the gadget
is connected to vi by a single edge, for i = 1, . . . , 4. For if there would be
several connections from nodes of the gadget to vi, we could introduce a new
node yi to the gadget and redirect these edges to yi instead of vi. Then we
add one more node xi to the gadget and connect it via the path (vi, xi, yi).
Now this modified gadget has the structure from Figure 3 and there is a
direct correspondence between the matchings in both gadgets.

3.2 Perfect Matching

We show next that no planarizing gadget for the perfect matching problem
exists. The proof constructs an illegal perfect matching out of legal ones.

Theorem 3. There is no planarizing gadget for the perfect matching prob-
lem.

Proof. Suppose there is a planarizing gadget. We refer to the denotation in
Figure 3. Let M1,3,M2,4 be legal matchings such that
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1. e1, e3 ∈ M1,3 and e2, e4 6∈ M1,3 and

2. e2, e4 ∈ M2,4 and e1, e3 6∈ M2,4.

According to Lemma 2, a planarizing gadget should have both of these
matchings.

Consider the subgraph with edges M1,3△M2,4 of the gadget: as ex-
plained in the preliminary section, M1,3 △M2,4 consists of some alternating
cycles and paths. The nodes v1, v2, v3, v4 must lie on alternating paths.
Since the two matchings cover all nodes in the gadget, there are precisely
two disjoint alternating paths p and q, each of which connects two nodes in
{v1, v2, v3, v4}. The remaining edges of M1,3△M2,4 form alternating cycles.

Let us denote by p the path that contains node v1. We distinguish three
cases:

(i) Suppose that p connects v1 with v3. Therefore q connects v2 with v4.
As we assume that there is a planar drawing of the gadget where
v1, v2, v3, v4 are placed like in Figure 3, the two paths must cross in
at least one common vertex. Since p and q are disjoint, this is not
possible.

(ii) Suppose that p = p1,2 connects v1 with v2, and q = p3,4 connects v3
with v4. From M1,3 and M2,4 we now construct two illegal match-
ings M2,3 and M1,4 by exchanging the edges on path p1,2 between
these two sets.

Let E(p1,2) be the set of edges on path p1,2. We define

M2,3 = M1,3 △E(p1,2).

That is, in M2,3 are

• the edges of M2,4 that are on path p1,2, and

• the remaining edges of M1,3 not on path p1,2.

Similarly we define M1,4 = M2,4 △E(p1,2). These are the edges on
path p1,2 from M1,3 and the other edges from M1,4. Figure 5 gives an
example of the construction.

Now both matchings M1,3 and M2,4 cover each inner node of the gad-
get, and

• e2, e3 ∈ M2,3 and e1, e4 6∈ M2,3 and

• e1, e4 ∈ M1,4 and e2, e3 6∈ M1,4.
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v′
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Figure 5: Matchings M1,3 and M2,4 are indicated, M2,4 with bold edges.
The upper alternating path p = p1,2 connects v1 with v2, the lower path q =
p3,4 connects v3 with v4. The illegal matching M2,3 is defined as the bold
edges on p1,2 and the non-bold edges on p3,4 and the other edges from M1,3

that are not on these paths (not drawn here). M1,4 consists of the remaining
edges on both paths and the other edges from M2,4.

Hence, M2,3 and M1,4 are illegal. Therefore, this case is not possible
either.

(iii) The case that p connects v1 with v4 is analogous to case (ii).

Hence all cases lead to a contradiction. Therefore no such gadget exists.

3.3 Unique Perfect Matching

We will now see whether a planarizing gadget can be constructed for the
unique perfect matching problem. Such a gadget should additionally have
the property that in each of the four cases of Definition 1, the matching
inside the gadget must be unique. Otherwise it would not maintain unique-
ness in Figure 4 (a)–(c). However, as shown in the proof of Theorem 3,
we cannot avoid getting additional illegal matchings in the gadget. This
destroys the uniqueness in G′. Figure 6 shows a graph G with a unique
matching such that in the resulting graph G′ an additional perfect matching
can be constructed using an illegal matching in the gadget.

Corollary 4. There is no planarizing gadget for the unique perfect matching
problem.

3.4 Weighted Perfect Matching

Next we turn to the weighted perfect matching problem. Now a planarizing
gadget is allowed to have illegal matchings. But all legal matchings have to
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Figure 6: Graph G has a unique perfect matching. As shown in the proof
of Theorem 3, the gadget will have an illegal matching M with e2, e3 ∈ M
and e1, e4 6∈ M . The matching M can be extended to a perfect matching
in the resulting graph G′. M is an additional perfect matching beside the
originally unique perfect matching. The uniqueness is lost.

have weights strictly less than all illegal matchings. The proof of Theorem 3
can be extended to the weighted case. This will show that no planarizing
gadget exists for the weighted perfect matching problem.

As a technical detail, we first have to define the weights of edges e1, . . . , e4
from the weights of e and e′. For example we could define w(e1) = w(e′),
w(e2) = w(e), and w(e3) = w(e4) = 0, or we could split the weight of e′,
giving part of it to e1 and the rest to e3, and similar for e, e2, and e4. For
the proof below it doesn’t matter which way is used.

Corollary 5. There is no planarizing gadget for the weighted perfect match-
ing problem.

Proof. It suffices to reconsider case (ii) in the proof of Theorem 3. We have
two legal matchings M1,3,M2,4 and two illegal matchings M2,3, M1,4. The
illegal matchings are allowed to exist, but the weight of each illegal matching
has to be strictly larger than the weight of all legal matchings.

Since M2,3 and M1,4 are constructed from M1,3,M2,4 solely by exchang-
ing some edges between the two sets, i.e. M2,3 ∩ M1,4 = M1,3 ∩ M2,4 and
M2,3 △M1,4 = M1,3△M2,4, we have

w(M2,3) + w(M1,4) = w(M1,3) + w(M2,4).

But this contradicts our assumption that the weight of M2,3, M1,4 is strictly
larger than that of M1,3,M2,4.
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3.5 Exact Perfect Matching

Corollary 5 says that no planarizing gadget can preserve the minimum weight
perfect matching. But it might still be possible that a gadget can preserve
some exact weight, which is neither minimum nor maximum. That is, we
ask for the existence of a gadget such that all legal matchings in the gadget
have the same fixed weight, say W0, and all illegal matchings in the gadget
have weights different from W0. Here we take only the edges inside the
gadget into account, i.e. not the connecting edges e1, . . . , e4.

If a graph G is drawn with t crossings, then we will have t copies of the
gadget in G′ and the exact weight of perfect matchings increases by tW0.
However, we show that no such gadget exists as well. In the proof we
construct an illegal perfect matching out of legal ones that has weight tW0

on all the gadgets together, for t ≥ 2. Hence such a gadget would not work
correctly on all graphs.

Theorem 6. There is no planarizing gadget for the weighted exact perfect
matching problem.

Proof. Let G be a graph that is drawn with t ≥ 2 crossings. Then graph G′

contains t gadgets. We pick two of the gadgets in G′. It suffices to reconsider
case (ii) in the proof of Theorem 3 for both gadgets.

• Let M1,3,M2,4 be two legal matchings and e1, . . . , e4 be the connecting
edges in the first gadget, and let M2,3, M1,4 be two illegal matchings
as constructed in the proof of Theorem 3.

• Let M ′

1,3,M
′

2,4,M
′

2,3,M
′

1,4 and e′
1
, . . . , e′

4
denote corresponding match-

ings and connecting edges in the other gadget.

Define
◦

M i,j= Mi,j \ {ei, ej} to be matching Mi,j without the connecting
edges ei, ej . The legal matchings all have weight W0 inside the gadget. For

example w(
◦

M 1,3) = W0. The illegal matchings should have weights different
from W0 inside the gadget.

We have the following equations for the weights of the illegal matchings:

1. w(
◦

M 2,3) = w(
◦

M ′
2,3) and w(

◦

M 1,4) = w(
◦

M ′
1,4),

2. w(
◦

M 2,3) + w(
◦

M 1,4) = w(
◦

M 1,3) + w(
◦

M 2,4) = 2W0.

Define matching M = M2,3 ∪M ′

1,4. Then M covers both gadgets, is illegal,
and M has weight 2W0 inside the two gadgets. Now we can extend M by
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legal matchings of weight W0 each in the other gadgets in G′. This gives
an illegal matching of weight tW0 in all the gadgets together. But for the
reduction to work, all legal matchings should have weight different from all
illegal matchings.

In the proof of Corollary 5 and Theorem 6 we do not need to consider the
weights of the graph outside the gadget. This is because we have only one
gadget that should work for all graphs. But a gadget that allows for illegal
matchings will be wrong on some graphs. The perfect matching problem
can be embedded as a special case of the weighted and the exact perfect
matching problem: define the weights of all edges of a graph with n nodes
to be 1, then every perfect matching has weight n/2. We have shown that
there exists no planarizing gadget irrespective of the edge weights of the
given graph. Thus, together with Corollary 5 and Theorem 6, we get the
following corollary.

Corollary 7. There is no planarizing gadget that reduces the perfect match-
ing problem to the planar weighted perfect matching problem or the planar
weighted exact perfect matching problem.

Similarily the exact perfect matching is a special case of the exact
weighted perfect matching problem.

Corollary 8. There is no planarizing gadget for the exact perfect match-
ing problem. Moreover, there is no planarizing gadget that reduces the exact
perfect matching problem to the planar weighted exact perfect matching prob-
lem.

As a further generalization one could allow the use of several types of
weighted gadgets instead of just one, and choose the gadget used at some
place depending on the weights of the crossing edges it replaces. But this
doesn’t help: if we restrict our attention to graphs where all edges have the
same weight, then we are back to the one-gadget case.

Discussion

This work shows that there is no planarizing gadget for various perfect
matching problems. Although we are not able to prove the non-existence of
a general (say, logspace-) reduction from arbitrary graphs to planar graphs,
we prove that some plausible approach is impossible. This indicates that
perfect matching might be more complex than its planar counterpart.
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