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Abstract

We study the class coNPMV of complements of NPMV functions. Though
defined symmetrically to NPMV this class exhibits very different proper-
ties. We clarify the complexity of coNPMV by showing that it is essen-
tially the same as that of NPMY. Complete functions for coNPMV are
exhibited and central complexity-theoretic properties of this classtade s
ied. We show that computing maximum satisfying assignments can be done
in coNPMV, which leads us to a comparison of NPMV and coNPMV with
Krentel's classes MaxP and MinP. The difference hierarchy for NPMV is
related to the query hierarchy for coNPMV. Finally, we examine a func-
tional analogue of Chang and Kadin's relationship between a collapse of the
Boolean hierarchy over NP and a collapse of the polynomial time hierarchy.

Keywords: computational complexity, multivalued functions, NPMV.



1. Introduction

Consider the complexity class NPMV of partial multivalueddtions that are com-
puted nondeterministically in polynomial time. As thissdacaptures the complex-
ity of computing witnesses of sets in NP, by studying thissJand more generally,
by studying relations among complexity classes of partialtiralued functions,
we directly contribute to understanding the complexity ainputing witnesses. It
is well-known that a partial multivalued functiohbelongs to NPMV if and only
if it is polynomial length-bounded and graph = { (x,y) | yis a value off (x) }
belongs to NP.

Now consider the class coNPMV. We will give a formal definitim the pre-
liminaries section below. It will follow from the definitiotihat a partial multivalued
function f belongs to coNPMV if and only if it is polynomial length-baded and
graph( f) belongs to coNP. Given this symmetry, graphs of functiorsPMV are
in NP while graphs of functions in coNPMV are in coNP, and giwhat we know
about NP and coNP, one might expect that coNPMV has esdgnkialsame com-
plexity as NPMV. Indeed, it is easy to see that coNPMV = NPMu#fifl only if NP
= coNP. However, the point of this paper is to show that in maays coNPMYV is
a more powerful class than is NPMV. One can derive more inddion from com-
puting the complement of a function in NPMV than from compgtthe function.
For one example of this phenomenon, we prove here that coNBMdt included
in FPNPMV unless the polynomial hierarchy collapses. (This is anresite of a
result of Fenneet al. [FHOS97].) Thus, a coNPMV oracle provides more infor-
mation than an NPMV oracle. This is surprising, since fuorctoracles, just as set
oracles, provide knowledge about both their domains arid ¢bedomains.

We will define many-one reductions between multivalued fioms. This will
be a straightforward adaptation of the many-one metric aibility of Krentel
[Kre88]. In Section 3, we will consider many-one completediions for CONPMV.

Consider the partial multivalued functisat, defined so thay is a value of
sat(¢) if and only if y is a satisfying assignment of Boolean formdla The
function satis complete for NPMV. Nevertheless, in Section 4 we will seatt
sat and similar functions belong to coNPMV. Even the seemingbyrempower-
ful FPNP-complete functiomaxsat that gives the maximum satisfying assignment
of a formula, is contained in coNPMV. However, we will seetthaitherNPMV
nor FP'P are contained in coNPMV, and hence coNPMV is not closed umky
ric many-one reductions, unless the polynomial time h@mnaicollapses. Clearly,
these function classes have strange closure propertiésh wie describe below.

As an upper bound on the complexity of coNPMV, we show thatafiyk > 2,

coNPMV C NPMV(2) € NPMV(k) C



NPMV(k+1) € NPMV(n°) € NPMVNP,

where NPM\(K) is thek-th level of the difference hierarchy for NPMV as defined
by Fenneet al. [FHOS97].

On the other hand, even though there is an infinite hierarérgomplexity
classes between coNPMV and NPRR/(the difference hierarchy over NPMV
does not collapse unless the polynomial time hierarchyapséts [FHOS97]), our
results suggest that the complexity of cONPMV is esseptihlt same as the com-
plexity of NPMVNP: We prove in Section 5 that NPMV = 18 o coNPMV (where
TG is the projection function that maps a pair of strings to itstftomponent). It
follows that NPMWP is the closure of coNPMV under metric many-one reduc-
tions.

In Section 6, we show that if the difference hierarchy for NWPbllapses,
then the NPMV oracle hierarchy collapses. This is the fumeti analogue of the
well-known result by Chang and Kadin relating a collapsénefBoolean hierarchy
over NP to a collapse of the polynomial time hierarchy.

Finally, we remark that the phenomenon that universal gfisation seems
to lead to larger function classes was previously obseryedioda. We show in
Section 7 how this observation follows from our results.

2. Preliminaries

We fix Z to be the finite alphabgf0,1}. Let < denote the standard lexicographic
order onX*. Forn> 0 we defineX" = {x € Z* | |[x = n}. By (-,-) we denote a
standard pairing function oBp* x Z*.

We use the standard complexity classes P and NP for (nonuatstic) poly-
nomial time,ZE andAlf = P1 for the levels of the polynomial time hierarchy, and
NP(K) for the levels of the Boolean hierarchy, fop> 1.

Let f be a relation orz* x 2*. We will call f a(partial) multivalued function
from Z* to X*. By f(x) — ywe denote thatx,y) € f and say thaf maps x to yBy
set-f (x) we denote the set of outcomesfobn x, setf(x) = {y| f(x) — y}. The
graph of fis grapi{f) ={(x,y) | f(X) — y}. Thedomain of f dom(f), is the set
of xwhere setf (x) is nonempty. We will say that is undefined axif x ¢ dom(f).
The domain of a clasg of functions is donf# ) = {dom(f) | f € 7 }.

Given partial multivalued function§ andg, defineg to be arefinement of f
if dom(g) = dom(f) and graplg) C graph f). Let # andg be classes of partial
multivalued functions. Purely as a conventionf i§ a partial multivalued function,
we definef €¢ g if g contains arefinement df and we defingge C. g if for every
f € 7, f €c 6. This notation is consistent with our intuition thatC. ¢ should



entail that the complexity of computing values of functiamg is not greater than
the complexity of computing values of functionsgn

A transducerT is a nondeterministic Turing machine with a read-only input
tape, a write-only output tape, read-write work tapes, awpting states in the
usual mannerT computes a valug on an input string if there is an accepting
computation ofT on x for which y is the final content ofl's output tape. (In
this case, we will writeTl (x) — y.) Such transducers compute partial, multivalued
functions. (As transducers do not typically accept all ingttings, when we write
“function,” “partial function” is always intended. If a fuion f is total, it will
always be explicitly noted.)

The following classes of partial functions were first defifmgdBook, Long,
and Selman [BLS84].

e NPMV is the set of all partial, multivalued functions comgditoy nondeter-
ministic polynomial time-bounded transducers;

e NPSV is the set of alf € NPMV that are single-valued,;

e FP is the set of all partial functions computed by deterrtimigolynomial
time-bounded transducers.

A function f belongs to NPMV if and only if it is polynomially length-bodad
and graplif) belongs to NP. In this paper we will adopt the conventiorfediit
from other papers on the subject, that all outputs of a foncfi € NPMV on
input x are of the same length, namefy(|x|) wherep is some polynomial. This
convention is merely for convenience, and can easily be vethim all our results
by using a padding argument.

The domain of every function in NPMV belongs to NP. An examiplsat,
which maps Boolean formulas to their satisfying assignsent

Fenneret al. [FHOS97] define théifference hierarchy ovadPMV as follows.
Let 7 be a class of partial multivalued functions. A partial muatued functionf
is in cor if there existg € # and a polynomiap such that for every,

setf(x) = =P — setg(x).

Let # and g be two classes of partial multivalued functions. A partialltinal-
ued functionh is in ¥ A G, respectivelyr Vv g, if there exist partial multivalued
functionsf € ¥ andg € g such that for every,

seth(x) = setf(x) Nsetgy(x), respectively
seth(x) = setf(x)Usetg(x).



Let # — g denoteFr Acog. Then, NPMV(K) is the class of partial multivalued
functions defined in the following way:

NPMV(1) = NPMV, and, fork > 2,
NPMV(k) = NPMV—NPMV(k—1).

Fenneret al. prove that for everk > 1, f € NPMV(k) if and only if f is polyno-
mially length-bounded and graph) € NP(K).

In particular, we are interested in the class coNPMV. Itdat that a func-
tion f belongs to coNPMYV if and only if it is polynomially length-bnded and
graph f) belongs to coNP. Observe that the classes NPMV and coNPM&fysat
the nice symmetry that graphs of functions in the formersciae in NP and those
in the latter class are in cONP.

Just as the definition of the Boolean hierarchy over NP leadthé class
NP(n°) (see [Wag90]), we now introduce the class NPM¥D). It can be
shown that a functiom belongs to NPMVK) if and only if there is a 2-ary func-
tion f € NPMV such that

seth(x) = setf (x,k) — (setf (x,k—1)
—(set-f(x,k—2)
(- —setf(x 1)--)).

We say thah € NPMV(n®W) if and only if there is a functiorf € NPMV and a
polynomial p such that

seth(x) = set-f (x, p(|x|))
—(set-f (x, p(x|) — 1)
—(setf (x, p(jx|) — 2)
_(. .. —setf ()(7 1) .. )))
The above mentioned result by Fenmgral. can be extended to show thhte
NPMV(n®W) if and only if f is polynomially length-bounded and gragh
NP(nOW).

The primary new contribution of Fennetal. is the development of hierarchies
of classes of functions that access classes of partialibimgctas oracles. This
development is based on the following description of ordclieng machines with
oracles that compute partial functions. Assume first thatdfacle is a single-
valued partial functiorg. Let L be a symbol not belonging to the finite alphabet
>. In order for a machin& to access a partial function oracM,has a write-only
input oracle tape, a separate read-only output oracle gaquea special oracle call
stateq. To queryg on a stringx, M enters statg with x on the oracle input tape in
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the usual fashion. The oracle then returns the vg(ue on the oracle output tape
if the value exists, and writes on the tape otherwise. (It is possible thatmay
read only a portion of the oracle's output if the oracle'pouis too long to read
with the resources d¥l.) We shall assume, without loss of generality, thatever
makes the same oracle query more than once on any possibjritagion path.

If gis a single-valued partial function amd is a deterministic oracle trans-
ducer as just described, then weNéfg] denote the single-valued partial function
computed by with oracleg.

2.1 Definition. [FHOS97] Let f and g be multivalued partial functionsisfTur-
ing reducible tayin polynomial time f <Fg, if for some deterministic polynomial-
time oracle transducer M, for every single-valued refinengerof g, M[d] is a
single-valued refinement of f.

Fenneret al. prove thatg-'? is a reflexive and transitive relation over the class
of all partial multivalued functions.

Let ¥ be a class of partial multivalued functions. Fienotes the class of
partial multivalued functiond that are<P-reducible to somg € 7. FP* K (re-
spectively, FP[°9) denotes the class of partial multivalued functidn¢hat are
<P-reducible to some € 7 via a machine that, on inpw, makesk adaptive
queries (respectively) (log|x|) adaptive queries) to its oracle.

This definition template defines classes of multivaluedadtinctions such as
FPYPMV "and can easily be extended to define NPV, If x is a class of sets,
then FP* is defined as usual, except that we allow it to compute pdrtiadtions
(at the discretion of the oracle machine).

We will use the following generalization of the many-one ricateducibility of
Krentel [Kre88] in order to discuss complete functions flasses of multivalued
functions.

2.2 Definition. Given partial multivalued functions, § : 2* — Z*, we say fis
metric many-one reducible tg, or symbolically, &} g, if there are functions
t1,t, € FPsuch that the multivalued partial function h defined by

h(x) =t2(x, (got1)(x))
is a refinement of f, whegeth(x) is defined as
{2y [9(t(¥) =y}

If, in addition, we haveseth(x) = set f(x) for all x, we call it astrong metric
many-one reductigrdenoted by &£ g.



The motivation underlying this definition is that, given dueofg(x), one can
compute in polynomial time a value é{x). In the case of a strong reduction, one
gets all values off (x) when varying over all values af(x). Obviously, f <F.g
implies f <Fg.

The classes that we have been considering relate in irteyasays to studies
of the complexity of optimization problems. In order to aaetthe complexity of
optimization problems, Krentel [Kre88] defined the comfileklasses MaxP and
MinP as the functions computable by taking the maximum,getigely minimum,
over sets of feasible solutions of problems in NP. Furtheenitel extended these
classes to hierarchies of classes of optimization funstjiine92]. Krentel defined
these functions using the notion ofreetric Turing machinewhich we now review.
Consider nondeterministic polynomial time Turing machitieat print an output
value on every path. We associate with every inner node ofdhgputation tree
either the function min or the function max (for the classes®™and MaxP, all
nodes are associated with the same function). Thus, metringfmachines define
(total) functions from input words to integers via the usbattom-up evaluation
of the machine's computation tree. Since all the functiassgs considered in this
paper are partial, we extend the metric Turing machine jeéhed by allowing
the machine to output a special symhothat denotes that the computation on the
corresponding path ends with an undefined result. We extamadnin and max
functions in the obvious way: define maxl) = maxL,x) = xand minx, L) =
min(_L,X) = x, for all x (including L itself). Volimer and Wagner [VW93, VW95]
gave a detailed structural examination of Krentel's hamar Here, we just define
the class MaxP using an operator-characterization from98WMinP is defined
analogously.

he MaxP —
If, ge FP: h(x) = MaX<y<g(x) f(xy).

3. Functions Complete for coNPMV

NPMYV is precisely the class of functions that compute wisessfor NP sets in the
following sense: For any sét e NP there exist a sé& € P and a polynomiap
such that for alk, we have

xe L« yesP:(xy) eA

Any y such thatx,y) € Ais called awitness for Xwith respect t&h). Clearly, there
is a functionfa € NPMV such that set-(x) is exactly the set of witnesses fer
On the other hand, any NPMV functidndefines a set in NP, namely dof). As

a consequence of this discussion, we see that N&vV) = NP.
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Next, we extend the notion of a witness¥§. For anyz) setL there exist
a setB € coNP and a polynomigp such that for allx, we havex € L < 3y €
>P(X): (x,y) € B. Ay such thai(x,y) € B is called awitness for Xwith respect to
B). What function class captures the computation of witnemlezg sets? Since
55 = NPYP, certainly witnesses can be computed in NPNVHowever, we will
see below that the seemingly weaker class coNPMV alreadigessito do so.

Let us consider sdt again. We may safely assume that for @ly) € B we
havey € 3P(X). SinceB e coNP, it is then the graph of a coNPMV functidn
so that setf(x) is exactly the set of witnesses far Hence, coNPMV can com-
pute witnesses for sets Ef Conversely, for any coNPMV functiof, we have
dom(f) € 55. This is because, for anyx € dom(f) <= Jy € ZP(K):y € set-f (x).
Thus, coNPMV ispreciselythe class of functions that computes Witnesseiﬁar
sets. As a consequence, we have the following proposition.

3.1 Proposition. dom(coNPMV) = 55.

Witnesses oig—complete sets can give rise to complete functions for coNPM
Consider, for example, the satisfiability problem QBé&r Boolean formulas with
two quantifiers. Leth be a Boolean formula in the variablgs= (xs,...,X) and
y = (Y1,..-,¥). Then we define

¢(x,y) € QBF, <= IxVy:9(x,y) = 1.

Let F, be the multivalued function that computes witnesses, partial assign-
mentsx = (Xy, ..., X), for QBF, formulas¢ as above.

3.2 Theorem. F; is <F -complete focoNPMV.

Proof. We have argued already thgt € cONPMV. Letf be any coNPMV func-
tion. There is an NP transduckt and a polynomiap such that for alk, we have
set-f (x) = ZP(M) — setM (x). We show how to computeyee set-f (x) from Fo(dy),
for an appropriately constructed formuia

Define a machin®&!’ on inputx as follows. FirstM’ guesses ge =P(X). Then,
M’ simulatesM on inputx. If M outputsy on the simulated path, thev'’ rejects.
Otherwise M’ accepts.

We have to define the reduction functidpgandt, as required in Definition 2.2.
Functiont; is the Cook-Levin reductidnapplied tox with M’ as the underlying
machine. This will give a Boolean formutdg, that, intuitively, describes the work
of M’ on inputx. The variables oy can be partitioned into two parts:

e sayyi,...,Yk that are used to describe th\t guesses ge >P(X), and

1This is the well-known reduction which transforms the comagion of an NP machine to a
Boolean formula which is satisfiable iff the machine accesge, e.g., [Coo71].
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e sayz,...,Zz, that are used to describe the subsequent simulatith of

Furthermore, from any setting of the variabigs. .., yk of ¢, we can reconstruct
in polynomial time they € P(X) guessed by’. This is done by functioty.

Let us fix a setting of the variableg, ...,y and lety € ZP(X) pe the corre-
sponding string guessed by. Then we have

Vzy,...,7 : dx(Y1,-.-, Yk Z,y-.-,2) =1
<= M’ accepts on all paths following

— y¢setM(x)

— f(X) Y,
and hence, sdb{x, F; ot1(x)) = set-f(x), wheret;(x) = ¢x. O

A crucial point in the above proof is that the Cook-Levin retilon maintains
witnesses. That is, from a given assignment for the cortswuiormulagy one
can recover a corresponding path of the nondeterministchina. Thus anig—
complete set sharing this property with QBffefines a coNPMV-complete func-
tion in an analogous way.

As an example, consider the following 4t For any NPMV functionf and
any even-valued polynomig such thatf maps strings of length to strings of
lengthp(n), x € L if and only if

ayE Zp(|x‘)/2 Yz e Zp(|x‘)/2 : f(X) ,7L> yz

In other words, string is not a prefix of an output of (x).

Clearly, for everyf € NPMV, we have thal; is in 2. Thus, in particu-
lar, taking f = sat Lgg is Zg—complete and has the above mentioned property.
We conclude that the corresponding witness functimt;pre-saf is complete for
coNPMV, where

not-pre-safd) — y <—-
yis a truth assignment of the first half
of ¢'s variables that is not a prefix
of a satisfying assignment ¢f

3.3 Theorem. not-pre-sat is<f,-complete for the classoNPMV.

Not-pre-satis a trivial transformation of,, so Theorem 3.3 can be seen di-
rectly via a straightforward metric reduction frdep.
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4. Properties of cONPMV

NPMV is closed undek?f rreductions, but not undex?-reductions; in fact, it

is possible to havg € NPMV and f<Fg but graplif) be noncomputable. (For
example, defind to mapx to two values, the first of which is either 0 or 1 and
solves the halting problem onand the second of which is the constant 10. Then
clearly graplff) is not computable, but the constant function 10 is a refinemmien

f in NPMV.) However, NPMVis closed under this reduction in a weaker sense,
defined below.

4.1 Definition. A class# is c-closedunder reducibility<;, if ge # andf <; g
implies f €¢ 7.

It is immediate from this definition that NPMV is c-closed enetF-reductions.
One might suspect that this same fact holds for coNPMV. Hewet is quite
unlikely that coNPMYV is c-closed under this reducibilitytherwise, sincesat €
coONPMYV andsatis complete for NPMV, we would get that NPM¥. cONPMV.
But this seems to be very unlikely as the following extengiba result of Fenner
et al. [FHOS97] shows.

4.2 Theorem. NPMV C coNPMV <
NPMV C.coNPMV <— NP =coNP.

Proof. We cycle through the implications. The first implicationrisial. For the
second, let. € NP. Define function

() = 1 ifxel
XL =1 1 otherwise.

Then we haveq, € NPMV, and hence, by assumptiog, € coONPMV. There-
fore, graplix.) € coNP, which implies that € coNP sincex € L <= (x,1) €
graph(x.).

Now suppose that NP = coNP and e NPMV. Then graphf) € NP, and
therefore in coNP by assumption. Thiis cONPMV. O

4.3 Corollary. coNPMV is c-closed under P -reducibility if and only ifNP =
coNP.

We observe that the proof of Theorem 4.2 shows also that NESYNPMV
<= NP = coNP, even though it is fairly easy to see that NiP,Ske class of all
total NPSV functionsjs contained in coNPMV. We also note that Theorem 4.2
extends to higher levels of the difference hierarchies diRMV and NP, that is,
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NPMV (k) C coNPMV(k) <= NPMV (k) C. coNPMV(k) <= NP(k) = coNR(K).
By a result of Kadin [Kad88], a collapse of the Boolean hielngrimplies a col-
lapse of the polynomial time hierarchy. Hence, there idyike be a whole hierar-
chy between coNPMV and NPMV.

4.4 Theorem. For all k > 2, we have
coNPMV C NPMV(2) € NPMV(k) C
NPMV(k+ 1) € NPMV(n°)) € NPMVNP,

Furthermore, all of the inclusions are strict unless theymalimial time hierarchy
collapses.

Proof. It remains to show the last inclusion. Léte NPMV(n®Y). Then the
graph off is in NP(n°Y)), which is known to be equal taMB°d [Wag90]. Obvi-
ously, f can be computed by an NPMV algorithm with access t'a9 oracle:
simply guess an output dfand, querying its graph, check that the guess is correct.

Thus, NPMV(n®®)) € NPMVP ™ ¢ NPMVNP, 0

Under the likely assumption that NP coNP, we see, by Theorem 4.2, that
the class NPMV is not included in coNPMV, even though the fiamcsat, which
is complete for NPMV, belongs to coNPMV. This phenomenonpleais again for
maxsat the function that maps a Boolean formula to its lexicogiegily largest
satisfying assignment. Fennetral. [FHOS97] show thatmaxsatc NPMV(2). In
fact, it is even in coNPMV. However, we will show that the @sponding classes,
namely MaxP or FI¥, are included in coNPMV if and only if N coNP.

4.5 Theorem. maxsate coNPMV.

Proof. Consider an NPMV machin® that, on input of a formulap, guesses
an assignmeny for ¢. If y does not satisfyp, thenM accepts and outputg
Otherwise, ify does satisfyp, M guesses another assignmeght-y. If y also
satisfiesh, M outputsy, otherwiseM rejects (outputting nothing).

M outputs every assignment except the maximum satisfying(ibrikere is
one). Hencenaxsatc CONPMV. i

Krentel [Kre92] showed that B8 = FP"2&FY | Since FPPMY = FPVP [FHOS97]
and maxsatis complete for MaxP, we have that ¥ C FpONPMVIL] | That s,
polynomially many queries of a FP function to NPMV can be aepd by one
guery to coNPMV. Hence, as we have mentioned, coNPMV seerhe tbmore
powerful class than NPMV. We will give more evidence for tinishe next section.

4.6 Corollary. MaxPC coNPMV <= MinP C coNPMV <= NP = coNP.
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Proof. If MaxP C coNPMV, then NPMVC. MaxP C coNPMV, and therefore
NPMV C. coNPMV. But by Theorem 4.2, this implies NP = coNP. Convsgsel
if NP = coNP, then NPMVYP = NPMVNPONP — NPMV. This implies MaxPC
NPMV, and since the hypothesis also implies NPMV = coNPM¥t thlaxPC
coNPMV. O

We conclude this section with an observation regarding detionship be-
tween MaxP and NPMV. First, note that trivially NP$VYMaxPNMinP, sincethe
output of an NPSV function is both the minimum and the maximu@imilarly,
NPMV C. MaxPNMinP. The more interesting question is whether these inclu-
sions are strict. This is quite likely.

4.7 Theorem. MaxPC NPMV <= MinP C NPMV <= NP = coNP.

Proof. If NP =coNP, then FB” C NPMV [Sel94], thus especially MaxPMinP C
NPMV.
Now suppose MaxE NPMYV (the case for MinP is analogous). et coNP.

Define
F(x) = 0 ifxel
1 1 otherwise

Then f € MaxP and hence, by assumption, in NPMV. Sixce L if and only if
f(x) =0, we haveL € NP. O

The last two results relativize: analogous results holchfgher levels of the
NPMV hierarchy and Krentel's min/max hierarchy [FHOS97, 98} For the
relativized version of Theorem 4.7 one has to use technifjogsKrentel [Kre92]
and Vollmer and Wagner [VW95].

5. A Characterization of coNPMV

As we have already seen in the preceding section, cONPMV séeine a more
powerful class than NPMV. This is somewhat surprising imtigf the aforemen-
tioned symmetry in the definitions of coNPMV and NPMV by thgiaphs.

The following theorem shows that coNPMV is in fact very cloas&PMVNP,
This is surprising as well, as we have already seen in Thedrdrthat there is a
hierarchy of function classes between coNPMV and NP1V

If fis a multivalued function and is a single-valued function, thego f is
defined by grapfgo f) = {(x,g(y)) | f(x) — y}. LetTs denote the projection
function that maps a pair of strings to its first component. T8y coNPMV we
denote{ 5o f | f € cONPMV}.

5.1 Theorem. NPMVNP = 18 0 cONPMV.
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Proof. The right to left containment follows from Theorem 4.4 and fact that
the projection of any NPMY function is still in NPM\NP, hencerg o coNPMV C
NPMVNP,

For the other direction, let € NPMVNP. By a standard argument, gragh €
Z’z’, and thus there is a polynomigland a predicat® € coNP such that for any
andy € sa(lx)

f(X)—»y
3z e s9M:R(x,y,2).

Define f’ such that for any and anyy, z € z4(M)
f'(X) = (¥.2 < R(xY,2).

SoR witnesses thaf’ € coNPMV. But f(x) = 15 o f/(x), which shows that
f € T§ o CONPMV. O

The reason why it is likely that coNPMV is a proper subclassBMVNP is
not because outputs of coNPMV functions give too little miation, but rather
that they give too much. We can compute an arbitrary NEPfunction simply
by throwing away part of the output of a coNPMV function. Tigswhat the
projection operator accomplishes, and it is most likelyessary.

Applying Theorem 5.1, many properties of NPMR/nhow carry over to coNPMV,
In Section 3 we have shown functiofs and not-pre-satcomplete for coONPMV.
Since the projection function is in FP, we get that thosetions are complete for
NPMVNP as well.

5.2 Corollary. NPMVNP is the c-closure 0EoNPMV under <P -reducibility and
the closure otoNPMV under <E -reducibility.

In particular, we get

5.3 gNgroIIary. FPEONPMVIK — EpNPMVYIK for g k > 1, andFPEONPMY — ppNPMVIY
FPYPT.

Observe by contrast that KPYY = FPNP = ppMInP — ppMaxP 59 coNPMV and
NPMYV define differentA-levels of the functional polynomial hierarchy.

Fenneret al. [FHOS97] have shown that NPM®) C FPNPMY «— 58 — AD.
Note that in contrast for the corresponding language ctassehave NFk) C PP
for all k. We can now improve the result of Fenredral.

5.4 Corollary. coNPMV C FPYPMY «—y 55 = AS.
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Proof. If £ = A9, then

CONPMV C FPFONPMV _ ppNPMVY _ ppe)
= FPY = FPYP = FpVPWV

where the last equality is Theorem 1 in [FHOS97] and the stéaliows from the
relativized version of the same theorem. Conversely, ifRbIV C FPYPMV | then
dom(coNPMV) C PNP = A, so thats) C AY. O

5.5 Corollary. For any k> 1, we have
NPMVNP g Fp.‘,ONPMV[l] g FF}:ONPMV[k] g
FPEONPMVIk+1] — EpeoNPMV _ FPNPNF’_

Furthermore, all inclusions are strict unless the polynalttime hierarchy col-
lapses.

Proof. It remains to show the strictness of the inclusions. Supp&s&¥"MIL
NPMVNP. This is equivalent to PFPMY“I ¢ NPMVNP by Corollary 5.3, which
implies P2 C 5. But thenM} = =5 = PH. For the other inclusions, suppose
FPEONPMVIK _ pproNPMVIK+L] - Thepn ppIPMVPIN — ppNPMVYPIkD] - By 4 theorem
of Fenneret al. [FHOS97], this implies that FRK = FP2+1 | which, by a rela-
tivization of Kadin's theorem [Kad88], implies that the ywbmial hierarchy col-

lapses.
O

Thus we see, combining Theorem 4.4 and Corollary 5.5, thatladses of
the difference hierarchy over NPMV are included in the quieigrarchy over
coNPMV, in fact already iniits first level. There are (undexsenable assumptions)
no inclusions in the opposite direction. Concerning thati@hship between the
guery hierarchy over NPMV and the difference hierarchy dveiMV, we know
from Fenneret al. [FHOS97] that all classes of the first hierarchy are included
in certain classes of the second hierarchy. Any inclusiothénopposite direction
implies coNPMVC FPYPMV "which again implies a collapse of the polynomial
hierarchy, by Corollary 5.4.

6. Relationships Between the Functional Difference and Polynomial
Time Hierarchies

Chang and Kadin [CK90] showed that if the Boolean hierarchgr NP collapses
to the K" level, then the polynomial hierarchy collapses to Kielevel of the
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Boolean hierarchy over N¥¥: if NP(k+ 1) = NP(k), then PH= NP"P(k). It is
a simple consequence of known results that a similar commmeeiists forpthe
corresponding functional hierarchies, namely NPMMandZMVy = NPMVZ«1,

6.1 Theorem. For any k> 1, if NPMV/(k+ 1) = NPMV (k) thenEMV 3 = NPMVNP (k).

Proof. NPMV(k+ 1) = NPMV(K) is equivalent to NFk+ 1) = NP(k) [FHOS97],
which implieszf = NPNP(k) [CK90] (relativized). By considering the graphs of
functions [FHOS97], we immediately get tHEtIV 3 = NPMVNP(K). O

Since NPP(k) € PNP"I | a consequence of Chang and Kadin's theorem is
that if NP(k+ 1) = NP(k), then=? = PN""IKl (indeed, they prove this directly in
their paper before treating the stronger result). The fanat analogue of such
a collapse would bEMV 3 = FPNPMY' I or equivalently,SMV 3 = FFEONPMVIK,

We cannot expect this as a direct consequence of Theorewsiricé,the difference

and query hierarchies are not intertwined in this contexéveitheless, such an
analogous result does hold. To see this, we have to modifgrthef of the Chang

and Kadin theorem.

6.2 Theorem. If NPMV/(k+1) = NPMV (k) thenZMV 3 = NPMV o FPFONPMVIk-1]

Proof. (Sketch.) In order to explain how Chang and Kadin's prooégihis result,
we recall some of their definitions, with some minor modifimas in notation (for
greater detail, we refer the reader to their paper [CK90Pn@e the<f-complete
language for NEk) (respectively coNEX)) asLypk) (respectivelyleonpi))- For
example,Lnp1) = SAT andLypz) = { (X1, X2) | X1 € SAT andx, € SAT}. Since,
by hypothesis, Nik) = coNRK), it follows thatLyp) <h Leonmk)- The basic idea
underlying the Chang and Kadin proof is that such a redudtidaces a reduction
from an initial segment of SAT to an initial segment®AT. This is done induc-
tively via the notion of a “hard sequence,” which ig-uple that, together with
a <krreduction from NFK) to coNRK), can be used to find gf-reduction from
NP(k— j) to coNRk— j).

6.3 Definition. LetLyp) <h LconRk) Via some polynomial time functiom Then
we call (1™, x4,...,X;) ahard sequencwith respect td for lengthm of order j, if
either j = 0 or the following conditions hold:

1. 1< j<k-1,
2. |Xj| <m,

3. Xj € SAT,
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4. (1™ xq,...,Xj_1) is a hard sequence with respechi@nd

5. forallys,...,y, € 2* wherel = k—_j, and for all 1<i </,
T[g+10h((yl,...7y[,Xj,...7X1>) € SAT.

Vil <m,

A hard sequence is calledaximalif it cannot be extended to a hard sequence
of a higher order. In this case the order of the sequgrissaid to be maximal.

We can now outline the proof. Chang and Kadin's Lemma 3 [CK3&fes
that, given a maximal hard sequence for an appropriate rjpaiyally bounded)
length, an NP machine can recognize an initial segment afaghenical complete
language for NPP. That is, with the aid of such a sequence we can replat® a
machine with an NP machine. Thus it suffices to find a maximal baquence to
collapse the NP's of aMV 3 = NPMVZ: machine.

Our principle observation is thigdard sequences of any given order can be
obtained by a single query toaNPMV oracle This can easily be seen as follows.
Define the functiorH:1" x N — Z* such thatH (1™, j) — (1M, xq,...,X;) if and
only if (1M xy,...,X;) is a hard sequence for lengtmof order j. It follows from
Definition 6.3 that the set of hard sequences is in coNP [CK88jce, grapfH )
coNP, so thaH € coNPMV. Therefore, we can obtain a maximal hard sequence
for the appropriate polynomial length = p(|x|) by querying a coNPMV oracle
for a value ofH (1™, j) for j varying from 1 tok — 1. We then feed the resulting
maximal hard sequence, along with the original infgub an NPMV machine that
can, via the induced reduction from coNP to NP, collapse tReokacles in an
NPMVNPY computation. O

7. A Remark on Counting Classes

The results of our paper show that in the context of relatistractures computed
by polynomial time machines, in a sense the universal moo®re powerful than
the existential one. In the context of counting classesindlasi phenomenon has
been observed by Seinosuke Toda [Tod91]. In this sectiorhriedly show that
Toda's result is a special case of one of our observations.

Recall the following general definition of counting claskesn [Tod91, VW93]:

Let K be a class of sets. The#t; ¥ consists of those functionk for which
there exist a seh € x and a polynomiap such that for alk,

f0) = H{y 1yl < p(x]) A {xy) € A}|.

It is obvious that¢#- P = #P. Moreover it can be shown th@atNP = spanP, where
spanP is the class of functions which count the number oindisbutputs of a
nondeterministic polynomial time transducer.
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We have the following relationship to our classes of fundio

7.1 Proposition.

1. #-NP consists of exactly those functions h for which there exidtsction
f € NPMV such that for all x, (ix) = |set f(x)|.

2. #-coNPconsists of exactly those functions h for which there eaifisiction
f € coNPMV such that for all x, x) = |set f (x)].

Now we have the following surprising result, which was altg@roved by
Toda [Tod91, Theorem 4.1.6]:

7.2 Corollary. #-coNP=#P",

Proof. Immediate by the preceding proposition and the fact thatRddM is the
class of functions that compute witnessesﬁ@rcomputations. See the discussion
before Proposition 3.1. O
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