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Abstract

We study the class coNPMV of complements of NPMV functions. Though
defined symmetrically to NPMV this class exhibits very different proper-
ties. We clarify the complexity of coNPMV by showing that it is essen-
tially the same as that of NPMVNP. Complete functions for coNPMV are
exhibited and central complexity-theoretic properties of this class are stud-
ied. We show that computing maximum satisfying assignments can be done
in coNPMV, which leads us to a comparison of NPMV and coNPMV with
Krentel's classes MaxP and MinP. The difference hierarchy for NPMV is
related to the query hierarchy for coNPMV. Finally, we examine a func-
tional analogue of Chang and Kadin's relationship between a collapse of the
Boolean hierarchy over NP and a collapse of the polynomial time hierarchy.

Keywords: computational complexity, multivalued functions, NPMV.
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1. Introduction

Consider the complexity class NPMV of partial multivalued functions that are com-
puted nondeterministically in polynomial time. As this class captures the complex-
ity of computing witnesses of sets in NP, by studying this class, and more generally,
by studying relations among complexity classes of partial multivalued functions,
we directly contribute to understanding the complexity of computing witnesses. It
is well-known that a partial multivalued functionf belongs to NPMV if and only
if it is polynomial length-bounded and graph( f ) = fhx;yi j y is a value off (x)g
belongs to NP.

Now consider the class coNPMV. We will give a formal definition in the pre-
liminaries section below. It will follow from the definitionthat a partial multivalued
function f belongs to coNPMV if and only if it is polynomial length-bounded and
graph( f ) belongs to coNP. Given this symmetry, graphs of functions inNPMV are
in NP while graphs of functions in coNPMV are in coNP, and given what we know
about NP and coNP, one might expect that coNPMV has essentially the same com-
plexity as NPMV. Indeed, it is easy to see that coNPMV = NPMV ifand only if NP
= coNP. However, the point of this paper is to show that in manyways coNPMV is
a more powerful class than is NPMV. One can derive more information from com-
puting the complement of a function in NPMV than from computing the function.
For one example of this phenomenon, we prove here that coNPMVis not included
in FPNPMV unless the polynomial hierarchy collapses. (This is an extension of a
result of Fenneret al. [FHOS97].) Thus, a coNPMV oracle provides more infor-
mation than an NPMV oracle. This is surprising, since function oracles, just as set
oracles, provide knowledge about both their domains and their co-domains.

We will define many-one reductions between multivalued functions. This will
be a straightforward adaptation of the many-one metric reducibility of Krentel
[Kre88]. In Section 3, we will consider many-one complete functions for coNPMV.

Consider the partial multivalued functionsat, defined so thaty is a value of
sat(ϕ) if and only if y is a satisfying assignment of Boolean formulaϕ. The
function sat is complete for NPMV. Nevertheless, in Section 4 we will see that
sat and similar functions belong to coNPMV. Even the seemingly more power-
ful FPNP-complete functionmaxsat, that gives the maximum satisfying assignment
of a formula, is contained in coNPMV. However, we will see that neitherNPMV
nor FPNP are contained in coNPMV, and hence coNPMV is not closed undermet-
ric many-one reductions, unless the polynomial time hierarchy collapses. Clearly,
these function classes have strange closure properties, which we describe below.

As an upper bound on the complexity of coNPMV, we show that, for anyk� 2,

coNPMV� NPMV(2)� NPMV(k)�
4



NPMV(k+1)� NPMV(nO(1))� NPMVNP;
where NPMV(k) is thek-th level of the difference hierarchy for NPMV as defined
by Fenneret al. [FHOS97].

On the other hand, even though there is an infinite hierarchy of complexity
classes between coNPMV and NPMVNP (the difference hierarchy over NPMV
does not collapse unless the polynomial time hierarchy collapses [FHOS97]), our
results suggest that the complexity of coNPMV is essentially the same as the com-
plexity of NPMVNP: We prove in Section 5 that NPMVNP= π1

2�coNPMV (where
π1

2 is the projection function that maps a pair of strings to its first component). It
follows that NPMVNP is the closure of coNPMV under metric many-one reduc-
tions.

In Section 6, we show that if the difference hierarchy for NPMV collapses,
then the NPMV oracle hierarchy collapses. This is the functional analogue of the
well-known result by Chang and Kadin relating a collapse of the Boolean hierarchy
over NP to a collapse of the polynomial time hierarchy.

Finally, we remark that the phenomenon that universal quantification seems
to lead to larger function classes was previously observed by Toda. We show in
Section 7 how this observation follows from our results.

2. Preliminaries

We fix Σ to be the finite alphabetf0;1g. Let < denote the standard lexicographic
order onΣ�. For n� 0 we defineΣn = fx 2 Σ� j jxj = ng. By h�; �i we denote a
standard pairing function onΣ��Σ�.

We use the standard complexity classes P and NP for (nondeterministic) poly-
nomial time,Σp

k and∆p
k =PΣp

k�1 for the levels of the polynomial time hierarchy, and
NP(k) for the levels of the Boolean hierarchy, fork� 1.

Let f be a relation onΣ��Σ�. We will call f a (partial) multivalued function
from Σ� to Σ�. By f (x) 7! y we denote that(x;y) 2 f and say thatf maps x to y. By
set-f (x) we denote the set of outcomes off on x, set-f (x) = fy j f (x) 7! yg. The
graph of f is graph( f ) = fhx;yi j f (x) 7! yg. Thedomain of f, dom( f ), is the set
of x where set-f (x) is nonempty. We will say thatf is undefined atx if x 62 dom( f ).
The domain of a classF of functions is dom(F ) = fdom( f ) j f 2 F g.

Given partial multivalued functionsf andg, defineg to be arefinement of f
if dom(g) = dom( f ) and graph(g) � graph( f ). Let F andG be classes of partial
multivalued functions. Purely as a convention, iff is a partial multivalued function,
we definef 2c G if G contains a refinement off , and we defineF �cG if for every
f 2 F , f 2c G . This notation is consistent with our intuition thatF �c G should
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entail that the complexity of computing values of functionsin F is not greater than
the complexity of computing values of functions inG .

A transducerT is a nondeterministic Turing machine with a read-only input
tape, a write-only output tape, read-write work tapes, and accepting states in the
usual manner.T computes a valuey on an input stringx if there is an accepting
computation ofT on x for which y is the final content ofT 's output tape. (In
this case, we will writeT(x) 7! y.) Such transducers compute partial, multivalued
functions. (As transducers do not typically accept all input strings, when we write
“function,” “partial function” is always intended. If a function f is total, it will
always be explicitly noted.)

The following classes of partial functions were first definedby Book, Long,
and Selman [BLS84].� NPMV is the set of all partial, multivalued functions computed by nondeter-

ministic polynomial time-bounded transducers;� NPSV is the set of allf 2 NPMV that are single-valued;� FP is the set of all partial functions computed by deterministic polynomial
time-bounded transducers.

A function f belongs to NPMV if and only if it is polynomially length-bounded
and graph( f ) belongs to NP. In this paper we will adopt the convention, different
from other papers on the subject, that all outputs of a function f 2 NPMV on
input x are of the same length, namely,p(jxj) wherep is some polynomial. This
convention is merely for convenience, and can easily be removed in all our results
by using a padding argument.

The domain of every function in NPMV belongs to NP. An exampleis sat,
which maps Boolean formulas to their satisfying assignments.

Fenneret al. [FHOS97] define thedifference hierarchy overNPMV as follows.
Let F be a class of partial multivalued functions. A partial multivalued functionf
is in coF if there existg2 F and a polynomialp such that for everyx,

set-f (x) = Σp(jxj)�set-g(x):
Let F andG be two classes of partial multivalued functions. A partial multival-
ued functionh is in F ^G , respectivelyF _G , if there exist partial multivalued
functions f 2 F andg2 G such that for everyx,

set-h(x) = set-f (x)\set-g(x); respectively

set-h(x) = set-f (x)[set-g(x):
6



Let F �G denoteF ^ coG . Then, NPMV(k) is the class of partial multivalued
functions defined in the following way:

NPMV(1) = NPMV; and, fork� 2,

NPMV(k) = NPMV�NPMV(k�1):
Fenneret al. prove that for everyk� 1, f 2 NPMV(k) if and only if f is polyno-
mially length-bounded and graph( f ) 2NP(k).

In particular, we are interested in the class coNPMV. It follows that a func-
tion f belongs to coNPMV if and only if it is polynomially length-bounded and
graph( f ) belongs to coNP. Observe that the classes NPMV and coNPMV satisfy
the nice symmetry that graphs of functions in the former class are in NP and those
in the latter class are in coNP.

Just as the definition of the Boolean hierarchy over NP leads to the class
NP(nO(1)) (see [Wag90]), we now introduce the class NPMV(nO(1)). It can be
shown that a functionh belongs to NPMV(k) if and only if there is a 2-ary func-
tion f 2 NPMV such that

set-h(x) = set-f (x;k)� (set-f (x;k�1)�(set-f (x;k�2)�(� � ��set-f (x;1) � � �))):
We say thath2 NPMV(nO(1)) if and only if there is a functionf 2 NPMV and a
polynomialp such that

set-h(x) = set-f (x; p(jxj))�(set-f (x; p(jxj)�1)�(set-f (x; p(jxj)�2)�(� � ��set-f (x;1) � � �))):
The above mentioned result by Fenneret al. can be extended to show thatf 2
NPMV(nO(1)) if and only if f is polynomially length-bounded and graph( f ) 2
NP(nO(1)).

The primary new contribution of Fenneret al. is the development of hierarchies
of classes of functions that access classes of partial functions as oracles. This
development is based on the following description of oracleTuring machines with
oracles that compute partial functions. Assume first that the oracle is a single-
valued partial functiong. Let? be a symbol not belonging to the finite alphabet
Σ. In order for a machineM to access a partial function oracle,M has a write-only
input oracle tape, a separate read-only output oracle tape,and a special oracle call
stateq. To queryg on a stringx, M enters stateq with x on the oracle input tape in
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the usual fashion. The oracle then returns the valueg(x) on the oracle output tape
if the value exists, and writes? on the tape otherwise. (It is possible thatM may
read only a portion of the oracle's output if the oracle's output is too long to read
with the resources ofM.) We shall assume, without loss of generality, thatM never
makes the same oracle query more than once on any possible computation path.

If g is a single-valued partial function andM is a deterministic oracle trans-
ducer as just described, then we letM[g] denote the single-valued partial function
computed byM with oracleg.

2.1 Definition. [FHOS97] Let f and g be multivalued partial functions. fis Tur-
ing reducible tog in polynomial time, f �P

T g, if for some deterministic polynomial-
time oracle transducer M, for every single-valued refinement g0 of g, M[g0] is a
single-valued refinement of f .

Fenneret al. prove that�P
T is a reflexive and transitive relation over the class

of all partial multivalued functions.
Let F be a class of partial multivalued functions. FPF denotes the class of

partial multivalued functionsf that are�P
T-reducible to someg2 F . FPF [k] (re-

spectively, FPF [log]) denotes the class of partial multivalued functionsf that are�P
T-reducible to someg 2 F via a machine that, on inputx, makesk adaptive

queries (respectively,O (logjxj) adaptive queries) to its oracle.
This definition template defines classes of multivalued partial functions such as

FPNPMV, and can easily be extended to define NPMVNPMV. If K is a class of sets,
then FPK is defined as usual, except that we allow it to compute partialfunctions
(at the discretion of the oracle machine).

We will use the following generalization of the many-one metric reducibility of
Krentel [Kre88] in order to discuss complete functions for classes of multivalued
functions.

2.2 Definition. Given partial multivalued functions f;g : Σ� 7! Σ�, we say fis
metric many-one reducible tog, or symbolically, f�P

mg; if there are functions
t1; t2 2 FPsuch that the multivalued partial function h defined by

h(x) = t2(x;(g� t1)(x))
is a refinement of f , whereset-h(x) is defined asf t2(x;y) j g(t1(x)) 7! yg:

If, in addition, we haveset-h(x) = set- f (x) for all x, we call it astrong metric
many-one reduction, denoted by f�P

smg.
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The motivation underlying this definition is that, given a value ofg(x), one can
compute in polynomial time a value off (x). In the case of a strong reduction, one
gets all values off (x) when varying over all values ofg(x). Obviously, f �P

mg
implies f �P

T g.
The classes that we have been considering relate in interesting ways to studies

of the complexity of optimization problems. In order to capture the complexity of
optimization problems, Krentel [Kre88] defined the complexity classes MaxP and
MinP as the functions computable by taking the maximum, respectively minimum,
over sets of feasible solutions of problems in NP. Further, Krentel extended these
classes to hierarchies of classes of optimization functions [Kre92]. Krentel defined
these functions using the notion of ametric Turing machine, which we now review.
Consider nondeterministic polynomial time Turing machines that print an output
value on every path. We associate with every inner node of thecomputation tree
either the function min or the function max (for the classes MinP and MaxP, all
nodes are associated with the same function). Thus, metric Turing machines define
(total) functions from input words to integers via the usualbottom-up evaluation
of the machine's computation tree. Since all the function classes considered in this
paper are partial, we extend the metric Turing machine just defined by allowing
the machine to output a special symbol? that denotes that the computation on the
corresponding path ends with an undefined result. We extend the min and max
functions in the obvious way: define max(x;?) = max(?;x) = x and min(x;?) =
min(?;x) = x, for all x (including? itself). Vollmer and Wagner [VW93, VW95]
gave a detailed structural examination of Krentel's hierarchy. Here, we just define
the class MaxP using an operator-characterization from [VW95]. MinP is defined
analogously.

h2MaxP ()9 f ; g2 FP : h(x) = max0�y�g(x) f (x;y):
3. Functions Complete for coNPMV

NPMV is precisely the class of functions that compute witnesses for NP sets in the
following sense: For any setL 2 NP there exist a setA 2 P and a polynomialp
such that for allx, we have

x2 L()9y2 Σp(jxj):(x;y) 2 A:
Any y such that(x;y) 2A is called awitness for x(with respect toA). Clearly, there
is a function fA 2 NPMV such that set-f (x) is exactly the set of witnesses forx.
On the other hand, any NPMV functionf defines a set in NP, namely dom( f ). As
a consequence of this discussion, we see that dom(NPMV) = NP.

9



Next, we extend the notion of a witness toΣp
2. For anyΣp

2 setL there exist
a setB2 coNP and a polynomialp such that for allx, we havex 2 L()9y 2
Σp(jxj):(x;y) 2 B. A y such that(x;y) 2 B is called awitness for x(with respect to
B). What function class captures the computation of witnesses for Σp

2 sets? Since
Σp

2 = NPNP, certainly witnesses can be computed in NPMVNP. However, we will
see below that the seemingly weaker class coNPMV already suffices to do so.

Let us consider setL again. We may safely assume that for all(x;y) 2 B we
havey 2 Σp(jxj). SinceB 2 coNP, it is then the graph of a coNPMV functionf ,
so that set-f (x) is exactly the set of witnesses forx. Hence, coNPMV can com-
pute witnesses for sets inΣp

2. Conversely, for any coNPMV functionf , we have
dom( f )2Σp

2. This is because, for anyx, x2 dom( f )()9y2Σp(jxj):y2 set-f (x).
Thus, coNPMV ispreciselythe class of functions that computes witnesses forΣp

2
sets. As a consequence, we have the following proposition.

3.1 Proposition. dom(coNPMV) = Σp
2.

Witnesses ofΣp
2-complete sets can give rise to complete functions for coNPMV.

Consider, for example, the satisfiability problem QBF2 for Boolean formulas with
two quantifiers. Letϕ be a Boolean formula in the variablesx = (x1; : : : ;xk) and
y = (y1; : : : ;yl ). Then we define

ϕ(x;y) 2QBF2 () 9x 8y:ϕ(x;y) = 1:
Let F2 be the multivalued function that computes witnesses, i.e.,partial assign-
mentsx = (x1; : : : ;xk), for QBF2 formulasϕ as above.

3.2 Theorem. F2 is�P
sm-complete forcoNPMV.

Proof. We have argued already thatF2 2 coNPMV. Let f be any coNPMV func-
tion. There is an NP transducerM and a polynomialp such that for allx, we have
set-f (x) = Σp(jxj)�set-M(x). We show how to compute ay2 set-f (x) from F2(ϕx),
for an appropriately constructed formulaϕx.

Define a machineM0 on inputx as follows. First,M0 guesses ay2Σp(jxj). Then,
M0 simulatesM on inputx. If M outputsy on the simulated path, thenM0 rejects.
Otherwise,M0 accepts.

We have to define the reduction functionst1 andt2 as required in Definition 2.2.
Functiont1 is the Cook-Levin reduction1 applied tox with M0 as the underlying
machine. This will give a Boolean formulaϕx that, intuitively, describes the work
of M0 on inputx. The variables ofϕx can be partitioned into two parts:� sayy1; : : : ;yk, that are used to describe thatM0 guesses ay2 Σp(jxj), and

1This is the well-known reduction which transforms the computation of an NP machine to a
Boolean formula which is satisfiable iff the machine accepts; see, e.g., [Coo71].
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� sayz1; : : : ;zl , that are used to describe the subsequent simulation ofM.

Furthermore, from any setting of the variablesy1; : : : ;yk of ϕx, we can reconstruct
in polynomial time they2 Σp(jxj) guessed byM0. This is done by functiont2.

Let us fix a setting of the variablesy1; : : : ;yk and lety 2 Σp(jxj) be the corre-
sponding string guessed byM0. Then we have8z1; : : : ;zl : ϕx(y1; : : : ;yk;z1; : : : ;zl ) = 1() M0 accepts on all paths followingy() y 62 set-M(x)() f (x) 7! y;
and hence, set-t2(x;F2 � t1(x)) = set-f (x), wheret1(x) = ϕx. 2

A crucial point in the above proof is that the Cook-Levin reduction maintains
witnesses. That is, from a given assignment for the constructed formulaϕx one
can recover a corresponding path of the nondeterministic machine. Thus anyΣp

2-
complete set sharing this property with QBF2 defines a coNPMV-complete func-
tion in an analogous way.

As an example, consider the following setL f . For any NPMV functionf and
any even-valued polynomialp such thatf maps strings of lengthn to strings of
lengthp(n), x2 L f if and only if9y2 Σp(jxj)=2 8z2 Σp(jxj)=2 : f (x) 67! yz:
In other words, stringy is not a prefix of an output off (x).

Clearly, for every f 2 NPMV, we have thatL f is in Σ2. Thus, in particu-
lar, taking f = sat, Lsat is Σp

2-complete and has the above mentioned property.
We conclude that the corresponding witness function,not-pre-sat, is complete for
coNPMV, where

not-pre-sat(ϕ) 7! y ()
y is a truth assignment of the first half

of ϕ's variables that is not a prefix

of a satisfying assignment ofϕ.

3.3 Theorem. not-pre-sat is�P
sm-complete for the classcoNPMV.

Not-pre-satis a trivial transformation ofF2, so Theorem 3.3 can be seen di-
rectly via a straightforward metric reduction fromF2.
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4. Properties of coNPMV

NPMV is closed under�P
sm-reductions, but not under�P

m-reductions; in fact, it
is possible to haveg 2 NPMV and f�P

mg but graph( f ) be noncomputable. (For
example, definef to mapx to two values, the first of which is either 0 or 1 and
solves the halting problem onx and the second of which is the constant 10. Then
clearly graph( f ) is not computable, but the constant function 10 is a refinement of
f in NPMV.) However, NPMVis closed under this reduction in a weaker sense,
defined below.

4.1 Definition. A classF is c-closedunder reducibility�r , if g2 F and f �r g
implies f 2c F .

It is immediate from this definition that NPMV is c-closed under�P
m-reductions.

One might suspect that this same fact holds for coNPMV. However, it is quite
unlikely that coNPMV is c-closed under this reducibility: otherwise, sincesat2
coNPMV andsat is complete for NPMV, we would get that NPMV�c coNPMV.
But this seems to be very unlikely as the following extensionof a result of Fenner
et al. [FHOS97] shows.

4.2 Theorem. NPMV� coNPMV ()
NPMV�c coNPMV () NP= coNP.

Proof. We cycle through the implications. The first implication is trivial. For the
second, letL 2 NP. Define function

χL(x) = �
1 if x2 L? otherwise:

Then we haveχL 2 NPMV, and hence, by assumption,χL 2 coNPMV. There-
fore, graph(χL) 2 coNP, which implies thatL 2 coNP sincex 2 L() (x;1) 2
graph(χL).

Now suppose that NP = coNP and letf 2 NPMV. Then graph( f ) 2 NP, and
therefore in coNP by assumption. Thusf 2 coNPMV. 2
4.3 Corollary. coNPMV is c-closed under�P

m-reducibility if and only ifNP=
coNP.

We observe that the proof of Theorem 4.2 shows also that NPSV� coNPMV() NP= coNP, even though it is fairly easy to see that NPSVt , the class of all
total NPSV functions,is contained in coNPMV. We also note that Theorem 4.2
extends to higher levels of the difference hierarchies overNPMV and NP, that is,

12



NPMV(k)� coNPMV(k)()NPMV(k)�c coNPMV(k)() NP(k) = coNP(k).
By a result of Kadin [Kad88], a collapse of the Boolean hierarchy implies a col-
lapse of the polynomial time hierarchy. Hence, there is likely to be a whole hierar-
chy between coNPMV and NPMVNP.

4.4 Theorem. For all k � 2, we have

coNPMV� NPMV(2)� NPMV(k)�
NPMV(k+1)� NPMV(nO(1))� NPMVNP:

Furthermore, all of the inclusions are strict unless the polynomial time hierarchy
collapses.

Proof. It remains to show the last inclusion. Letf 2 NPMV(nO(1)). Then the
graph of f is in NP(nO(1)), which is known to be equal to PNP[log] [Wag90]. Obvi-
ously, f can be computed by an NPMV algorithm with access to a PNP[log] oracle:
simply guess an output off and, querying its graph, check that the guess is correct.
Thus, NPMV(nO(1))� NPMVPNP[log] � NPMVNP. 2

Under the likely assumption that NP6= coNP, we see, by Theorem 4.2, that
the class NPMV is not included in coNPMV, even though the function sat, which
is complete for NPMV, belongs to coNPMV. This phenomenon happens again for
maxsat, the function that maps a Boolean formula to its lexicographically largest
satisfying assignment. Fenneret al. [FHOS97] show thatmaxsat2 NPMV(2). In
fact, it is even in coNPMV. However, we will show that the corresponding classes,
namely MaxP or FPNP, are included in coNPMV if and only if NP= coNP.

4.5 Theorem. maxsat2 coNPMV.

Proof. Consider an NPMV machineM that, on input of a formulaϕ, guesses
an assignmenty for ϕ. If y does not satisfyϕ, then M accepts and outputsy.
Otherwise, ify does satisfyϕ, M guesses another assignmenty0 > y. If y0 also
satisfiesϕ, M outputsy, otherwiseM rejects (outputting nothing).

M outputs every assignment except the maximum satisfying one(if there is
one). Hencemaxsat2 coNPMV. 2

Krentel [Kre92] showed that FPNP=FPMaxP[1]. Since FPNPMV =FPNP [FHOS97]
andmaxsatis complete for MaxP, we have that FPNPMV � FPcoNPMV[1]. That is,
polynomially many queries of a FP function to NPMV can be replaced by one
query to coNPMV. Hence, as we have mentioned, coNPMV seems tobe a more
powerful class than NPMV. We will give more evidence for thisin the next section.

4.6 Corollary. MaxP� coNPMV() MinP� coNPMV() NP= coNP.

13



Proof. If MaxP � coNPMV, then NPMV�c MaxP� coNPMV, and therefore
NPMV �c coNPMV. But by Theorem 4.2, this implies NP = coNP. Conversely,
if NP = coNP, then NPMVNP = NPMVNP\coNP= NPMV. This implies MaxP�
NPMV, and since the hypothesis also implies NPMV = coNPMV, that MaxP�
coNPMV. 2

We conclude this section with an observation regarding the relationship be-
tween MaxP and NPMV. First, note that trivially NPSV�MaxP\MinP, sincethe
output of an NPSV function is both the minimum and the maximum. Similarly,
NPMV �c MaxP\MinP. The more interesting question is whether these inclu-
sions are strict. This is quite likely.

4.7 Theorem. MaxP� NPMV() MinP� NPMV() NP= coNP.

Proof. If NP= coNP, then FPNP�NPMV [Sel94], thus especially MaxP[MinP�
NPMV.

Now suppose MaxP�NPMV (the case for MinP is analogous). LetL2 coNP.
Define

f (x) = �
0 if x2 L
1 otherwise:

Then f 2 MaxP and hence, by assumption, in NPMV. Sincex 2 L if and only if
f (x) = 0, we haveL 2NP. 2

The last two results relativize: analogous results hold forhigher levels of the
NPMV hierarchy and Krentel's min/max hierarchy [FHOS97, VW95]. For the
relativized version of Theorem 4.7 one has to use techniquesfrom Krentel [Kre92]
and Vollmer and Wagner [VW95].

5. A Characterization of coNPMV

As we have already seen in the preceding section, coNPMV seems to be a more
powerful class than NPMV. This is somewhat surprising in light of the aforemen-
tioned symmetry in the definitions of coNPMV and NPMV by theirgraphs.

The following theorem shows that coNPMV is in fact very closeto NPMVNP.
This is surprising as well, as we have already seen in Theorem4.4 that there is a
hierarchy of function classes between coNPMV and NPMVNP.

If f is a multivalued function andg is a single-valued function, theng� f is
defined by graph(g� f ) = fhx;g(y)i j f (x) 7! yg. Let π1

2 denote the projection
function that maps a pair of strings to its first component. Byπ1

2 � coNPMV we
denotefπ1

2 � f j f 2 coNPMVg.
5.1 Theorem. NPMVNP = π1

2�coNPMV.
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Proof. The right to left containment follows from Theorem 4.4 and the fact that
the projection of any NPMVNP function is still in NPMVNP, henceπ1

2�coNPMV�
NPMVNP.

For the other direction, letf 2 NPMVNP. By a standard argument, graph( f ) 2
Σp

2, and thus there is a polynomialq and a predicateR2 coNP such that for anyx
andy2 Σq(jxj)

f (x) 7! y ()9z2 Σq(jxj):R(x;y;z):
Define f 0 such that for anyx and anyy, z2 Σq(jxj)

f 0(x) 7! hy;zi () R(x;y;z):
So R witnesses thatf 0 2 coNPMV. But f (x) = π1

2 � f 0(x), which shows that
f 2 π1

2�coNPMV. 2
The reason why it is likely that coNPMV is a proper subclass ofNPMVNP is

not because outputs of coNPMV functions give too little information, but rather
that they give too much. We can compute an arbitrary NPMVNP function simply
by throwing away part of the output of a coNPMV function. Thisis what the
projection operator accomplishes, and it is most likely necessary.

Applying Theorem 5.1, many properties of NPMVNP now carry over to coNPMV.
In Section 3 we have shown functionsF2 andnot-pre-satcomplete for coNPMV.
Since the projection function is in FP, we get that those functions are complete for
NPMVNP as well.

5.2 Corollary. NPMVNP is the c-closure ofcoNPMV under�P
m-reducibility and

the closure ofcoNPMVunder�P
sm-reducibility.

In particular, we get

5.3 Corollary. FPcoNPMV[k] =FPNPMVNP[k] for all k�1, andFPcoNPMV=FPNPMVNP =
FPNPNP

.

Observe by contrast that FPNPMV =FPNP=FPMinP =FPMaxP, so coNPMV and
NPMV define different∆-levels of the functional polynomial hierarchy.

Fenneret al. [FHOS97] have shown that NPMV(2) � FPNPMV () Σp
2 = ∆p

2.
Note that in contrast for the corresponding language classes we have NP(k)� PNP

for all k. We can now improve the result of Fenneret al.

5.4 Corollary. coNPMV� FPNPMV () Σp
2 = ∆p

2.
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Proof. If Σp
2 = ∆p

2, then

coNPMV� FPcoNPMV = FPNPMVNP = FPΣp
2= FP∆p

2 = FPNP = FPNPMV;
where the last equality is Theorem 1 in [FHOS97] and the second follows from the
relativized version of the same theorem. Conversely, if coNPMV� FPNPMV, then
dom(coNPMV)� PNP = ∆p

2, so thatΣp
2 � ∆p

2. 2
5.5 Corollary. For any k� 1, we have

NPMVNP� FPcoNPMV[1] � FPcoNPMV[k] �
FPcoNPMV[k+1] � FPcoNPMV = FPNPNP:

Furthermore, all inclusions are strict unless the polynomial time hierarchy col-
lapses.

Proof. It remains to show the strictness of the inclusions. SupposeFPcoNPMV[1] �
NPMVNP. This is equivalent to FPNPMVNP[1] � NPMVNP by Corollary 5.3, which
implies PΣp

2[1] � Σp
2. But thenΠp

2 = Σp
2 = PH. For the other inclusions, suppose

FPcoNPMV[k] = FPcoNPMV[k+1]. Then FPNPMVNP[k] = FPNPMVNP[k+1]. By a theorem
of Fenneret al. [FHOS97], this implies that FPΣ

p
2[k] = FPΣp

2[k+1], which, by a rela-
tivization of Kadin's theorem [Kad88], implies that the polynomial hierarchy col-
lapses. 2

Thus we see, combining Theorem 4.4 and Corollary 5.5, that all classes of
the difference hierarchy over NPMV are included in the queryhierarchy over
coNPMV, in fact already in its first level. There are (under reasonable assumptions)
no inclusions in the opposite direction. Concerning the relationship between the
query hierarchy over NPMV and the difference hierarchy overNPMV, we know
from Fenneret al. [FHOS97] that all classes of the first hierarchy are included
in certain classes of the second hierarchy. Any inclusion inthe opposite direction
implies coNPMV� FPNPMV, which again implies a collapse of the polynomial
hierarchy, by Corollary 5.4.

6. Relationships Between the Functional Difference and Polynomial
Time Hierarchies

Chang and Kadin [CK90] showed that if the Boolean hierarchy over NP collapses
to the kth level, then the polynomial hierarchy collapses to thekth level of the
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Boolean hierarchy over NPNP: if NP(k+1) = NP(k), then PH= NPNP(k). It is
a simple consequence of known results that a similar connection exists for the
corresponding functional hierarchies, namely NPMV(k) andΣMVk = NPMVΣp

k�1.

6.1 Theorem. For any k�1, if NPMV(k+1)=NPMV(k) thenΣMV3=NPMVNP(k).
Proof. NPMV(k+1) =NPMV(k) is equivalent to NP(k+1) =NP(k) [FHOS97],
which impliesΣp

3 = NPNP(k) [CK90] (relativized). By considering the graphs of
functions [FHOS97], we immediately get thatΣMV3 = NPMVNP(k). 2

Since NPNP(k) � PNPNP[k], a consequence of Chang and Kadin's theorem is
that if NP(k+1) = NP(k), thenΣp

3 = PNPNP[k] (indeed, they prove this directly in
their paper before treating the stronger result). The functional analogue of such
a collapse would beΣMV3 = FPNPMVNP[k] or, equivalently,ΣMV3 = FPcoNPMV[k].
We cannot expect this as a direct consequence of Theorem 6.1,since the difference
and query hierarchies are not intertwined in this context. Nevertheless, such an
analogous result does hold. To see this, we have to modify theproof of the Chang
and Kadin theorem.

6.2 Theorem. If NPMV(k+1)=NPMV(k) thenΣMV3 =NPMV�FPcoNPMV[k�1].
Proof. (Sketch.) In order to explain how Chang and Kadin's proof gives this result,
we recall some of their definitions, with some minor modifications in notation (for
greater detail, we refer the reader to their paper [CK90]). Denote the�p

m-complete
language for NP(k) (respectively coNP(k)) asLNP(k) (respectivelyLcoNP(k)). For
example,LNP(1) = SAT andLNP(2) = fhx1;x2i j x1 2 SAT andx2 2 SATg. Since,
by hypothesis, NP(k) = coNP(k), it follows thatLNP(k) �p

m LcoNP(k). The basic idea
underlying the Chang and Kadin proof is that such a reductioninduces a reduction
from an initial segment of SAT to an initial segment ofSAT. This is done induc-
tively via the notion of a “hard sequence,” which is aj-tuple that, together with
a�p

m-reduction from NP(k) to coNP(k), can be used to find a�p
m-reduction from

NP(k� j) to coNP(k� j).
6.3 Definition. Let LNP(k)�p

m LcoNP(k) via some polynomial time functionh. Then
we callh1m;x1; : : : ;xji ahard sequencewith respect toh for lengthmof order j, if
either j = 0 or the following conditions hold:

1. 1� j � k�1,

2. jxj j �m,

3. xj 2 SAT,
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4. h1m;x1; : : : ;xj�1i is a hard sequence with respect toh, and

5. for all y1; : : : ;y` 2 Σ� where`= k� j, and for all 1� i � `, jyi j �m,
π`+1�h(hy1; : : : ;y`;xj ; : : : ;x1i) 2 SAT:

A hard sequence is calledmaximalif it cannot be extended to a hard sequence
of a higher order. In this case the order of the sequencej is said to be maximal.

We can now outline the proof. Chang and Kadin's Lemma 3 [CK90]states
that, given a maximal hard sequence for an appropriate (polynomially bounded)
length, an NP machine can recognize an initial segment of thecanonical complete
language for NPNP. That is, with the aid of such a sequence we can replace aΣp

2
machine with an NP machine. Thus it suffices to find a maximal hard sequence to
collapse the NP's of aΣMV3 = NPMVΣp

2 machine.
Our principle observation is this:Hard sequences of any given order can be

obtained by a single query to acoNPMVoracle. This can easily be seen as follows.
Define the functionH:1+�N 7! Σ� such thatH(1m; j) 7! h1m;x1; : : : ;xji if and
only if h1m;x1; : : : ;xji is a hard sequence for lengthm of order j. It follows from
Definition 6.3 that the set of hard sequences is in coNP [CK90]; hence, graph(H)2
coNP, so thatH 2 coNPMV. Therefore, we can obtain a maximal hard sequence
for the appropriate polynomial lengthm= p(jxj) by querying a coNPMV oracle
for a value ofH(1m; j) for j varying from 1 tok�1. We then feed the resulting
maximal hard sequence, along with the original inputx, to an NPMV machine that
can, via the induced reduction from coNP to NP, collapse the NP oracles in an
NPMVNPNP

computation. 2
7. A Remark on Counting Classes

The results of our paper show that in the context of relational structures computed
by polynomial time machines, in a sense the universal mode ismore powerful than
the existential one. In the context of counting classes, a similar phenomenon has
been observed by Seinosuke Toda [Tod91]. In this section, webriefly show that
Toda's result is a special case of one of our observations.

Recall the following general definition of counting classesfrom [Tod91, VW93]:
Let K be a class of sets. Then,#�K consists of those functionsf for which

there exist a setA2 K and a polynomialp such that for allx,

f (x) = jfy j jyj � p(jxj)^hx;yi 2 Agj:
It is obvious that#�P= #P. Moreover it can be shown that#�NP= spanP, where
spanP is the class of functions which count the number of distinct outputs of a
nondeterministic polynomial time transducer.
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We have the following relationship to our classes of functions:

7.1 Proposition.

1. #�NP consists of exactly those functions h for which there existsa function
f 2 NPMV such that for all x, h(x) = jset- f (x)j.

2. #�coNPconsists of exactly those functions h for which there existsa function
f 2 coNPMVsuch that for all x, h(x) = jset- f (x)j.

Now we have the following surprising result, which was already proved by
Toda [Tod91, Theorem 4.1.6]:

7.2 Corollary. #�coNP= #PNP.

Proof. Immediate by the preceding proposition and the fact that coNPMV is the
class of functions that compute witnesses forΣp

2 computations. See the discussion
before Proposition 3.1. 2
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