
The Complexity of Generating and CheckingProofs of MembershipHarry Buhrman?1 and Thomas Thierauf21 CWI. PO Box 94079, 1090 GB Amsterdam, The Netherlandsemail: buhrman@cwi.nl2 Abt. Theoretische Informatik, Universit�at Ulm, 89069 Ulm, Germanyemail: thierauf@informatik.uni-ulm.deAbstract. We consider the following questions:1. Can one compute satisfying assignments for satis�able Boolean for-mulas in polynomial time with parallel queries to NP?2. Is the unique optimal clique problem (UOCLIQUE) complete forPNP[O(log n)]?3. Is the unique satis�ability problem (USAT) NP hard?We de�ne a framework that enables us to study the complexity of gene-rating and checking proofs of membership. We connect the above threequestions to the complexity of generating and checking proofs of mem-bership for sets in NP and PNP[O(log n)]. We show that an a�rmative ans-wer to any of the three questions implies the existence of coNP checkableproofs for PNP[O(log n)] that can be generated in FPNPk . Furthermore, weconstruct an oracle relative to which there do not exist coNP checkableproofs for NP that are generated in FPNPk . It follows that relative to thisoracle all of the above questions are answered negatively.1 IntroductionWe give more background for the questions mentioned in the abstract.1.1 Generating Satisfying AssignmentsSatis�ability { SAT for short { is the set of satis�able Boolean formulas. In theearly seventies Cook and independently Levin [Co71, Le73] showed that SAT isNP complete. In order to prove P di�erent from NP, many researchers have triedto reveal the computational complexity of SAT.However, SAT is a decision problem and in most practical circumstances weare not only interested in the knowledge that a solution exists, but we wantto compute the solution, in this case a satisfying assignment, as well. There-fore, another fundamental task in computational complexity is to determine thecomplexity of the construction problem for NP complete sets.? Part of this research was done while visiting the Univ. Polit�ecnica de Catalunyain Barcelona. Partially supported by the Dutch foundation for scienti�c research(NWO) through NFI Project ALADDIN, under contract number NF 62-376

As an upper bound, it is known that such solutions can be computed inFPNP, the class of functions computable in polynomial time with access to anoracle in NP. This can be achieved by either doing a binary search or a pre�x-computation on the solution space using an appropriately chosen set in NP asan oracle.Is there a better way to compute solutions for sets in NP? Consider thefollowing subclasses of FPNP.{ FPNPk , the class of functions in FPNP that can be computed by makingnonadaptive queries to NP, that is, all the queries must be written downbefore any answers are received from the oracle, and{ NPSV, the class of functions that can be computed by single-valued non-deterministic polynomial-time bounded transducers, that is, on each pathwhere the transducer produces some output, it produces the same output.Hence, we are especially asking whether it is possible to compute some solutionfor a given NP complete set in FPNPk or in NPSV. Note that NPSV � FPNPk .De�ne the function class Fsat byf 2 Fsat () f(') = � some satisfying assignment of '; if ' 2 SAT;?; otherwise;where ? means that the function is unde�ned at that point.As already mentioned, Fsat \FPNP 6= ;. In fact, Krentel [Kr86] showed thatthe lexicographically smallest satisfying assignment is complete for FPNP. Oneof the main open problems [WT93, HNOS94, Og95, BKT94] at this point is thefollowing question: Can satisfying assignments be computed with nonadaptivequeries to NP. In other words, is Fsat \ FPNPk = ;?Some progress has been made. Hemaspaandra et.al. [HNOS94] showed thatone cannot compute satisfying assignments in NPSV, unless the PolynomialHierarchy collapses, This result has been improved recently by Ogihara [Og95]who showed that Fsat \ FPNPSV[c log(n)] = ;, for c < 1, unless the PolynomialHierarchy collapses. It is conjectured that an analog result holds with respectto FPNPk . In this paper, we construct an oracle where FPNPk \ Fsat = ;. On theother hand, Fortnow [Fo94], extending a result of Watanabe and Toda [WT93],constructed an oracle relative to which FPNPk TFsat 6= ;, and the PolynomialHierarchy is in�nite. This indicates that non-relativizing techniques are neededto settle this question.1.2 Completeness of UOCLIQUE and USATPNP and PNP[O(logn)] are the classes of sets that can be recognized with polyno-mial, respectively log(n), many queries to an NP oracle. For many optimizationproblems, deciding certain properties of an optimal solution is complete for eitherPNP[O(log n)] or PNP [PZ83, W86, W90].Consider the UOCLIQUE problem, where, for a given graph G, one has todecide whether G has a unique optimal (that is, largest) clique. UOCLIQUE is

clearly in PNP[O(logn)]. Papadimitriou and Zachos [PZ83] asked whether UOCLI-QUE is complete for PNP[O(logn)], and this is still an open problem. The problemswhether a given graph has a unique maximum independent set (UOIS) or a uni-que minimum vertex cover (UOVC) are easily shown to be many-one equivalentto UOCLIQUE, and hence, the precise complexity of all these problems is alsoopen.Another well studied set is USAT, the set with formulas that have exactelyone satisfying assignment. As an upper bound, USAT is in DP, the class of setsthat are the di�erence of two NP sets. But it is not known to be complete for DP.Blass and Gurevich [BG82] showed that USAT is complete for DP if and only ifit is hard for NP. Furthermore, they constructed an oracle such that USAT is notcomplete for DP. Note, however, that Valiant and Vazirani [VV86] showed thatUSAT is NP hard under randomized many-one reductions. As a lower bound,USAT is coNP hard, but it is not known to belong to coNP. In fact, USAT isnot in coDP, unless the Polynomial Hierarchy collapses [CKR95]. It is widelyconjectured that USAT is an \intermediate" problem with respect to coNP andDP, i.e., that it is not complete for DP and does not belong to coNP.In this paper, we will give some evidence that all the above problems arenot complete for the respective classes, PNP[O(logn)] and DP. We will do this byconnecting these problems to a general tool: Proof Systems.1.3 Proof SystemsA satisfying assignment for a Boolean formula is, in some sense, a proof thatthe formula is satis�able. That the assignment indeed is a satisfying one can bechecked in polynomial time. Furthermore, such assignments can be computed inFPNP. In the de�nition below, we essentially allow to vary the complexity of thechecking process.De�nition1. Let C be a class of sets and F be a class of functions. A set L has(polynomially) bounded C-checkable proofs in F , if there exist a polynomial p,a set C 2 C, and a function f 2 F such that jf(x)j � p(jxj) for all x, andfurthermore x 2 L =) (x; f(x)) 2 Cx 62 L =) 8y (jyj � p(jxj)) (x; y) 62 C:The pair (C;F) is called a proof-system for L. A class of sets K has a (C;F)proof-system if every set in K has a (C;F) proof-system.As a �rst example, clearly NP has a (P;FPNP) proof-system. In Section 1.1,we asked whether Fsat \ FPNPk 6= ;. A positive answer clearly implies that NPhas a (P;FPNPk) proof-system. However, it is not even known whether NP has a(coNP;FPNPk) proof-system.Intuitively, we have the following trade-o�: a more powerful function classcan put more information into a proof of membership which makes this proofeasier to check. Symmetrically, a more powerful class for checking proofs can

compute more information by itself and hence a weaker kind of function classsu�ces to generate these proofs.In Section 3, we will construct an oracle relative to which NP does not havea (coNP;FPNPk) proof-system. Hence, relative to this oracle Fsat TFPNPk = ;.In Section 4, we make a connection to the completeness issue of UOCLIQUE(and UOIS and UOVC).We will see that UOCLIQUE has a (coNP;FPNPk) proof-system. Thus, if UOCLIQUE is complete for PNP[O(logn)], then PNP[O(logn)],and hence NP, has a (coNP;FPNPk) proof-system, violating the above oracle.Moreover, when considering sets known to be PNP[O(logn)] complete, we observethe following trade-o�:1. For a natural candidate F of proofs that can indeed be checked in coNP, weshow that F \ FPNPk 6= ; if and only if Fsat \ FPNPk 6= ; (Theorem 13).2. The proofs generated by FPNPk complete functions can be checked in DP,but not in coNP, unless NP = coNP (Theorem 14).Both results add some more evidence to the incompleteness of UOCLIQUE.In Section 5, we show that USAT has a (coNP;NPSV) proof-system. The-refore, if USAT is complete for DP then NP has a (coNP;FPNPk) proof-system.This again violates the above oracleWe conjecture that PNP[O(logn)] does not have a (coNP;FPNPk) proof-system,and hence, that Fsat TFPNPk = ; and that UOCLIQUE and USAT are not com-plete for PNP[O(log n)] and DP, respectively. However, non-relativizing techniquesare necessary to �nally settle these questions.2 PreliminariesWe follow the standard de�nitions and notations in computational complexitytheory (see, e.g., [BDG-I&II, HU79]). We �x an alphabet to � = f0; 1g; by astring we mean an element of ��, and by a language we mean a subset of ��.For a language L, we denote L as the complement of L, and for a class C oflanguages, co C = fL j L 2 C g. For any string x, let jxj denote the length of x.The standard lexicographical ordering of�� is used. We consider a standard one-to-one pairing function from �� � �� to �� that is computable and invertiblein polynomial time. For inputs x and y, we denote the output of the pairingfunction by (x; y); this notation is extended to denote every n tuple.For our computation model, we consider a standard Turing machine model.P (NP) denote the classes of languages that are accepted by a polynomial-timedeterministic (nondeterministic) Turing machine. E and NE are the analogousclasses for exponential time 2O(n). FP is the class of polynomial-time computablefunctions. By using oracle machines, one can de�ne relativized classes like PNPand FPNP, where the P, resp. FP machine has in addition some NP oracle it canquery. We consider several restriction of the oracle access mechanism. In general,a polynomial-time bounded machine can ask polynomiallymany questions (withrespect to the input length) to its oracle. By PNP[O(logn)] and FPNP[O(logn)], wedenote the classes where the P, resp. FP machine asks only logarithmicallymany

questions to its oracle. By PNPk and FPNPk , we denote the classes where the P,resp. FP machine makes the queries non-adaptive, i.e. queries may not dependon answers to previous queries. For the language classes these two restrictionsyield the same class, i.e., PNP[O(logn)] = PNPk [H89]. For the function classes,we only have an inclusion, namely FPNP[O(logn)] � FPNPk and equality seemsunlikely unless the Polynomial Hierarchy collapses [Be88, Se94, To91].The Polynomial Hierarchy is de�ned as NP [NPNP [NPNPNP [: : : .The Exponential Hierarchy is de�ned as E [NE [NENP [NENPNP [: : : .The Boolean Hierarchy is the closure of NP under the Boolean operationsunion, intersection, and complement. A subclass of the Boolean Hierarchy isDP [PY84]. L 2 DP () 9A;B 2 NP : L = A �B:When considering reductions between sets, we take the standard many-onereduction. Hard and complete sets (for some class) are also de�ned via many-onereductions.Reductions between functions can be de�ned as follows. Krentel [Kr86] in-troduced the metric reduction. Let f , g be functions.f �FP1-T g () 9t1; t2 2 FP : f(x) = t2(x; g � t1(x)):This clearly captures the idea of being able to compute f(x) from one call to g.We extend this de�nition to classes of functions F and G. Note that there aremany possibilities for such an extension (see [BKT94, CT91, FHOS93, WT93]).We take the following.F �FP1-T G () 9t1; t2 2 FP 8g 2 G : t2(x; g � t1(x)) 2 F:This is a weak reduction because we don't require that all functions in F can becomputed with the help of some function from G. There only have to be someFP transducers that, no matter which function from G is used, compute somefunction in F .3 Proof-Systems for NPIn this section, we address the question whether NP has a (coNP;FPNPk) proof-system. We observe �rst that NP cannot have a (coNP;FPNP[O(logn)]) proof-system, unless NP = coNP. Suppose an NP set L has such a proof-system, thena coNP machine can accept L by �rst enumerating all the (polynomially many)potential proofs of membership of the FPNP[O(logn)] function (i.e., without askingthe oracle) and then check whether one of them actually is a proof of membership.Proposition2. If NP has a (coNP;FPNP[O(logn)]) proof-system then NP =coNP.

Next, we will show the existence of an oracle relative to which NP does nothave a (coNP;FPNPk) proof-system. We do this by studying properties of theExponential Hierarchy. This hierarchy behaves strange in various ways (compa-red with, say, the Polynomial Hierarchy). It is for example not known whetherit possesses the downward separation property, that is, whether E = NE impliesthat the whole hierarchy collapses to E. Another unresolved issue is the follo-wing. Suppose that NE is contained in E=lin3. Does this imply that NE = coNE?We have the following connection:Lemma3. If NP has a (coNP;FPNPk) proof-system and NE � E=lin then NE =coNE.However, there exists an oracle such that NE � E=lin but still NE 6= coNE.Theorem4. There exists an oracle A such that NEA � EA=1 and NEA 6=coNEA.Proof. (Sketch) We will borrow techniques from Impagliazzo and Tardos [IT89].We use the following test language. LA = f0n j 8y; y1 62 A; jyj � 2ng. LA 2coNEA for all A. We have to construct A such that LA 62 NEA. We will use theinformation theoretical lower bound on the X -search problem to do this. Wetake a setting of the y 's of length 2n in such a way that no strategy that searchesfor one y can do this with a small number of parallel rounds [IT89]. Next we codein 0<x;e;l>2 2 A if and only if < x; e; l >2 KA = f< x; e; l >jMAe accepts x in lsteps g, a NEA complete set, assuming that the odd strings y1 of length 2n arein A, according to this setting. However we will not (yet) put these strings, ie they1's, in A. Next we diagonalize against the nth NEA machineMAn (0n). SupposeMAn (0n) rejects. In this case we have diagonalized since 0n 2 LA. However KAmight not be coded correctly. We will see below that this is not a problem. Onthe other hand if MAn (0n) accepts, then we put in y1's according to the settingof the lower bound of the X-search problem. The lower bound guarantees thatthe leftmost accepting path of MAn (0n) can not query one of the y1's put intothe oracle. Hence this path will keep accepting, but 0n 62 LA. It remains to showthat NE � E=1. The one bit of advice for strings of length n will code whataction we took in stage n (i.e., whether we put in the strings 1y or not). Supposewe want to know whether < x; e; l >2 KA. If we put in the strings y1 then KAis coded correctly and we can query whether the code for < x; e; l > is in A. Onthe other hand if we did not put in the y1's the coding of KA may be wrong.However for every oracle machine e there exists another oracle machine e0 suchthat e0 simulates e but whenever it queries a string of the form y1 (of length2n) it assumes that this string is not in the oracle. Morover we can generate e0from e in exponential time. Hence in this case we query whether the code for< x; e0; l > is in A. A complete proof will appear in the �nal version of thispaper.Since the proof of Lemma 3 relativizes, we conclude that, relative to theoracle constructed in Theorem 4, the �rst assumption in Lemma 3 cannot hold.3 E=lin is the class of sets that can be recognized in exponential time with a linearamount of advice for all strings of length n

Corollary5. There is an oracle relative to which1. NP does not have a (coNP;FPNPk) proof-system.2. NP does not have a (P;FPNPk) proof-system, andIf one could compute satisfying assignments within FPNPk , this would pro-vide a (P;FPNPk) proof-system for NP. Hence, a (sloppy) way of putting Co-rollary 5 (2) is that there is an oracle relative to which one cannot computesatisfying assignments within FPNPk .Finally, we observe that in order to show that NP does not have a(coNP;FPNPk) proof-system, it su�ces to show that PNP[O(logn)] does not havea (coNP;FPNPk) proof-system.Theorem6. NP has a (coNP;FPNPk) proof-system if and only if PNP[O(logn)]has a (coNP;FPNPk) proof-system.Proof. Suppose that NP has coNP checkable proofs in FPNPk . Let L = L(MA)for some P machine M and some set A in NP, and let f 2 FPNPk be a proofgenerating function for A.We de�ne a function g 2 FPNPk that generates proofs for L that are coNP-checkable. Let x 2 �� and let y1; : : : ; yk 2 �� be the queries of machineM oninput x to its oracle A. Then we de�neg(x) = ((y1; w1); : : : ; (yk; wk));where wi = f(yi), if yi 2 A, and wi = 0, if yi 62 A, for i = 1; : : : ; k. (We assumew.l.o.g. that f is always di�erent from 0.)Since f 2 FPNPk , we also have g 2 FPNPk . Furthermore, for each i = 1; : : : ; k,we can check in coNP whether yi 2 A, if wi 6= 0 by assumption, and also whetheryi 62 A, if wi = 0. Therefore, the set C = f (x;w) j x 2 L and g(x) = w g is incoNP. Thus C and g show that L has a (coNP;FPNPk) proof-system.4 On the Completeness of UOCLIQUEOptimization problems such as computing the shortest traveling salesman touror the size of the largest clique are known to be complete for FPNP andFPNP[O(logn)], respectively [Kr86]. Papadimitriou considered a decision versionby asking whether those optimal solutions are unique. The motivation for thismight be that in order to decide uniqueness there is no way around to solve,somehow implicit, the underlying optimization problem. Hence, these decisionproblems are expected to be hard for the corresponding complexity classes, i.e.,PNP and PNP[O(log n)]. In fact, Papdimitriou [P84] showed that the Unique Op-timal Traveling Salesman Problem is complete for PNP. Papadimitriou and Za-chos [PZ83] asked whether the Unique Optimal Clique Problem (UOCLIQUE)is complete for PNP[O(logn)]. However, this is still an open problem. Since UniqueOptimal Independent Set (UOIS) and Unique Optimal Vertice Cover (UOVC)are many-one equivalent to UOCLIQUE, this question can be extended to these

two problems. In contrast, Krentel [Kr86] and Wagner [W86] showed that Odd-CLIQUE, i.e., the problem to decide whether the maximum clique of a graphhas an odd number of vertices, is complete for PNP[O(logn)].De�nition7. UMaxSAT is the set of Boolean formulas in conjunctive normalform with the property that all assignments that satisfy the maximum numberof clauses happen to satisfy the same set of clauses.Kadin [Ka88] showed that UMaxSAT is complete for PNP[O(logn)]. Considerthe standard reduction from SAT to CLIQUE (see for example [HU79]). Sup-pose, for some CNF formula' 2 UMaxSAT, that at most k clauses are satis�ableat the same time. Note that there can be several assignments satisfying those kclauses. But each such assignment will give a di�erent k clique in the constructedgraph. Hence, this construction doesn't provide necessarily a unique optimal cli-que. When we restrict UMaxSAT even further by requiring that there is exactlyone such optimal assignment, then the reduction works.De�nition8. UMaxASAT is the set of Boolean formulas in conjunctive normalform that have one assignment that satis�es strictly more clauses than any otherassignment.We have already seen that UMaxASAT �Pm UOCLIQUE. But in fact, thesetwo problems are equivalent.Theorem9. UMaxASAT �Pm UOCLIQUE.Hence, we are asking whether UMaxASAT is complete for PNP[O(log n)]. Wewill show that we can distinguish UMaxASAT and UMaxSAT by the complexityof the proof-systems for these sets. Let us start with UMaxASAT.De�nition10.fUMaxASat(') =8<: the assignment that satis�esmost of the clauses of ', if x 2 UMaxASAT;?; otherwise.First of all, we note that fUMaxASat is computable with parallel queries to NP,i.e., fUMaxASat 2 FPNPk . Moreover, whether some given assignment for a formula' is indeed the unique one satisfying most of the clauses of ' can be checked incoNP, i.e., the set C = f ('; a) j ' 2 UMaxASAT and fUMaxASat(') = a g is incoNP, in fact it is coNP complete.Proposition11. UMaxASAT and UOCLIQUE have a (coNP;FPNPk) proof-system.Recall that relative to the oracle constructed in Theorem 4, PNP[O(logn)] doesnot have a (coNP;FPNPk) proof-system. Loosely speaking, it follows that UOCLI-QUE and UMaxASAT are not complete for PNP[O(logn)] relative to that oracle.FUMaxSat, the class of functions that give some assignment that satis�es theunique maximum number of clauses of a given formula, is the natural class forgenerating proofs for UMaxSAT. For UMaxASAT, we haveProposition12. UMaxSAT has a (coNP; FUMaxSat) proof-system.

It is not clear what the complexity of FUMaxSat is. Especially, it is not knownwhether there is some function in FUMaxSat that is computable with parallelqueries to NP, i.e., whether FUMaxSat \ FPNPk 6= ;.Since UMaxSAT is complete for PNP[O(logn)] it followsthat FUMaxSat \ FPNPk 6= ; implies that PNP[O(logn)], and hence NP, has a(coNP;FPNPk) proof-system. Therefore, relative to the oracle of Theorem 4, wehave FUMaxSat \ FPNPk = ;.It follows from the next theorem that FUMaxSat \ FPNPk 6= ; not only im-plies a (coNP;FPNPk) proof-system for PNP[O(logn)], but even a (P;FPNPk) proof-system for NP, and, by Theorem 6, for PNP[O(logn)].Theorem13. FUMaxSat \ FPNPk 6= ; () Fsat \ FPNPk 6= ;.The above results indicate the di�erence between UMaxASAT (and UOCLI-QUE) on one side and UMaxSAT on the other: it seems that we need a morepowerful function class to compute proofs for UMaxSAT than for UMaxASATin order to have these proofs coNP checkable. At least in some relativized world,this in fact holds. On the other hand, when we restrict the proof generatingfunctions to be in FPNPk , we will see below that there exist proof systems forwhich the checking can be done in DP. In fact, the checking will be DP complete.If some Boolean formula ' is in UMaxSAT, it is not clear how to computesuch a maximum assignment with parallel queries to NP. But the weaker infor-mation, which clauses are satis�ed by such a maximum assignment can indeedbe computed in FPNPk . Let ' consist of m clauses Ci, i.e., ' = Vmi=1Ci. Thenwe de�nehUMaxSAT (') = 8>><>>: (i1; : : : ; ik); if ' 2 UMaxSAT; 1 � i1 < � � � < ik � m; andsome assignment that satis�es most of theclauses of ' satis�es exactly clauses Ci1 ; : : : ; Cik;?; otherwise.hUMaxSAT captures the whole power of FPNPk : it is FPNPk complete. Fur-thermore, the proofs generated by hUMaxSAT can be checked in DP, but not incoNP unless the Polynomial Hierarchy collapses. It follows that UMaxSAT hasa (DP;FPNPk) proof-system.Theorem14. (1) hUMaxSAT is FPNPk complete,(2) C = f ('; y) j ' 2 UMaxSAT and hUMaxSAT (') = y g is DP complete.We will present similar results for other PNP[O(logn)] complete sets in the fullversion of the paper. In summery, whenever some function in FPNPk generatesproofs of membership for one of the known PNP[O(logn)] complete sets, checkingsuch a proof requires the computational power of DP. On the other hand, proofsfor UMaxASAT can be checked within coNP, we take this fact as some moreevidence that UMaxASAT and UOCLIQUE are not complete for PNP[O(logn)].

5 On the Completeness of USATWe connect the question whether NP and PNP[O(logn)] have a (coNP;FPNPk)proof-system with the question whether USAT is complete for DP. We start byconsidering some classes that indeed have such proof-systems.De�nition15. A set A is in UP if there exists a nondeterministic polynomial-time bounded Turing machine M that has at most one accepting path for eachinput and L(M) = A. A function f is in FUP if there exists a nondeterministicpolynomial-time bounded Turing transducer that has at most one accepting pathfor each input x and outputs f(x).Proposition16. (1) UP has a (P;FUP) proof system,(2) USAT has a (coNP;FPNPk) proof system.As already mentioned in Section 1.2, USAT is complete for DP ifSAT�Pm USAT. It follows from Proposition 16 (2) that SAT �Pm USAT im-plies that NP has coNP-checkable proofs in FPNPk . Recall that the latter is nottrue relative to the oracle in Theorem 4.We show below that the assumption that SAT�Pm USAT even implies thatNP has coNP-checkable proofs in NPSV. Assume the stronger hypothesis onthe reduction from SAT to USAT, that there is a function h 2 FP that many-one reduces SAT to USAT in such a way that from any ' 2 SAT and theunique satisfying assignment of h(') one can compute in polynomial time somesatisfying assignment of '. We show that under this hypothesis NP = UP which,by Proposition 16, is equivalent with NP having a (P,FUP) proof system. Notethat FUP � NPSV.Theorem17. (1) SAT�Pm USAT =) NP has a (coNP;NPSV) proof-system,(2) Fsat �FP1-T fUSat =) Fsat \ FUP 6= ; =) NP = UP.Proof. We show (2). The proof of (1) is an easy modi�cation. We show the �rstimplication, the second one is trivial. Let t1; t2 2 FP reduce Fsat to fUSat , i.e.,the function t2('; fUSat(t1('))) is in Fsat .Consider the nondeterministic polynomial-time transducer M in Figure 1.We describe M on input '.We claim that M outputs exactly one satisfying assignment on some path,if ' 2 SAT, and makes no output, if ' 62 SAT. To see this, let us �rst assume' 62 SAT. Since M will not �nd a satisfying assignment for ', M will rejecton all paths in line 4. Now, assume that ' 2 SAT. Then there exist satisfyingassignments, say fa1; : : : ; akg for ', for some k � 1. First,M will �nd all the ai'son di�erent computation paths and then compute t1('). Note that t1(') is inUSAT, since otherwise fUSat(t1(')) = ?; but this is not possible since t2(';?)is not a satisfying assignment for ' as already checked in line 1. Hence, for eachof the k paths where M found some ai, there will be exactly one path whereM will �nd the unique satisfying assignment b of t1('). Now, by assumption,t2(';b) = aj for some j 2 f1; : : : ; kg. Finally, M will output aj in line 9 on theunique path where aj was found in line 3 and reject on all other paths in line10. Hence, M is a FUP transducer for SAT. This proves the theorem.

M(')1 if t2(';?) is a satisfying assignment of ' then output t2(';?)2 else3 guess an assignment a for '4 if a does not satisfy ' then reject5 else6 guess an assignment b for t1(')7 if b does not satisfy t1(') then reject8 else9 if t2(';b) = a then output a10 else reject.Fig. 1. FUP transducer computing satisfying assignments.Since FUP � NPSV, we conclude from [HNOS94] that the assumptionsFsat �FP1-T fUSat and Fsat \ FUP 6= ; both imply that the Polynomial Hier-archy collapses. Note, however, that it is not known whether the assumptionNP = UP implies a collapse of the Polynomial Hierarchy. Therefore it would beinteresting to know whether some of the implications in Theorem 17 are in factequivalences.Corollary18. If Fsat �FP1-T fUSat , then the Polynomial Hierarchy collapses.AcknowledgmentsWe bene�tted from discussions with Manindra Agrawal, Lance Fortnow, ToniLozano, and Jacobo T�oran.References[BDG-I&II] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I & II.EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1988,1991)[Be88] Beigel, R.: NP-hard sets are P-superterse unless R = NP. Technical Report88-04, Dept. of Computer Science, The John Hopkins University (1988).[BG82] Blass, A., Gurevich, Y.: On the unique satis�ability problem. Information andControl 55 (1982) 80-88[BKT94] Buhrman, H., Kadin, J., Thierauf, T.: On functions computable with nonad-aptive queries to NP. Proc. 9th Structure in Complexity Theory Conference (1994)43-52[CKR95] Chang, R., Kadin, J., Rohatgi, P.: On Unique Satis�ability and the thresh-hold behavior of randomized reductions. Journal of Computer and System Science50 (1995) 359{373.[Co71] Cook, S.: The Complexity of Theorem-Proving Procedures. Proc. 3rd ACMSymposium on Theory of Computing (1971) 151{158

[CT91] Chen, Z., Toda, S.: On the Complexity of Computing Optimal Solutions.International Journal of Foundations of Computer Science 2 (1991) 207-220[CT93] Chen, Z., Toda, S.: An Exact Characterization of FPNPk . Manuscript (1993)[FHOS93] Fenner, S., Homer, S., Ogiwara, M., Selman, A.: On Using Oracles ThatCompute values. 10-th Annual Symposium on Theoretical Aspects of ComputerScience, Springer Verlag LNCS 665 (1993) 398-407[Fo94] Fortnow, L.: Personal Communication. In the plane to Madras (India) (De-cember 7, 1994)[H89] Hemachandra, L.: The strong exponential hierarchy collapses. Journal of Com-puter and System Sciences 39(3) (1989) 299-322[HNOS94] Hemaspaandra, L., Naik, A., Ogihara, M., Selman, A.: Finding SatisfyingAssignments Uniquely Isn't so Easy: Unique Solutions Collapes the PolynomialHierarchy. Algorithms and Compuatation, International Symposium ISAAC '94,Springer Verlag LNCS 834 (1994) 56-64[HU79] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, andComputation. Addison-Wesley (1979)[IT89] Impagliazzo, R., Tardos, G.: Decision Versus Search Problems in Super-Polynomial Time. Proc. 30th IEEE Annual Symposium on Foundations of Com-puter Science (1989) 222-227[Ka88] Kadin, J.: Restricted Turing Reducibilities and the Structure of the PolynomialTime Hierarchy. PhD thesis, Cornell University (1988)[Kr86] Krentel, M.: The Complexity of Optimization Problems. Proc. 18th ACMSymposium on Theory of Computing (1986) 69-76[Le73] Levin, L.: Universal Sorting Problems. Problems of Information Transmission9 (1973) 265-266[Og95] Ogihara, M.: Functions Computable with Limited Access to NP. TechnicalReport 538, University of Rochester (1995)[P84] Papadimitriou, C.: On the complexity of unique solutions. Journal of the ACM31(2) (1984) 392-400[PY84] Papadimitriou, C., Yannakakis, M.: On the complexity of facets. Journal ofComputer and System Sciences 28 (1984) 244-259[PZ83] Papadimitriou, C., Zachos, D.: Two remarks on the power of counting. 6th GIConference on TCS, Springer Verlag LNCS 145 (1983) 269-276[Se94] Selman, A.: A taxonomy of complexity classes of functions. Journal of Compu-ter and System Science 48 (1994) 357{381.[To91] Toda S.: On polynomial-time truth-table reducibilities of intractable sets toP-selective sets. Mathematical Systems Theory 24 (1991) 69{82.[VV86] Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theore-tical Computer Science 47(1) (1986) 85-93[W86] Wagner, K.: More complicated questions about maxima and minima and someclosure properties of NP. Proc. 13th International Colloquium on Automata, Lan-guages, and Programming (ICALP), Springer Verlag LNCS 226 (1986) 53-80[W90] Wagner, K.: Bounded query classes. SIAM Journal on Computing 19(5) (1990)833-846[WT93] Watanabe, O., Toda,S.: Structural Analysis on the Complexity of InverseFunctions. Mathematical Systems Theory 26 (1993) 203-214This article was processed using the LaTEX macro package with LLNCS style

