Threshold Computation and Cryptographic Security”

Yenjo Hanf Lane A. Hemaspaandrat Thomas Thierauf®

Revised Typescript Completed: September 6, 1995.

Abstract

Threshold machines are Turing machines whose acceptance is determined by what
portion of the machine’s computation paths are accepting paths. Probabilistic machines
are Turing machines whose acceptance is determined by the probability weight of the
machine’s accepting computation paths. In 1975, Simon proved that for unbounded-
error polynomial-time machines these two notions yield the same class, PP. Perhaps
because Simon’s result seemed to collapse the threshold and probabilistic modes of
computation, the relationship between threshold and probabilistic computing for the
case of bounded error has remained unexplored.

In this paper, we compare the bounded-error probabilistic class BPP with the analo-
gous threshold class, BPP,:n, and, more generally, we study the structural properties of
BPPpain. We prove that BPPpa:n contains both NPEPY and PNP[IOg], and that BPPpatn
is contained in PES[IOg], BPPNP and PP. We conclude that, unless the polynomial hier-
archy collapses, bounded-error threshold computation is strictly more powerful than
bounded-error probabilistic computation.

We also consider the natural notion of secure access to a database: an adversary who
watches the queries should gain no information about the input other than perhaps its
length. We show, for both BPP and BPP.:p, that if there is any database for which this
formalization of security differs from the security given by oblivious database access,
then P # PSPACE. It follows that if any set lacking small circuits can be securely
accepted, then P # PSPACE.

*Research supported in part by the National Science Foundation under grants CCR-8957604, CCR-
9057486, CCR-9322513, and INT-9116781/JSPS-ENG-207, and by DFG Postdoctoral Stipend Th 472/1-1.

"University of Rochester. Current address: Microtec Research Inc., 2350 Mission College Blvd., Santa
Clara, CA 95054.

YUniversity of Rochester. Department of Computer Science, University of Rochester, Rochester, NY
14627 USA.

$Universitat Ulm. Abteilung Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, 89069 Ulm,
Germany. Work done in part while visiting the University of Rochester and Princeton University.

1 Introduction

In 1975, Simon [Sim75] defined threshold machines. A threshold machine is a nonde-
terministic Turing machine that accepts a given input if more than half of all computation
paths on that input are accepting paths. Gill [Gil77] defined the class PP as the class
of sets for which there exists a probabilistic polynomial-time Turing machine that accepts
exactly the members of the set with probability greater than 1/2. Simon [Sim75] showed
that the class of sets accepted by polynomial-time threshold machines characterizes the

unbounded-error probabilistic class PP.

In this paper, we extend the notion of threshold computation to bounded-error pro-
babilistic classes, and we study the degree to which threshold and probabilistic database

(“oracle”) computations hide information from observers.

In particular, we introduce BPP,,n and Rpan as the threshold analogs of BPP
and R [Gil77]. We give evidence that, unlike the case for PP, these threshold classes
are different from their probabilistic counterparts. Section 3 studies the properties of the
class BPPpa¢h and its relationship to other complexity classes. For example, we show—in
contrast to the BPP case—that BPP ., is self-low (i.e., BPPpathBPPP“h = BPPpan) only if
the polynomial hierarchy collapses. We also show that BPP is low for BPP,h, that there
is a relativized world in which BPP, does not contain the smallest reasonable counting
class, and that BPPpa, has many closure properties. Figure 1 gives an overview of the
inclusion relations we establish between BPP, and other complexity classes; in parti-

cular, note that, though contained in the polynomial hierarchy, BPPpa¢n contains NP and
colNP.

Section 4 studies, for threshold and probabilistic computations that have Turing (that
is, adaptive) access to a database, the degree to which the input can be hidden from an
observer. In particular, we consider the least restrictive possible notion ensuring that a
powerful observer should gain no information about the input other than its length [BF90].
For the cases of unbounded-error probabilistic and threshold computation, we note that
this optimal degree of security can be achieved in all cases. For the cases of bounded-error
probabilistic and threshold computations, we prove the following result: If there exists any
database D to which secure access yields more power than oblivious access (a notion in
which the querying machine—until finished querying—is wholly denied access to the input

other than the length of the input [FFLS92]), then P # PSPACE.

PP /Pzguos]
BPPNP><E§

AM BPPpaih RNF

MA\PNP
N

Figure 1: Inclusion relations between BPP 41, and other complexity classes. Not shown are
the inclusions BPP C RN and AM C p*2llog] (in fact, AM C TI%). As an open problem, we
ask whether BPP4h is contained in Eg, or even RNF. There is an oracle relative to which
BPP o, is not in PN,

2 Definitions and Discussion

Throughout this paper, we use the alphabet ¥ = {0, 1}. For a string € ¥*, |z| denotes
the length of . For a set A C ¥*, A(z) denotes the characteristic function of A, A="
denotes {y | y € A and |y| = n}, A" denotes {y | y € A and |y| < n}, and ||A|| denotes
the cardinality of A. The complement of A is A = X* — A, and for a class C of sets,
coC={A]| AeC}.

Let (-,)y : ¥* X ¥* — ¥* be a polynomial-time computable, polynomial-time invertible,
one-to-one, onto function. For any string z, let z+1 denote the string that lexicographically
follows z, and for any string z # ¢, let 2 — 1 denote the string that lexicographically
precedes z. Let kg be the lexicographically kth string in ¥*. We define our (multi-arity,
onto) pairing function by (z1, g, -+, zx) equals (a) (¢,¢), when k = 0, (b) (¢,21 + 1)
when k=1, and (¢) (ks, (z1, (22, (- (Tk—1, Z&)s - -)b)b)p)p When k > 2.

P (NP) denotes the class of languages that are accepted by polynomial-time determini-
stic (nondeterministic) Turing machines. For nondeterministic Turing machines we assume
without loss of generality that the nondeterministic branching degree is at most two. M
is polynomial-normalized (henceforward denoted normalized) if there is a polynomial p
such that on every input z the machine M makes exactly p(|z|) nondeterministic moves
on each computation path. FP is the class of polynomial-time computable functions. One
can define relativized classes such as PNF (respectively, PNP[IOg]) by employing P machines
having some NP oracle that can be asked polynomially (respectively, logarithmically) many
queries, i.e., so-called oracle machines [BGS75]. This is called a Turing reduction (to NP).
If the queries are made nonadaptively (i.e., in parallel) we call this a truth-table reduction
(see Ladner, Lynch, and Selman [LLS75]). By PNF we denote the class of sets that are
truth-table reducible to NP. But in fact, PN’ = PNPllegl [Hem89).

The polynomial hierarchy [MS72,5t077] is defined as follows.

Ef = NP,
SP. = NP¥ (for k€ {1,2,3,---}), and
PH = [J3f.
E>1

P /poly [KL80] denotes the class of sets having small circuits.
For a nondeterministic polynomial-time Turing machine M, let accpr(z) (rejps(z))

denote the number of accepting (rejecting) paths of M on input z and let totalps(x) denote

the total number of paths of M on input x. #P is the class of functions f such that for some
nondeterministic polynomial-time Turing machine M it holds that (Va)[f(2) = accpr(z)].

2.1 Probabilistic and Threshold Computation

A probabilistic polynomial-time Turing machine [Gil77] is a nondeterministic polynomial-
time Turing machine M such that M chooses with equal probability each of the nondeter-
ministic choices at each choice point. Pr[M () = 1] denotes the probability weight of those
paths on which M accepts @ and Pr[M(z) = 0] denotes the probability weight of those
paths on which M rejects z.

We now define some complexity classes in terms of probabilistic polynomial-time Turing

machines.
Definition 2.1 [Probabilistic Classes]

1. PP [Gil77] is the class of all sets L such that there exists a probabilistic polynomial-
time Turing machine M such that for all x € ¥* it holds that Pr[M(x) = L(z)] > 1/2.

2. BPP [Gil77] is the class of all sets L such that there exist a probabilistic polynomial-
time Turing machine M and an € > 0 such that for all z € ¥* it holds that Pr[M(z) =
L(z)]|>1/2+ e

3. R [Gil77] is the class of all sets L such that there exists a probabilistic polynomial-time
Turing machine M such that for all x € ¥* it holds that

r€l = Pr[M(z)=1]>1/2, and
r¢ L = Pr[M(z)=0]=1.

By definition, we clearly have R C BPP C PP [Gil77].

The class PP can also be characterized as the class of sets L such that there exist a
nondeterministic polynomial-time Turing machine M and a function f € FP such that for
all z € ¥* it holds that x € L <= accpy(x) > f(x).

By looking at the portion of accepting paths rather than the probability weight of the

accepting paths, we now introduce the threshold analogs of the above probabilistic classes.
Let #[M(z) = 1] denote accpr(z) and let #[M(z) = 0] denote rejy ().

Definition 2.2 [Threshold Classes]

1. PPpagh [Sim75] is the class of all sets L such that there exists a nondeterministic

polynomial-time Turing machine M such that for all # € ¥* it holds that #[M(z) =
L(z)] > L totaly(z).

2. BPPpagn is the class of all sets L such that there exist a nondeterministic polynomial-
time Turing machine M and an € > 0 such that for all 2 € ¥* it holds that #[M(z) =
L(2)] > (5 +¢€) totalp ().

3. Rpath is the class of all sets L such that there exists a nondeterministic polynomial-

time Turing machine M such that for all € ¥* it holds that

1
rel = acey(z) > 3 totalps(z), and

r ¢ L = rejpyla) = totalp().

It is easy to see that Rpath € BPPpath € PPpagh. For all threshold classes in this paper, as a

notational convenience we will place oracles above the word “path” (e.g., BPPE};E denotes

(BPPaun)*'T).

It is known that R, BPP, and PP sets can be accepted via normalized probabilistic
polynomial-time Turing machines: just extend each computation path of a given machine
up to a fixed polynomial length and, on each new path, accept if the path that was extended
accepted, and otherwise reject. The modified machine has the same acceptance probability
as the original one. Observe that for normalized machines, the probabilistic interpretation
of the machine accepts the same set as the threshold interpretation of the machine. Thus,
each of the probabilistic classes is contained in the corresponding threshold class, i.e., PP C
PPpath, BPP C BPP,n and R C Rpath.

In fact, Simon [Sim75] has already shown that PPy, is not a bigger class than PP. For

completeness we give a proof here.
Theorem 2.3 [Sim75] PPp,m = PP.

Proof: It suffices to show PPpan € PP. Let L € PPpan via PPpan machine M with
polynomial ¢ bounding M’s runtime. Consider the machine M’ that on input z extends
each path y of M by appending a full binary subtree of depth ¢(|z|) — |y|. Furthermore,
on the leftmost path of this appended subtree, M’ branches into two accepting (rejecting)
paths, if M accepted (rejected) on the path y. On each remaining path of the subtree, M’
branches into one accepting and one rejecting path.

M’ on input z has 290#D+1 paths and, of these, 29070 geepr(2) — rejy () are accepting
paths. This shows L € PP via M’. |

Interestingly, this equivalence between probabilistic and threshold classes cannot hold
for R and BPP unless the polynomial hierarchy collapses to its second level. This follows

from the fact that NP is contained in Rpa¢h and thus is also contained in BPP,¢h.
Proposition 2.4 R, = NP.

Proof: Rpam € NP is immediate from the definition. For the reverse inclusion, let M be
a nondeterministic Turing machine and let polynomial p bound the runtime of M.
Consider the machine M’ that on input x first simulates M on input =z, and if the
simulation ends in an accepting path y, then M’ appends or(lz))+1 accepting paths to y and
otherwise M’ rejects.
Now, more than half of all paths of M’ on input x are accepting, if € L(M), and M’
has no accepting paths, otherwise. This shows L(M) € Rpath- |

Corollary 2.5 NP C BPPpah.

It follows that if BPP.n is equal to BPP, then BPPpah, and hence NP, has small
circuits, which in turn, by the result of Karp, Lipton, and Sipser (see [KIL80]), implies
that the polynomial hierarchy collapses. So we cannot expect BPP . to have normalized
machines. For different, contemporaneous work related to normalized versus non-normalized
computation, see Hertrampf et al. [HLS193] and Jenner, McKenzie, and Thérien [JMT94].

We have seen now that there are some crucial differences between BPP and its threshold
analog, BPPpa¢,. We will study BPPp.¢n in more detail in Section 3, and especially, we will
strengthen Corollary 2.5.

2.2 Secure Computation

In this subsection and in Section 4, we study notions of secure adaptive access to databa-
ses in the presence of a powerful spying observer. We give below what we feel are the most
natural definitions. In these definitions, we obtain security by requiring that an observer
(seeing a path drawn uniformly from all the machine’s paths) should learn nothing about the
input string other than perhaps its length. For threshold computation, this notion is new.
For probabilistic computation, the appendix section, Section 6, proves that this definition is
equivalent to the notion of “one-oracle instance-hiding schemes that leak at most the length
of their inputs” [BF90]. The original motivation for such classes, as explained for example
by Beaver and Feigenbaum [BF90], is, very roughly, to study whether weak devices can solve

hard problems by asking some powerful device questions in such a way that no observer can

tell which problem was actually solved by the weak device. Since NP C BPPpan, BPPpam
clearly is not a computationally weak class. It nonetheless makes sense to consider the same
interactive model in the case that applies here: studying whether a relatively powerful class
(BPPpath) can use a (potentially powerful) information source while shielding information

on the problem being solved even from extremely powerful observers.

Definition 2.6 [Secure Threshold Computation] For any set D, a set A is said
to be in secureBPPgath (that is, is said to be “securely accepted by a bounded-error
threshold polynomial-time machine via access to database D7) if there is a nondetermi-

nistic polynomial-time Turing machine N such that:

1. [Ae BPPgath via machine N] There exists an € > 0 such that for all z € ¥* it holds

that #[NP(2) = A(z)] > (1/2 + €) total yp(2) (see Part 2 of Definition 2.2).

2. [The queries of NP reveal no information to an observer other than perhaps the length
of the input] For every k € {0,1,2,---}, and every vector v = (v, vz, -~ -, Vg),
vy, Vg, -+, v € N*, and every pair of strings @ € ¥* and y € ¥* such that |z| = |y|,
it holds that

path-occurances o (x) (v) path-occurancesyo (v) (v)

b

total o () B total o (y)

where path-occurancesyo.)(v) = [[{p | pis a path of N () on which v is the sequence
of queries asked to the oracle (in the order asked, possibly with duplications if the

same query is asked more than once)!'}||.
Similarly, for the probabilistic class BPP, we have the following definition of secure access.

Definition 2.7 [Secure Probabilistic Computation] For any set D, a set A is said to
be in secureBPPP (that is, is said to be “securely accepted by a bounded-error probabilistic
polynomial-time machine via access to database D7) if there is a probabilistic polynomial-

time Turing machine N such that:

1. [A € BPPP via machine N] There exists an € > 0 such that for all z € ¥* it holds
that Pr[NP(2) = A(2)] > 1/2 + € (see Part 2 of Definition 2.1).

2. [The queries of NP reveal no information to an observer other than perhaps the length

of the input] For every k € {0, 1,2, ---}, and every vector v = (v, v2, - -+, V%),

"Henceforward, we’ll refer to this as a query vector.

vy, Vg, -+, v € N*, and every pair of strings @ € ¥* and y € ¥* such that |z| = |y|,
it holds that

Pr[the query vector of NP(z) is v] = Pr[the query vector of NP(y) is v].

Oblivious self-reducibility was discussed in [FFLS92], and we now define complexity classes

capturing the notion of oblivious access.

Definition 2.8 [Oblivious Probabilistic and Threshold Classes] For any set D, a
set A is said to be in obliviousBPPgath (respectively, obliviousBPPP) if there is a nonde-

terministic (respectively, probabilistic) polynomial-time Turing machine N such that:

1. [A € BPPgath (respectively, A € BPPY) via machine N] There exists an ¢ > 0 such
that for all # € X% it holds that #[NP(2) = A(z)] > (1/2+¢) total yo(z) (respectively,
Pi[NP(z) = A(2)] > 1/2+ €).

2. N is an oblivious machine in the sense that on an input z it initially is given access
to a “pre-input” tape on which 0%l is written. N then performs its adaptive queries

to D. Then, after making all queries to D, machine N is given access to z.
We clearly have that, for every D,

BPPgath 2 secureBPPgath 2 obliviousBPPgath, and

BPPP D secureBPPP D obliviousBPPP.

Are these inclusions proper? In other words, does using security against observers as the

D

paths secureBPP?) yield a more flexible notion

definition of secure computation (secureBPP
of security than does blinding the machine to its input (obliviousBPPgath, obliviousBPPP)?
Formally, is obliviousBPPgath # secureBPPgath or obliviousBPP? # secureBPP”? Our
intuition says that both inequalities hold. However, Section 4 shows that establishing that
“yes” is the answer implies that P # PSPACE (and even implies the stronger result that
BPP # PP). Since it is commonly believed that P # PSPACE, this does not provide
evidence that equality holds; rather, it merely suggests that witnessing a separation will be
hard with current techniques. We note that results (such as Theorem 4.1 and Corollary 4.2)
that connect the existence of an oracle separation to the existence of a real-world separation
(see, e.g., the survey [Boo89]) usually occur in cases in which the oracle is tremendously
restricted (e.g., to the class of tally sets or the class of sparse sets [BBS86,1.586]); in con-

trast, Section 4 provides such a relativization result that applies without restriction of the
database D.

Note that we could also define classes, partially—secure—BPPgath and partially-secure-
BPPP, based on the notion (see, e.g., [FFLS92] and the papers cited therein) that an
observer watching one query should get no information other than perhaps about the length
(clearly, for all D, BPPgath 2 partially—secure—BPPgath 2 secureBPPgath and BPPP D
partially-secure-BPP? D secureBPPD), and, more generally, one could study a variety of
classes between BPPP and secureBPPY (or between BPPgath and secureBPPgath) based
upon security against observers using various strengths of query access (for example, one
could require security against observers who could see two queries, or against observers
who could make O(logn) adaptive queries into the query vector, or so on). However, we
restrict our attention to what we feel are the most natural security classes: secureBPPP
and secureBPPgath.

There is no point in defining security classes for unbounded-error computation, as
it is easy to see that, for every D, PPY = securePP” = obliviousPP” = PPgath =
securePPgath = obliviousPPgath.

Finally, we note that all sets that are accepted by an oblivious machine relative to some
database D have small circuits. Let obliviousBPP™ denote |J peyn= obliviousBPPY. We

have the following result.
Proposition 2.9 obliviousBPP* = P /poly.
Corollary 2.10 (3L)[L ¢ obliviousBPPL].

Though for most common classes C it holds that (VL)[L € C*], Corollary 2.10 should
not be surprising; it is natural that weak machines, when accepting a hard set via a hard
database, may leak some information to an observer. Interestingly, a similar result holds
for secure computation. Namely, Abadi, Feigenbaum, and Kilian [AFK89] have shown that
secureBPPP C NP /poly NcoNP /poly for any database D. Thus, for any set D, no NP-hard

set is in secureBPPY unless the polynomial hierarchy collapses.

3 BPP,.u

We have already argued that BPP and BPPp,, differ unless the polynomial hierarchy
collapses. These classes nonetheless share certain properties. For example, as is also the

case for BPP [ZH86], BPP,n has a strong amplification property.

10

Theorem 3.1 Let L be in BPPpaeh. For each polynomial ¢, there is a nondeterministic

polynomial-time Turing machine M such that for all € ¥* it holds that
#M(2) = L)) > (1= 27900} otaly(x).

The proof is analogous to the corresponding proof for BPP.

BPP is closed under Turing reductions [Ko82,Zac82]. However, no relativizable proof
can establish the closure of BPPp,¢, under Turing reductions. In particular, Beigel [Bei92]
constructed an oracle relative to which PNF is not contained in PP. Since BPPpan clearly is
contained in PP (and the proof relativizes), it follows that, relative to the same oracle, PNV
is not contained in BPPpan, and hence, since NP C BPPp,¢h, BPPpan is not closed under
Turing reductions relative to this oracle. That is, there exists an A such that BPPﬁath #

A
pBFPiL

For BPPpath, we can prove closure under truth-table reductions,
Theorem 3.2 BPP ., is closed under polynomial-time truth-table reductions.

Proof: Let A <}, B for B € BPPpa, i.e., there exists a polynomial-time Turing

machine M such that L = L(MB) and, for each input z of length n, machine M makes at

most ¢(n) queries (nonadaptively) to B. Without loss of generality, we may assume that

all queries have the same length I(n), [(n) > n, and that ¢(n) is a nondecreasing function.
Let N be a BPPp.n machine for B, such that on input y

1
#[N(y) = B(y)] > (1 — m) total N (y).

Consider the machine M’ that on input z, |z| = n, computes yy, ..., yx, the truth-table
queries of M on input x, where k < ¢(n), and, for each query y;, machine M’ guesses a
path of vV on input 7; and takes the output of this path as the answer to query y;, for
i=1,...,k. Using these answers instead of the oracle B, M’ simulates M on input = and
outputs the result.

M’ has totalyp(z) = []F, totaln(y;) paths. At least on those paths on which all the
answers to the oracle queries are correct, M’ decides correctly whether z is in A4, i.e., we

have

i
<
O
]
S
=
v
—
i
=
s
|
=
s

by assumption

(A4
TN
[S—
|
o
=)
S
| =
3
Sa—’
Sa—’
N
e
S
Lo ™
=
=
2
S
=
N>

1- 3q(n)) H totaln(y;)

=1

1)k i ,
> [1- total v (y; since I(n) > n
(1= agay) L totattan) ()
k k
>
2

> 3 totalpp(2).
This shows that A € BPPpah. |
Corollary 3.3 BPPp.h is closed under complementation, intersection, and union.

Since NP is contained in BPPpa¢, it follows that the closure of NP under truth-table

reductions is contained in BPPpa¢n.
Corollary 3.4 PNPllog] BPPpath-

It is known that BPP is low for PP [KSTT92] and for itself [Ko82,Zac82], i.e., PPBY =
PP and BPPBFY — BPP. We show in the next theorem that BPP is also low for BPPpach-
Observe that relative to Beigel’s previously mentioned oracle making PNF' not contained in
PP, we must also have that NP, and hence BPP,h, cannot be low for PP. That is, there
exists an A such that PPBPpan + PPA. Furthermore, by an easy induction, we have that
if BPPpatn is low for itself then the polynomial hierarchy, PH, is contained in BPP . But,
as we will see in Theorem 3.11 below, BPP 41 is contained in some level of the polynomial

hierarchy. Thus, BPPpamn is not low for BPP ¢ unless the polynomial hierarchy collapses.
Theorem 3.5 BPPPEL = BPPpan.

Proof: Let L ¢ BPPE};E via a machine M and a set A € BPP such that polynomial
p bounds the runtime of M4 and for all # € X* it holds that #[M*(z) = L(z)] >
total ypa(x).

Let B = {(0", wy,aq,...,wg, a) | E < pmn)and (Vi : 1 <@ < k)[Jw] < p(n) and
A(w;) = a;] }. Since BPP is closed under truth-table reductions [Ko82,Zac82], B € BPP.

Hence, there exist a probabilistic polynomial-time Turing machine Mp and a polynomial ¢

®1~

such that, for any input z = (0", wy,aq,...,wg, ax), Mp’s error probability is bounded by
2= (P()+4) and Mp’s computation tree is a full binary tree with totalys,(z) = 29(%).

Consider the machine M’ that on input z, |2| = n, performs the following steps.

1. M’ simulates M# on input 2. Whenever M queries the oracle, M’ nondeter-
ministically guesses the answer. Let (w1, a1),...,(wg, ar) be the sequence of queried

strings and guessed answers along a computation path y.

12

2. To verify the guessed answers, M’ simulates Mg on input (07, wy,aq,...,wk, ag).

3. M’ amplifies the output of M on path y from the first step if the guessed answers there
are certified in the second step. More precisely, M’ now appends 2P(")+4 accepting
(rejecting) paths if path y was accepting (rejecting) and the simulation in the second

step ended in an accepting path of Mp. Otherwise, M’ rejects.

After the first two steps, M’ has at most 2°(%) 22(?) computation paths. In the last step,
M’ amplifies all paths (a) in which the guessed oracle answers are correct and that are
certified by Mp in the second step, i.e., at most totaly;a(x) 22(") paths, and (b) all paths
in which the guessed oracle answers are false but are wrongly certified by Mp, i.e., at most
2r(n) 9= (p(n)+4) 20(7) paths. So we have

totalpyp(z) < op(n) 9a(n) 4 gp(n)+4 (totalMA(x)Qq(”) 4+ 2p(n) 9=(p(n)+4) Qq(n))‘

The paths on which M’ decides correctly include at least those paths that correspond
to correct paths of M in the first step and are subsequently certified in the second step.

Since these paths are amplified in the last step, we have
#[M(2) = L(z)] > (g totalMA(x)) ((1 = 2700 g0 o)+,

Now, it is not hard to see that #[M'(z) = L(x)] > 2 totalpy(x). Thus, L € BPP .
|
If we define a function class FBPP ., in the natural manner (see the analogous class
FBPP of Ko [Ko82]), then it is not hard to see that the same proof technique also establishes
that FBPPPIY = FBPP .

Corollary 3.6 NPBFPP ¢ BPPpach-

Indeed, we even have pNPPT [log]sBPP C BPPpath.

Babai [Bab85] introduced the Arthur-Merlin classes MA and AM. It is known that
NPBFP ¢ MA € AM ¢ BpPNP [Bab85,Zac88]. It is not known whether any of the
inclusions is strict or not, though various relevant oracle separations are known (e.g., Fenner
et al. [FFKL93] have constructed an oracle world in which NPBPY and MA differ). Below,
we strengthen Corollary 3.6 to show that even MA is contained in BPPpa¢h. This improves
the result of Vereshchagin [Ver92] that MA C PP.

Theorem 3.7 MA C BPPah.

13

Proof: Let L € MA. By standard amplification technique, there exist a polynomial-time
predicate () and polynomials p and ¢ such that for all z € ¥*

rel = (Iye Dy [Pr[Q(z,y,2)] > 1 — 2~ a9,
vg L = (vye D) [PrQ(a,y,2)] < 27D+,

where the probability is taken uniformly over all z € R(lz).

Consider the machine M that on input z guesses y € velel and » e woleD, and if
Q(z,y,z) is false M rejects, otherwise, M produces or(lz))+2 accepting paths.

It is not difficult to see that #[M(x)= L(x)] > 2 totalps(x). Thus, L € BPPpah. 1

It is an open question whether AM is contained in BPP,.,. Vereshchagin [Ver92]
constructed an oracle A such that relative to A the class AM is not a subset of PP, i.e.,
AMA Z PPA. Thus, AM is not a subset of BPPpa relative to A. On the other hand,
BPPpah is not a subset of AM unless the polynomial hierarchy collapses. This follows
from the result of Boppana, Hastad, and Zachos [BHZ87] that if coNP C AM then the
polynomial hierarchy collapses to its second level. Since coNP C BPPp1, we get the same
consequence from the assumption that BPP.h is contained in AM.

Sipser and Gacs ([Sip83], see also [Lau83]) showed that BPP C RNF. It is an open
question whether the same inclusion holds for BPPp,n. However, we show that BPP . C
BPPNF. As a first step, we show that a BPPpah set can be decided by a deterministic
polynomial-time Turing machine making logarithmically many queries to a ¥¥ oracle, and
hence BPPpan is in the polynomial hierarchy. A randomized version of this algorithm can
decide a BPPpa set with an NP oracle. The proof applies Sipser’s Coding Lemma for
universal hashing [Sip83].

We mention that we could get a shorter proof by applying the results of Stock-
meyer [Sto85] to approximate #P functions and of Jerrum, Valiant, and Vazirani [JVV86],
who showed a probabilistic version of Stockmeyer’s theorem. However, we prefer to give
a self-contained proof here, thereby encouraging the reader to see whether he or she can
improve our result, for example, by getting a one-sided error probabilistic algorithm (in
Part 2 of Theorem 3.11). Since there is an oracle relative to which BPP is not contained in

PNP [Sto85], one cannot obtain a deterministic algorithm with relativizable techniques.

Definition 3.8 [Sip83] Let X C ¥ and let Hy,...,Hy: Y7 — YF be a collection of

linear functions given as k X m 0-1 matrices. The predicates Separate and Hash are defined

14

as follows.

1. Separatex(Hq,...,Hy) <= (Vye X)(Fi:1<i<k)(Vze X 1y +# 2)[H(y) #
H;(z)], where H;(y) means multiplication of the k& x m matrix H; with the m vector y,

yielding a k vector, with the arithmetic done in GF[2].
2. Hashx(k) <= (3Hy,..., Hy € X¥") [Separatex (Hy, ..., Hy})].

The intuition about predicate Hash is that the size of the range of the hash functions
(which is determined by k) has to be sufficiently large, with respect to the size of X, for a
collection Hy, ..., Hy that separates X to exist.

Lemma 3.9 [Sip83] Let X C ¥ and let k = [log||X||] + 2. For a random collection
of functions Hy,..., Hy: Y™ — ¥k,

7
Pr[Separatex (Hq,..., Hy)] > 3

As a consequence of this lemma, we get a lower bound for the size of a set X. The upper

bound follows by the pigeon hole principle (see [Sto85]).

Corollary 3.10 [Sip83] If X C ¥™ and kx is the smallest & such that Hashx (k) is
true, then 26X =3 < ||X|| < kyx 2Fx.
Theorem 3.11

1. BPPpq C P¥2llog],

2. BPP,am C BPPNY,

Proof: Let L € BPPpan. There exist a nondeterministic Turing machine M and a
polynomial p that bounds the runtime of M such that for all z € X* it holds that #[M (z) =
L(z)] > (1 = 271y totaly ().

Sipser’s proof that BPP C X uses the fact that totalp(2) is known a priori. However,
here we have only an upper bound.

Fix o € ¥*; let n denote |z|. Define

A = {y gr()—lvl | yis an accepting computation of M on input 2 } and
R = {y grin) =l | yis a rejecting computation of M on input x }.

Clearly, ||A|| = accp(z) and ||R|| = rejp(2).

15

Observe that Separate is a coNP predicate in 2 and the hash functions Hy, ..., Hy when
applied to A or R, and Hash is a ¥} predicate in z and k.

Let k4 (kr) denote the minimal &k such that Hasha(k) (Hashgr(k)) is true. k4 and kg
can be computed by a binary search making at most log p(n) many queries to Hash4 and
Hashpg(k), respectively. From Corollary 3.10, it follows that 2473 < accps(2) < kg 24 and
that 2Fr—3 < reju(z) < kgr 2R Now it is not difficult to see that for all but finitely many
x we have x € L <= kgr < k4. This proves L € pEillog]

Next, we show that L € BPPNY. Consider the following probabilistic procedure, which

tries to approximate k4 and kr by randomly generating a collection of functions Hy, ..., Hg,
and directly asking the oracle Separatey about (Hq,..., Hy), for a given set X and increa-
sing k.

APPROXIMATE(z, X)
k<0
repeat
E—Lk+1
randomly choose Hy,..., Hy
until Separatex(Hy,...,H) or k = p(n)

return &

The following main algorithm decides whether x is in L, and is correct with high pro-

bability.

MAIN(2)

ks — APPROXIMATE(z, A)
k, < APPROXIMATE(z, R)
if k, > k, then accept

else reject.

By the definition of k4, we always have k4 < k,. Note that, by the upper bound of
Corollary 3.10 and since k4 < p(n), it follows that log(||A||/p(n)) < k4. From Lemma 3.9,
it follows that k, < |log ||A]|| +2 holds with probability at least 7/8. Since the same bounds
hold for k,, we have that with probability at least 3/4 it holds that both (a) log %ﬂ <
ko <logaccp(z)+ 2, and (b) log %n()x) < k, <logrejys(x)+ 2. This implies that for all
but finitely many x it holds that @ € L <= k, > k,, with probability at least 3/4. Thus,
L € BPPNP, |

16

As already mentioned before Theorem 3.5, BPP, cannot be low for itself unless the
polynomial hierarchy collapses to BPPpa¢h. From Theorem 3.11 we thus have the following

claim.

BPPpatn

Corollary 3.12 If BPPpath

= BPPpan then PH = P2llog],

Zachos [Zac88] has shown that NP C BPP implies PH = BPP. Since this result relativi-
zes (i.e., for all A, NP4 C BPP# implies PHA = BPPA), we obtain the following corollary
from Theorem 3.11.

Corollary 3.13 Y5 C BPP,,;, = PH = BPPN,

Toda [Tod91] and Toda and Ogiwara [T092] showed that PH C BPP® for any class C
among {PP,C_P,®P}. As a consequence, none of these classes can be contained in the
polynomial hierarchy unless the polynomial hierarchy collapses. Thus, none of these classes
can be contained in BPPp,¢h unless the polynomial hierarchy collapses.

Ogiwara and Hemachandra [OH93] and Fenner, Fortnow, and Kurtz [FFK94] indepen-
dently defined the counting class SPP as follows.

Definition 3.14 [OH93,FFK94] SPP is the class of all sets L such that there exist a
nondeterministic polynomial-time Turing machine M and an FP function f such that for
all x € ¥* it holds that

rel = accy(z)= f(z)+1, and

r¢ L = accy(z)= f(z).

Fenner, Fortnow, and Kurtz [FFK94] argue that SPP is, in some sense, the smallest
class that is definable in terms of the number of accepting and rejecting computations.
In particular, SPP is low for PP, C_P, and &P [FFK94]. Though it is an open question
whether SPP is contained in BPPp,h, there is an oracle relative to which this is not the

case.2

Theorem 3.15 There is an oracle A such that SPP4 ¢ BPPﬁath.

Proof: Let My, My, ... be an enumeration of nondeterministic polynomial-time Turing

machines and let pq,ps3,... be an enumeration of polynomials such that polynomial p;

2Very recently, Fortnow [For94] has improved our result by constructing an oracle relative to which SPP

is not contained in the polynomial hierarchy.

17

bounds the runtime of machine M;. Without loss of generality, we assume p;(n) = n'+i. Let
s(i),1=1,2,..., be asequence of integers defined by s(1) = 5 and, fors > 1, s(i+1) = 25(1),
We define the test language

L(A) = {1" [(3j) [n = s(j) and [[A="]| = 2"7']}.

Below, we will construct a set A such that for every i > 1, ||[A=*()| is either 2°()=1 or
25(0=1 _ 1. For such an A, we have L(A) € SPPA. Furthermore, we will construct A such

that, for each ¢ > 1, at least one of the following requirements holds.

(R1) M is not a BPPﬁath machine. That is, there exists an 2 € ¥* such that
1 3
1 totalMiA(x) < achiA(x) < 1 totalMiA(x).

(R2) There exists an n > 1 such that MA(1") accepts if and only if 1" ¢ L(A).

It follows from Theorem 3.1 that the existence of such an oracle establishes the theorem.
We construct the set A in stages. In stage ¢, we diagonalize against machine M;. Initially,
1=1and 4; = 0.
Stage i. Let n = s(i). We will add only strings of length n to A;. Since p;(s(j)) < n for all
J < 2, this will not effect the construction done in earlier stages.
Define

A = {AUZ]ZCXY and [|Z]|=2"""} and
B = {AUZ]|ZCYX and |Z]|=2""-1}

If there is a set X € AU B such that X fulfills requirement (R1), i.e., M is not a BPPgath
machine, then define A;11 = X and go to the next stage. Otherwise, we show that there is
a set in A U B such that requirement (R2) is fulfilled.

Let X be a set such that the number of paths of MZ»X on input 1™ is maximal for all
X € AU B. That is, we have

(VY € AUB) [totaly;y (1) < totaly; x (17)]. (%)

Suppose X € A. If 1" & L(M;*) then we are done since 1" € L(X). So suppose that
1" € L(M). For w € X NY", define X, = X — {w}. By definition, 1" ¢ L(X,,). We claim
that there exists a w € X N X" such that 1™ € L(MZ»Xw). For such a w, define A;1; = X,,.
Then requirement (R2) is fulfilled.

18

To prove our claim, assume that, for all w € X N X", it holds that 1™ ¢ L(MZ»Xw). By
taking w out of X, at least accy;x(1") — acc,, x.(1") accepting paths of M either change

to rejecting paths or disappear, and hence w must have been queried on those paths. Since

3 1
achix(ln) — achixw(ln) > 1 totalMix(ln) 3 totalMixw(ln)

1
> 3 totaly;x (1) by (%),

each w € X N X" is queried by MZ»X on input 1" on at least half of all paths. Thus, MZ»X asks
at least 2771 1 totalMix(ln) = 22 totalMix(ln) queries to its oracle. On the other hand,
M7 cannot ask more than p;(n) total ;x(1") queries to its oracle. Since p;(n) < 2772, this
yields a contradiction. l

The case X € B is symmetric. Here, one has to define X, by adding a string w € X" — X
to X, and then, in case 1™ € L(MZ»XW) for all w € ¥™ — X, argue regarding the number of

rejecting instead of accepting paths of M;. |

4 If Secure and Oblivious Computation Differ, then
P #PSPACE

We show, for both threshold and probabilistic computation, that secure computation
is more powerful than oblivious computation only if BPP # PP (which would resolve in
the affirmative the important question of whether polynomial time differs from polynomial

space).

Theorem 4.1 If there is a database D such that secureBPPgath + obliviousBPPgath, then
BPP # PP.

Proof: Assume BPP = PP. Note that this implies that BPP = P#F (since PF¥ =
P#F [BBS86] and BPP = PBPF). Let D be a database and let L be a language such that
L e secureBPPgath. We will show that L € obliviousBPPgath, thereby proving the theorem.

Let N be the machine of Definition 2.6 certifying that L € secureBPPgath. We may
assume, without loss of generality (since it is easy to see that secureBPPgath machines can
be amplified in the standard way and still remain secure) that the € of Definition 2.6 satisfies
€ > 1/4. Also, let p(n) be a polynomial, of the form n' 4 i for some integer ¢ > 1, such that

for all sets I the runtime of N* is at most p(n).

19

Very informally summarized, in the following a secure computation of N is decomposed
(query vector by query vector), to allow an oblivious BPPpa machine to mimic N’s com-
putation. This will be possible because our assumption gives #P-like computational power
to our oblivious BPPpa¢n machine.

We will now define an oblivious machine @ such that QP certifies that L €
obliviousBPPgath. Let z, |z| = n, be the input for N”. The computation of @7 has
essentially two stages. In the first stage, as long as the oblivious machine Q¥ asks oracle
queries, it only has 0" available as input. What it does is: QP simulates N on input 0™.
At the end of each path, QP has defined a query vector, say, v. By the definition of secure

computation, the proportion of occurrences of v is the same in N2(0") and NP (z), that is,

path-occurances o gny(v) path-occurancesy o (,(v)

total ;o (0™) B total o ()

(1)

In the second stage, () gets access to its input 2 (and thus cannot ask anymore ora-
cle queries). Let ayp(,)(v) denote the number of accepting paths of NP(z) that
have query vector v. Roughly speaking, at each path with query vector » found in
the first stage,) will append a full binary tree having approximately a portion of
aND(x)(v)/path-occumncesND(l,)(v) accepting paths. So, QP will have approximately the
same overall acceptance behavior as N7,

More formally, we partition the unit interval into 27 intervals of equal length, for some
appropriately chosen ¢, and take the largest k/29, k € {0,...,27 — 1}, that is still less than
anD () (v)/ path-occurances () (v) as an approximation for it. This is done as follows. For
a query vector v let V. = {v | v € D and v is a component of v }. Now, () guesses k of
length ¢ and tests whether (z,v,V,k) € A, where A is defined as follows. For y € ¥*, a
vector w of at most p(|y|) strings each of length at most p(|y|), a set of strings W each
occurring as a component of vector w, and a string j of length ¢, interpreted as a binary

number between 0 and 27 — 1,

anw(y)(w)

- 1.
path-occurancesyw) (w)

(y,w,W,j)e A <— j < 27

Clearly, A € P#F_ and thus A is in BPP, by assumption. Hence, there exist a probabilistic
machine M, and a polynomial h such that M4 accepts A with error probability bounded
by 279, and furthermore, for any input (y,w, W, j), the computation tree of M, is a full
binary tree with 2"(¥D paths.

20

In order to test whether (z,v,V,k)is in A, @ simulates M4 on input (z,v,V, k). Q
accepts z if and only if the simulation ends in an accepting state of M 4. This completes
the definition of Q.

We will argue that the machine ¢) has the desired properties. By the definition of ¢}, it
is clearly an oblivious machine. Furthermore, for any given input z, let © be a query vector
that actually occurs in the run of N”(2). From equation (1), we get that the portion of
paths in the tree of QP that have query vector v is identical to the portion in the tree of
NP(z) that have query vector v . We now argue that those paths in Q” () having query
vector v have almost the same portion accepting as do those paths in ND(x). Since v was
an arbitrary occurring query vector, it will follow that Q”(z) has appropriate behavior.

By our construction, we can bound aQD(l,)(v), the number of accepting paths of Q
that have query vector v as follows. Let V be the associated answer set for v. Note that
anv(y)(v) = anp(y)(v) and path-occurancesyv) (v) = path-occurancesyp(,)(v). Hence,
we have (z,v,V, k)€ Aif and only if 0 < k < [29 | — 1. Since M4 has

error probability at most 277, we get the following lower bound for OéQD(l,)(/U):

oy D(5) (V)
path-occurances ND(2) (v)

N D () (V)
path-occurances ND(z) (v)

24

2

path-occurancesgp ,y(v) (1-277) < agoy(v).

For an upper bound, we have to count the small number of extra accepting paths caused

by the error probability of M4:

o v
21 path-occﬁaD?Eze)iN)D (v) +1
aQD(l,)(v) < path-occumncesQD(x)(v) 7 (=) ‘
With these bounds on OéQD(l,)(/U), it is now easy to bound the error of QP for query vector ».
Namely, let
error(v) = QP (2)(?) _ OND (2)(V)

path-occurancesgp ,y(v) path-occurancesyp ;) (v)

then we get from the above bounds on agp (,)(v) that error(v) < 279%1. Since this holds
for each occurring query vector v, it certainly holds that 279F! bounds the overall error
portion: the difference between the portion of accepting paths of N”(z) and the portion
of accepting paths of QP (2) is at most 2791, Now, define ¢ = 4. Since N” had an ¢ (of
Definition 2.6) of at least 1/4, and since we have % — % = %, we may conclude that QP is
an oblivious machine accepting the same language as N and having ¢ (of Definition 2.8)
equal to 1/8. |

21

The proof of Theorem 4.1 can easily be modified to show the corresponding result for

probabilistic classes.

Corollary 4.2 If there is a database D such that secureBPPP + obliviousBPP”, then
BPP # PP.

Recall that sets in obliviousBPP? have small circuits. Thus, the existence of a set in

secureBPPP not having a small circuit would separate obliviousBPP” from secureBPPP.

Corollary 4.3 If there is a database D such that secureBPP” ¢ P/poly, then BPP # PP.

Since P C BPP C PP C PSPACE, we immediately have the result promised in the

section title.

Corollary 4.4 If there is a database D such that secureBPPgath + obliviousBPPgath, then
P # PSPACE.

5 Open Problems

There are several open problems regarding BPPp,n. Is BPPp,n contained in ¥ or
even in RNF'? It seems that the proof technique of Theorem 3.11 doesn’t suffice to establish
either of these relationships. Does BPP,,¢n have complete sets? There is a relativized world

in which BPP lacks complete sets [HH88]; we conjecture that the same holds for BPPpa.

Regarding secure computation, does there exist a structural condition that completely
characterizes the conditions under which (VD) [secureBPPP = obliviousBPP?] or that com-
pletely characterizes the conditions under which (VD) [secureBPPgath = obliviousBPPgath]?

The study, mentioned in Section 2.2, of classes between BPPY and secureBPP”, and of

D

paths also remains an interesting open area.

classes between BPPgath and secureBPP

Acknowledgments

For helpful discussions, we are grateful to I'. Ablayev, G. Brassard, J. Cai, L. Fortnow,
F. Green, J. Seiferas, and S. Toda. We thank an anonymous conference referee for pointing

out Theorem 6.2, and for helpful pointers to the literature.

22

6 Appendix: Randomized Databases Do Not Strengthen

Secure Probabilistic Computation

The secure probabilistic computation of Definition 2.7 can be considered a special case of
2-player interactive computation. In particular, the database can be considered a powerful
player that truthfully answers difficult questions asked by a polynomial-time player. When
the powerful player in a secure probabilistic computation answers a query, it is unable to
take the past history of transactions into consideration. In contrast, players in the usual
interactive computation models can remember the history of past transactions. Nonethe-
less, the secure probabilistic computation model is quite powerful. Even if the database is
replaced with a deterministic player that has unlimited computation power and memory, it
is clear that the resulting interactive computation can be simulated by a polynomial-time
player with a new database that is merely a set.

In this section, we consider the effect of allowing the powerful player to be probabilistic.
The resulting model is called a one-oracle instance-hiding scheme that leaks at most the

length of its input [BF90]. We present a slightly modified but equivalent definition.

Definition 6.1 [One-oracle instance-hiding schemes that leaks at most the
length of its input] For a set L, a one-oracle instance-hiding scheme that leaks at most
the length of its input is a synchronous protocol executed by two players, M4 and Mpg. The
number of rounds is bounded by a polynomial in the length of the input. In each round, M4
does a randomized polynomial-time local computation and sends a message (i.e., query) to
Mp. Upon receiving the query from My, Mp does an unbounded amount of local com-
putation (possibly using an oracle and a random tape) and sends a message (i.e., answer)
to M 4. The round is completed when M4 receives the answer sent by Mp. Let 7 denote
the sequence of messages sent and received by M4 along a computation path, and let Ty
denote the random tape of M 4. After the last round, M4 uses 7, T4, and the input z to
compute a value M4(x). The interactive computation scheme should satisfy the following

two conditions:

1. [Probability of acceptance is bounded away from 1/2] There exists an € > 0 such
that for all € ¥* it holds that Pr[Ma(z) = L(x)] > 1/2 4 e. (Note that the
probability depends on the combined effect of the randomness of both M4 and Mp.)

2. [The messages reveal no information to an observer other than perhaps

the length of the input] For every k € {0,1,2,---}, and every vector

23

v = (q1, @1, @2, G2, ", Gk, Qk)s (1, Q15 G2, G2, <, Gk, @ € X7, and every pair of
strings € ¥* and y € ¥* such that |z| = |y], it holds that

Pr[r = v on input 2] = Pr[r = v on input y].

For any polynomial p(-), the above probability 1/2 4 € can be amplified to 1 — 2= p(lz])
via the standard technique of repeating computations and using the most frequent result.
Clearly, if L € secureBPP? for some database D, then L has a one-oracle instance-hiding
scheme that leaks at most the length of its input. The following theorem, pointed out to

us by an anonymous conference referee, shows that the converse is also true.

Theorem 6.2 If L is a language that has a one-oracle instance-hiding scheme that leaks

at most the length of its input, then there exists a database D such that L € secureBPPP.

Proof: Let L be a language that has a one-oracle instance-hiding scheme that leaks at
most the length of its input. In this proof, we use the notation of Definition 6.1. Follo-
wing [AFKS9], we use the term transcript to denote 7, the sequence of queries and answers
along a computation path. Without loss of generality, we assume that no transcript is a
proper prefix of another transcript and that the length of an input is passed to Mp as
the first query. In this proof, we first show that Mp can be modified so that it needs
only a polynomial number of random bits. Then we show that these random bits can be
supplied by M4, thereby eliminating the need for Mp to be random. It follows that the
resulting powerful but deterministic player can be replaced with a set as claimed in the
theorem. In the rest of the proof, we call the machines M4 and Mg the client and the
server, respectively.

Given an input of length n, the set of transcripts that have non-zero probabilities define
a tree whose depth is bounded by a polynomial in n. Let’s call this a strategy tree. (As
will become clear later in this proof, the strategy tree effectively defines the strategy of the
server. Also, it serves as a convenient template for modifying the strategy of the server.)
There are two types of nodes in a strategy tree: server nodes and client nodes. These two
types of nodes alternate in each path from the root to a leaf. The root is a client node.
The leaves are also client nodes. FEach edge from a client node is labeled with a query
string; each edge from a server node is labeled with an answer string. Each leaf represents
a transcript that has a non-zero probability; the transcript consists of labels read from the
edges along the path from the root to the leaf. Edges from the same node have distinct

labels so that a transcript defines a unique path in a strategy tree. Corresponding to each

24

internal node in a strategy tree, there exists a partial transcript that consists of the labels

that are read from the edges along the path from the root to the node.
Associated with each leaf is the probability with which the transcript corresponding to

the leaf occurs. Clearly, based on this probability distribution, we can associate with each
internal node the probability with which the partial transcript corresponding to the node
occurs. To each edge from a node, we associate the conditional probability with which its
label occurs as the next query or answer in a computation, given that the current partial
transcript of the computation is the one represented by the node. Note that the sum of
the probabilities associated with all the edges from a node is one and that the probability
associated with each node is the product of the probabilities associated with the edges along

the path from the root to the node.

It is easy to see that an interactive computation reveals at most the length of the input
(in the sense of Part 2 in Definition 6.1) if and only if its strategy tree is the same for all
inputs of the same length. In particular, the strategy of the server (that is, the probability
distribution among edges from each server node) is the same for all inputs of the same length.
Further, if we modify the server but (i) we do not add new transcripts to the strategy tree
and (ii) the client is not changed, then the resulting strategy tree is the same for all inputs
of the same length. Hence, we may arbitrarily adjust the probability distribution among
the existing edges from each server node without affecting the instance-hiding nature of
the computation. However, such change could affect the acceptance probabilities of input
strings. Therefore, in the following, we carefully modify the behavior of the server so that
the acceptance of each input string remains intact. In particular, assuming without loss of
generality that the probability of correctness (in the sense of Part 1 in Definition 6.1) of the

3

original instance-hiding computation is greater than 5, we will ensure that the probability
5

of correctness of the modified instance-hiding computation is greater than 3.

Let ¢(n) be a polynomial that bounds both the length of the label of each edge and the
depth of the strategy tree. The main obstacle in transforming the randomized server to a
deterministic one is the fact that the probability of an edge from a server node can be an
arbitrary value. In order to get around the obstacle, we adjust the probability of each edge
from server nodes so that it is an integral multiple of 2-9*()=4(n)=3 and that it differs from
the original probability by less than 9% (n)=a(n)=3 Thus, the probability change at each
leaf of the strategy tree is less than q(n)2_q2(”)_q(”)_3. Since there are at most 2¢° (") leaves,
it is easy to see that the change in the probability of correctness of the whole computation

is less than %. Therefore, the probability of correctness of the modified secure computation

25

is greater than %. Note that the resulting strategy tree can be constructed by the server
upon receiving the first query (i.e., the length of the input). The server uses this strategy
tree to answer all the queries.

The server modified in this way needs at most a polynomial number (g(n)(¢*(n) +
g(n) + 3)) of random bits. Hence, the necessary random bits can be supplied to the server
by the client at the beginning of a computation. Note that this modification affects neither
the instance-hiding nature of the computation nor the probability of correctness of the
computation. The resulting server is deterministic, but it may not yet be considered a
deterministic function oracle since it may give different answers to different instances of the
same queried string. By prefixing each query with an appropriate public information with
which the server can uniquely locate the current stage of computation in the strategy tree
(for example, {q1,...,¢;—1) can be used as a prefix to the i-th query along a computation
path on which ¢; (0 < j < ¢) is the j-th query), the server can be transformed into a
deterministic function oracle. It is easy to see that we can further modify the client so that

it securely accepts the same language with a set oracle (D) instead of a function oracle.

Clearly, the resulting computation is a secure probabilistic computation. |

References

[AFK89] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle.
Journal of Computer and System Sciences, 39:21-50, 1989.

[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the 17th ACM
Symposium on Theory of Computing, pages 421-429, April 1985.

[BBS86] J. Balcazar, R. Book, and U. Schéning. The polynomial-time hierarchy and
sparse oracles. Journal of the ACM, 33(3):603-617, 1986.

[Bei92] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. In Proceedings of the
7th Structure in Complexity Theory Conference, pages 14-19. IEEE Computer
Society Press, June 1992.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Procee-
dings of the 7th Annual Symposium on Theoretical Aspects of Computer Science,
pages 37-48. Springer-Verlag Lecture Notes in Computer Science #415, 1990.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. STAM
Journal on Computing, 4(4):431-442, 1975.

[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25:127-132, 1987.

26

[Boo89]

[FFK94]

[FFKL93]

[FFLS92]

[For94]
[Gil77]

[Hem®&9]

[HHSS]

[HLST93]

[IMT4]

[JVV86]

[KLS0]

[Ko82]

R. Book. Restricted relativizations of complexity classes. In J. Hartmanis,
editor, Computational Complexity Theory, pages 47-74. American Mathematical
Society, 1989. Proceedings of Symposia in Applied Mathematics #38.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48(1):116-148, 1994.

S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In
Proceedings of the 8th Structure in Complexity Theory Conference, pages 120—
131. IEEE Computer Society Press, May 1993.

J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adap-
tiveness and additional queries in random-self-reductions. In Proceedings of the
7th Structure in Complexity Theory Conference, pages 338-346. IEEE Computer
Society Press, June 1992. Final version appears in Computational Complezity,
v. 4, 1994.

L. Fortnow, December 1994. Personal Communication.

J. Gill. Computational complexity of probabilistic Turing machines. SITAM
Journal on Computing, 6(4):675-695, 1977.

L. Hemachandra. The strong exponential hierarchy collapses. Journal of Com-
puter and System Sciences, 39(3):299-322, 1989.

J. Hartmanis and L. Hemachandra. Complexity classes without machines: On
complete languages for UP. Theoretical Computer Science, 58:129-142, 1988.

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. Wagner. On
the power of polynomial time bit-reductions (extended abstract). In Proceedings
of the 8th Structure in Complexity Theory Conference, pages 200-207. IEEE
Computer Society Press, May 1993.

B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages.
In Proceedings of the 9th Structure in Complexity Theory Conference, pages 242—
253. IEEE Computer Society Press, June/July 1994.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinato-
rial structures from a uniform distribution. Theoretical Computer Science,
43(2,3):169-188, 1986.

R. Karp and R. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th ACM Symposium on Theory of
Computing, pages 302-309, April 1980. An extended version has also appeared
as: Turing machines that take advice, L’Fnseignement Mathématique, 2nd series
28, 1982, pages 191-2009.

K. Ko. Some observations on the probabilistic algorithms and NP-hard problems.
Information Processing Letters, 14(1):39-43, 1982.

27

[KSTT92] J. Kébler, U. Schéning, S. Toda, and J. Tordn. Turing machines with few accep-

[Lau83]

[LLS75]

[LS86]

[MS72]

[OHO3]

[Sim75]

[Sip8&3]

[Sto77]

[Sto’5]

[TO92]

[Tod91]

[Ver92]

[Zac82]

[Zac88]

[ZHS6]

ting computations and low sets for PP. Journal of Computer and System Sci-
ences, 44(2):272-286, 1992.

C. Lautemann. BPP and the polynomial hierarchy. Information Processing
Letters, 14:215-217, 1983.

R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reduci-
bilities. Theoretical Computer Science, 1(2):103-124, 1975.

T. Long and A. Selman. Relativizing complexity classes with sparse oracles.

Journal of the ACM, 33(3):618-627, 1986.

A. Meyer and L. Stockmeyer. The equivalence problem for regular expressi-
ons with squaring requires exponential space. In Proceedings of the 13th IFEF
Symposium on Switching and Automata Theory, pages 125-129, 1972.

M. Ogiwara and L. Hemachandra. A complexity theory for closure properties.
Journal of Computer and System Sciences, 46:295-325, 1993.

J. Simon. On Some Central Problems in Computational Complexity. PhD thesis,
Cornell University, Ithaca, N.Y., January 1975. Available as Cornell Department
of Computer Science Technical Report TR75-224.

M. Sipser. A complexity theoretic approach to randommness. In Proceedings of
the 15th ACM Symposium on Theory of Computing, pages 330-335, 1983.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1-22, 1977.

L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Com-
puting, 14(4):849-861, 1985.

S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-
time hierarchy. STAM Journal on Computing, 21(2):316-328, 1992.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865-877, 1991.

N. Vereshchagin. On the power of PP. In Proceedings of the 7th Structure in
Complexity Theory Conference, pages 138-143. IEEE, Computer Society Press,
June 1992.

S. Zachos. Robustness of probabilistic complexity classes under definitional per-
turbations. Information and Computation, 54:143-154, 1982.

S. Zachos. Probabilistic quantifiers and games. Journal of Computer and System
Sciences, 36:433-451, 1988.

S. Zachos and H. Heller. A decisive characterization of BPP. Information and
Control, 69:125-135, 1986.

28

