
Threshold Computation and Cryptographic Security�Yenjo Hany Lane A. Hemaspaandraz Thomas ThieraufxRevised Typescript Completed: September 6, 1995.AbstractThreshold machines are Turing machines whose acceptance is determined by whatportion of the machine's computation paths are accepting paths. Probabilistic machinesare Turing machines whose acceptance is determined by the probability weight of themachine's accepting computation paths. In 1975, Simon proved that for unbounded-error polynomial-time machines these two notions yield the same class, PP. Perhapsbecause Simon's result seemed to collapse the threshold and probabilistic modes ofcomputation, the relationship between threshold and probabilistic computing for thecase of bounded error has remained unexplored.In this paper, we compare the bounded-error probabilistic class BPP with the analo-gous threshold class, BPPpath, and, more generally, we study the structural properties ofBPPpath. We prove that BPPpath contains both NPBPP and PNP[log], and that BPPpathis contained in P�p2 [log], BPPNP, and PP. We conclude that, unless the polynomial hier-archy collapses, bounded-error threshold computation is strictly more powerful thanbounded-error probabilistic computation.We also consider the natural notion of secure access to a database: an adversary whowatches the queries should gain no information about the input other than perhaps itslength. We show, for both BPP and BPPpath, that if there is any database for which thisformalization of security di�ers from the security given by oblivious database access,then P 6= PSPACE. It follows that if any set lacking small circuits can be securelyaccepted, then P 6= PSPACE.�Research supported in part by the National Science Foundation under grants CCR-8957604, CCR-9057486, CCR-9322513, and INT-9116781/JSPS-ENG-207, and by DFG Postdoctoral Stipend Th 472/1-1.yUniversity of Rochester. Current address: Microtec Research Inc., 2350 Mission College Blvd., SantaClara, CA 95054.zUniversity of Rochester. Department of Computer Science, University of Rochester, Rochester, NY14627 USA.xUniversit�at Ulm. Abteilung Theoretische Informatik, Universit�at Ulm, Oberer Eselsberg, 89069 Ulm,Germany. Work done in part while visiting the University of Rochester and Princeton University.1

1 IntroductionIn 1975, Simon [Sim75] de�ned threshold machines. A threshold machine is a nonde-terministic Turing machine that accepts a given input if more than half of all computationpaths on that input are accepting paths. Gill [Gil77] de�ned the class PP as the classof sets for which there exists a probabilistic polynomial-time Turing machine that acceptsexactly the members of the set with probability greater than 1/2. Simon [Sim75] showedthat the class of sets accepted by polynomial-time threshold machines characterizes theunbounded-error probabilistic class PP.In this paper, we extend the notion of threshold computation to bounded-error pro-babilistic classes, and we study the degree to which threshold and probabilistic database(\oracle") computations hide information from observers.In particular, we introduce BPPpath and Rpath as the threshold analogs of BPPand R [Gil77]. We give evidence that, unlike the case for PP, these threshold classesare di�erent from their probabilistic counterparts. Section 3 studies the properties of theclass BPPpath and its relationship to other complexity classes. For example, we show|incontrast to the BPP case|that BPPpath is self-low (i.e., BPPpathBPPpath = BPPpath) only ifthe polynomial hierarchy collapses. We also show that BPP is low for BPPpath, that thereis a relativized world in which BPPpath does not contain the smallest reasonable countingclass, and that BPPpath has many closure properties. Figure 1 gives an overview of theinclusion relations we establish between BPPpath and other complexity classes; in parti-cular, note that, though contained in the polynomial hierarchy, BPPpath contains NP andcoNP.Section 4 studies, for threshold and probabilistic computations that have Turing (thatis, adaptive) access to a database, the degree to which the input can be hidden from anobserver. In particular, we consider the least restrictive possible notion ensuring that apowerful observer should gain no information about the input other than its length [BF90].For the cases of unbounded-error probabilistic and threshold computation, we note thatthis optimal degree of security can be achieved in all cases. For the cases of bounded-errorprobabilistic and threshold computations, we prove the following result: If there exists anydatabase D to which secure access yields more power than oblivious access (a notion inwhich the querying machine|until �nished querying|is wholly denied access to the inputother than the length of the input [FFLS92]), then P 6= PSPACE.2

AM�������PP

R@@@@ ����BPPNPBPPMAHHHHHHH BPPpath����������\\\\\\\\\\ BPPNP����������

NP = RpathHHHHHHH PNP[log]SSSSSSSSSS PNPRNPHHHHHHH �p2P�p2[log]�p3

Figure 1: Inclusion relations between BPPpath and other complexity classes. Not shown arethe inclusions BPP � RNP and AM � P�p2 [log] (in fact, AM � �p2). As an open problem, weask whether BPPpath is contained in �p2, or even RNP. There is an oracle relative to whichBPPpath is not in PNP. 3

2 De�nitions and DiscussionThroughout this paper, we use the alphabet � = f0; 1g. For a string x 2 ��, jxj denotesthe length of x. For a set A � ��, A(x) denotes the characteristic function of A, A=ndenotes f y �� y 2 A and jyj = n g, A�n denotes f y �� y 2 A and jyj � n g, and kAk denotesthe cardinality of A. The complement of A is A = �� � A, and for a class C of sets,co C = fA �� A 2 C g.Let (�; �)b : ����� ! �� be a polynomial-time computable, polynomial-time invertible,one-to-one, onto function. For any string z, let z+1 denote the string that lexicographicallyfollows z, and for any string z 6= �, let z � 1 denote the string that lexicographicallyprecedes z. Let ks be the lexicographically kth string in ��. We de�ne our (multi-arity,onto) pairing function by (x1; x2; � � � ; xk) equals (a) (�; �)b when k = 0, (b) (�; x1 + 1)bwhen k = 1, and (c) (ks; (x1; (x2; (� � �(xk�1; xk)b � � �)b)b)b)b when k � 2.P (NP) denotes the class of languages that are accepted by polynomial-time determini-stic (nondeterministic) Turing machines. For nondeterministic Turing machines we assumewithout loss of generality that the nondeterministic branching degree is at most two. Mis polynomial-normalized (henceforward denoted normalized) if there is a polynomial psuch that on every input x the machine M makes exactly p(jxj) nondeterministic moveson each computation path. FP is the class of polynomial-time computable functions. Onecan de�ne relativized classes such as PNP (respectively, PNP[log]) by employing P machineshaving some NP oracle that can be asked polynomially (respectively, logarithmically) manyqueries, i.e., so-called oracle machines [BGS75]. This is called a Turing reduction (to NP).If the queries are made nonadaptively (i.e., in parallel) we call this a truth-table reduction(see Ladner, Lynch, and Selman [LLS75]). By PNPtt we denote the class of sets that aretruth-table reducible to NP. But in fact, PNPtt = PNP[log] [Hem89].The polynomial hierarchy [MS72,Sto77] is de�ned as follows.�p1 = NP;�pk+1 = NP�pk (for k 2 f1; 2; 3; � � �g), andPH = [k�1�pk :P=poly [KL80] denotes the class of sets having small circuits.For a nondeterministic polynomial-time Turing machine M , let accM(x) (rejM (x))denote the number of accepting (rejecting) paths ofM on input x and let totalM (x) denote4

the total number of paths ofM on input x. #P is the class of functions f such that for somenondeterministic polynomial-time Turing machine M it holds that (8x) [f(x) = accM(x)].2.1 Probabilistic and Threshold ComputationA probabilistic polynomial-time Turing machine [Gil77] is a nondeterministic polynomial-time Turing machine M such that M chooses with equal probability each of the nondeter-ministic choices at each choice point. Pr[M(x) = 1] denotes the probability weight of thosepaths on which M accepts x and Pr[M(x) = 0] denotes the probability weight of thosepaths on which M rejects x.We now de�ne some complexity classes in terms of probabilistic polynomial-time Turingmachines.De�nition 2.1 [Probabilistic Classes]1. PP [Gil77] is the class of all sets L such that there exists a probabilistic polynomial-time Turing machineM such that for all x 2 �� it holds that Pr[M(x) = L(x)] > 1=2.2. BPP [Gil77] is the class of all sets L such that there exist a probabilistic polynomial-time Turing machineM and an � > 0 such that for all x 2 �� it holds that Pr[M(x) =L(x)] > 1=2 + �.3. R [Gil77] is the class of all sets L such that there exists a probabilistic polynomial-timeTuring machine M such that for all x 2 �� it holds thatx 2 L =) Pr[M(x) = 1] > 1=2; andx 62 L =) Pr[M(x) = 0] = 1:By de�nition, we clearly have R � BPP � PP [Gil77].The class PP can also be characterized as the class of sets L such that there exist anondeterministic polynomial-time Turing machine M and a function f 2 FP such that forall x 2 �� it holds that x 2 L () accM(x) � f(x).By looking at the portion of accepting paths rather than the probability weight of theaccepting paths, we now introduce the threshold analogs of the above probabilistic classes.Let #[M(x) = 1] denote accM (x) and let #[M(x) = 0] denote rejM(x).De�nition 2.2 [Threshold Classes]1. PPpath [Sim75] is the class of all sets L such that there exists a nondeterministic5

polynomial-time Turing machine M such that for all x 2 �� it holds that #[M(x) =L(x)] > 12 totalM (x).2. BPPpath is the class of all sets L such that there exist a nondeterministic polynomial-time Turing machine M and an � > 0 such that for all x 2 �� it holds that #[M(x) =L(x)] > (12 + �) totalM(x).3. Rpath is the class of all sets L such that there exists a nondeterministic polynomial-time Turing machine M such that for all x 2 �� it holds thatx 2 L =) accM (x) > 12 totalM (x); andx 62 L =) rejM (x) = totalM(x):It is easy to see that Rpath � BPPpath � PPpath. For all threshold classes in this paper, as anotational convenience we will place oracles above the word \path" (e.g., BPPBPPpath denotes(BPPpath)BPP).It is known that R, BPP, and PP sets can be accepted via normalized probabilisticpolynomial-time Turing machines: just extend each computation path of a given machineup to a �xed polynomial length and, on each new path, accept if the path that was extendedaccepted, and otherwise reject. The modi�ed machine has the same acceptance probabilityas the original one. Observe that for normalized machines, the probabilistic interpretationof the machine accepts the same set as the threshold interpretation of the machine. Thus,each of the probabilistic classes is contained in the corresponding threshold class, i.e., PP �PPpath, BPP � BPPpath and R � Rpath.In fact, Simon [Sim75] has already shown that PPpath is not a bigger class than PP. Forcompleteness we give a proof here.Theorem 2.3 [Sim75] PPpath = PP.Proof: It su�ces to show PPpath � PP. Let L 2 PPpath via PPpath machine M withpolynomial q bounding M 's runtime. Consider the machine M 0 that on input x extendseach path y of M by appending a full binary subtree of depth q(jxj)� jyj. Furthermore,on the leftmost path of this appended subtree, M 0 branches into two accepting (rejecting)paths, if M accepted (rejected) on the path y. On each remaining path of the subtree, M 0branches into one accepting and one rejecting path.M 0 on input x has 2q(jxj)+1 paths and, of these, 2q(jxj)+accM (x)�rejM (x) are acceptingpaths. This shows L 2 PP via M 0. 6

Interestingly, this equivalence between probabilistic and threshold classes cannot holdfor R and BPP unless the polynomial hierarchy collapses to its second level. This followsfrom the fact that NP is contained in Rpath and thus is also contained in BPPpath.Proposition 2.4 Rpath = NP.Proof: Rpath � NP is immediate from the de�nition. For the reverse inclusion, let M bea nondeterministic Turing machine and let polynomial p bound the runtime of M .Consider the machine M 0 that on input x �rst simulates M on input x, and if thesimulation ends in an accepting path y, then M 0 appends 2p(jxj)+1 accepting paths to y andotherwise M 0 rejects.Now, more than half of all paths of M 0 on input x are accepting, if x 2 L(M), and M 0has no accepting paths, otherwise. This shows L(M) 2 Rpath.Corollary 2.5 NP � BPPpath.It follows that if BPPpath is equal to BPP, then BPPpath, and hence NP, has smallcircuits, which in turn, by the result of Karp, Lipton, and Sipser (see [KL80]), impliesthat the polynomial hierarchy collapses. So we cannot expect BPPpath to have normalizedmachines. For di�erent, contemporaneous work related to normalized versus non-normalizedcomputation, see Hertrampf et al. [HLS+93] and Jenner, McKenzie, and Th�erien [JMT94].We have seen now that there are some crucial di�erences between BPP and its thresholdanalog, BPPpath. We will study BPPpath in more detail in Section 3, and especially, we willstrengthen Corollary 2.5.2.2 Secure ComputationIn this subsection and in Section 4, we study notions of secure adaptive access to databa-ses in the presence of a powerful spying observer. We give below what we feel are the mostnatural de�nitions. In these de�nitions, we obtain security by requiring that an observer(seeing a path drawn uniformly from all the machine's paths) should learn nothing about theinput string other than perhaps its length. For threshold computation, this notion is new.For probabilistic computation, the appendix section, Section 6, proves that this de�nition isequivalent to the notion of \one-oracle instance-hiding schemes that leak at most the lengthof their inputs" [BF90]. The original motivation for such classes, as explained for exampleby Beaver and Feigenbaum [BF90], is, very roughly, to study whether weak devices can solvehard problems by asking some powerful device questions in such a way that no observer can7

tell which problem was actually solved by the weak device. Since NP � BPPpath, BPPpathclearly is not a computationally weak class. It nonetheless makes sense to consider the sameinteractive model in the case that applies here: studying whether a relatively powerful class(BPPpath) can use a (potentially powerful) information source while shielding informationon the problem being solved even from extremely powerful observers.De�nition 2.6 [Secure Threshold Computation] For any set D, a set A is saidto be in secureBPPDpath (that is, is said to be \securely accepted by a bounded-errorthreshold polynomial-time machine via access to database D") if there is a nondetermi-nistic polynomial-time Turing machine N such that:1. [A 2 BPPDpath via machine N] There exists an � > 0 such that for all x 2 �� it holdsthat #[ND(x) = A(x)] > (1=2 + �) totalND(x) (see Part 2 of De�nition 2.2).2. [The queries ofND reveal no information to an observer other than perhaps the lengthof the input] For every k 2 f0; 1; 2; � � �g, and every vector v = (v1; v2; � � � ; vk),v1; v2; � � � ; vk 2 ��, and every pair of strings x 2 �� and y 2 �� such that jxj = jyj,it holds that path-occurancesND(x)(v)totalND(x) = path-occurancesND(y)(v)totalND(y) ;where path-occurancesND(z)(v) = jjfp �� p is a path ofND(z) on which v is the sequenceof queries asked to the oracle (in the order asked, possibly with duplications if thesame query is asked more than once)1gjj.Similarly, for the probabilistic class BPP, we have the following de�nition of secure access.De�nition 2.7 [Secure Probabilistic Computation] For any set D, a set A is said tobe in secureBPPD (that is, is said to be \securely accepted by a bounded-error probabilisticpolynomial-time machine via access to database D") if there is a probabilistic polynomial-time Turing machine N such that:1. [A 2 BPPD via machine N] There exists an � > 0 such that for all x 2 �� it holdsthat Pr[ND(x) = A(x)] > 1=2 + � (see Part 2 of De�nition 2.1).2. [The queries ofND reveal no information to an observer other than perhaps the lengthof the input] For every k 2 f0; 1; 2; � � �g, and every vector v = (v1; v2; � � � ; vk),1Henceforward, we'll refer to this as a query vector.8

v1; v2; � � � ; vk 2 ��, and every pair of strings x 2 �� and y 2 �� such that jxj = jyj,it holds thatPr[the query vector of ND(x) is v] = Pr[the query vector of ND(y) is v].Oblivious self-reducibility was discussed in [FFLS92], and we now de�ne complexity classescapturing the notion of oblivious access.De�nition 2.8 [Oblivious Probabilistic and Threshold Classes] For any set D, aset A is said to be in obliviousBPPDpath (respectively, obliviousBPPD) if there is a nonde-terministic (respectively, probabilistic) polynomial-time Turing machine N such that:1. [A 2 BPPDpath (respectively, A 2 BPPD) via machine N] There exists an � > 0 suchthat for all x 2 �� it holds that #[ND(x) = A(x)] > (1=2+�) totalND(x) (respectively,Pr[ND(x) = A(x)] > 1=2 + �).2. N is an oblivious machine in the sense that on an input z it initially is given accessto a \pre-input" tape on which 0jzj is written. N then performs its adaptive queriesto D. Then, after making all queries to D, machine N is given access to z.We clearly have that, for every D,BPPDpath � secureBPPDpath � obliviousBPPDpath; andBPPD � secureBPPD � obliviousBPPD:Are these inclusions proper? In other words, does using security against observers as thede�nition of secure computation (secureBPPDpath, secureBPPD) yield a more
exible notionof security than does blinding the machine to its input (obliviousBPPDpath, obliviousBPPD)?Formally, is obliviousBPPDpath 6= secureBPPDpath or obliviousBPPD 6= secureBPPD? Ourintuition says that both inequalities hold. However, Section 4 shows that establishing that\yes" is the answer implies that P 6= PSPACE (and even implies the stronger result thatBPP 6= PP). Since it is commonly believed that P 6= PSPACE, this does not provideevidence that equality holds; rather, it merely suggests that witnessing a separation will behard with current techniques. We note that results (such as Theorem 4.1 and Corollary 4.2)that connect the existence of an oracle separation to the existence of a real-world separation(see, e.g., the survey [Boo89]) usually occur in cases in which the oracle is tremendouslyrestricted (e.g., to the class of tally sets or the class of sparse sets [BBS86,LS86]); in con-trast, Section 4 provides such a relativization result that applies without restriction of thedatabase D. 9

Note that we could also de�ne classes, partially-secure-BPPDpath and partially-secure-BPPD, based on the notion (see, e.g., [FFLS92] and the papers cited therein) that anobserver watching one query should get no information other than perhaps about the length(clearly, for all D, BPPDpath � partially-secure-BPPDpath � secureBPPDpath and BPPD �partially-secure-BPPD � secureBPPD), and, more generally, one could study a variety ofclasses between BPPD and secureBPPD (or between BPPDpath and secureBPPDpath) basedupon security against observers using various strengths of query access (for example, onecould require security against observers who could see two queries, or against observerswho could make O(logn) adaptive queries into the query vector, or so on). However, werestrict our attention to what we feel are the most natural security classes: secureBPPDand secureBPPDpath.There is no point in de�ning security classes for unbounded-error computation, asit is easy to see that, for every D, PPD = securePPD = obliviousPPD = PPDpath =securePPDpath = obliviousPPDpath.Finally, we note that all sets that are accepted by an oblivious machine relative to somedatabase D have small circuits. Let obliviousBPP? denote S D22�� obliviousBPPD. Wehave the following result.Proposition 2.9 obliviousBPP? = P=poly.Corollary 2.10 (9L) [L 62 obliviousBPPL].Though for most common classes C it holds that (8L) [L 2 CL], Corollary 2.10 shouldnot be surprising; it is natural that weak machines, when accepting a hard set via a harddatabase, may leak some information to an observer. Interestingly, a similar result holdsfor secure computation. Namely, Abadi, Feigenbaum, and Kilian [AFK89] have shown thatsecureBPPD � NP=poly\coNP=poly for any database D. Thus, for any set D, no NP-hardset is in secureBPPD unless the polynomial hierarchy collapses.3 BPPpathWe have already argued that BPP and BPPpath di�er unless the polynomial hierarchycollapses. These classes nonetheless share certain properties. For example, as is also thecase for BPP [ZH86], BPPpath has a strong ampli�cation property.10

Theorem 3.1 Let L be in BPPpath. For each polynomial q, there is a nondeterministicpolynomial-time Turing machine M such that for all x 2 �� it holds that#[M(x) = L(x)] > �1� 2�q(jxj)� totalM (x):The proof is analogous to the corresponding proof for BPP.BPP is closed under Turing reductions [Ko82,Zac82]. However, no relativizable proofcan establish the closure of BPPpath under Turing reductions. In particular, Beigel [Bei92]constructed an oracle relative to which PNP is not contained in PP. Since BPPpath clearly iscontained in PP (and the proof relativizes), it follows that, relative to the same oracle, PNPis not contained in BPPpath, and hence, since NP � BPPpath, BPPpath is not closed underTuring reductions relative to this oracle. That is, there exists an A such that BPPApath 6=PBPPApath .For BPPpath, we can prove closure under truth-table reductions,Theorem 3.2 BPPpath is closed under polynomial-time truth-table reductions.Proof: Let A �ptt B for B 2 BPPpath, i.e., there exists a polynomial-time Turingmachine M such that L = L(MB) and, for each input x of length n, machine M makes atmost q(n) queries (nonadaptively) to B. Without loss of generality, we may assume thatall queries have the same length l(n), l(n) � n, and that q(n) is a nondecreasing function.Let N be a BPPpath machine for B, such that on input y#[N(y) = B(y)] > �1� 13q(jyj)� totalN(y):Consider the machine M 0 that on input x, jxj = n, computes y1; : : : ; yk, the truth-tablequeries of M on input x, where k � q(n), and, for each query yi, machine M 0 guesses apath of N on input yi and takes the output of this path as the answer to query yi, fori = 1; : : : ; k. Using these answers instead of the oracle B, M 0 simulates M on input x andoutputs the result.M 0 has totalM 0(x) = Qki=1 totalN (yi) paths. At least on those paths on which all theanswers to the oracle queries are correct, M 0 decides correctly whether x is in A, i.e., wehave #[M 0(x) = A(x)] � kYi=1#[N(yi) = B(yi)]� kYi=1�1� 13q(l(n))� totalN (yi) by assumption11

� �1� 13q(n)�k kYi=1 totalN (yi) since l(n) � n� �1� k3q(n)� kYi=1 totalN(yi)� 23 totalM 0(x):This shows that A 2 BPPpath.Corollary 3.3 BPPpath is closed under complementation, intersection, and union.Since NP is contained in BPPpath, it follows that the closure of NP under truth-tablereductions is contained in BPPpath.Corollary 3.4 PNP[log] � BPPpath.It is known that BPP is low for PP [KSTT92] and for itself [Ko82,Zac82], i.e., PPBPP =PP and BPPBPP = BPP. We show in the next theorem that BPP is also low for BPPpath.Observe that relative to Beigel's previously mentioned oracle making PNP not contained inPP, we must also have that NP, and hence BPPpath, cannot be low for PP. That is, thereexists an A such that PPBPPApath 6= PPA. Furthermore, by an easy induction, we have thatif BPPpath is low for itself then the polynomial hierarchy, PH, is contained in BPPpath. But,as we will see in Theorem 3.11 below, BPPpath is contained in some level of the polynomialhierarchy. Thus, BPPpath is not low for BPPpath unless the polynomial hierarchy collapses.Theorem 3.5 BPPBPPpath = BPPpath.Proof: Let L 2 BPPBPPpath via a machine M and a set A 2 BPP such that polynomialp bounds the runtime of MA and for all x 2 �� it holds that #[MA(x) = L(x)] >78 totalMA(x).Let B = f (0n; w1; a1; : : : ; wk; ak) �� k � p(n) and (8i : 1 � i � k) [jwij � p(n) andA(wi) = ai] g. Since BPP is closed under truth-table reductions [Ko82,Zac82], B 2 BPP.Hence, there exist a probabilistic polynomial-time Turing machine MB and a polynomial qsuch that, for any input z = (0n; w1; a1; : : : ; wk; ak), MB's error probability is bounded by2�(p(n)+4) and MB's computation tree is a full binary tree with totalMB(z) = 2q(n).Consider the machine M 0 that on input x, jxj = n, performs the following steps.1. M 0 simulates MA on input x. Whenever M queries the oracle, M 0 nondeter-ministically guesses the answer. Let (w1; a1); : : : ; (wk; ak) be the sequence of queriedstrings and guessed answers along a computation path y.12

2. To verify the guessed answers, M 0 simulates MB on input (0n; w1; a1; : : : ; wk; ak).3. M 0 ampli�es the output ofM on path y from the �rst step if the guessed answers thereare certi�ed in the second step. More precisely, M 0 now appends 2p(n)+4 accepting(rejecting) paths if path y was accepting (rejecting) and the simulation in the secondstep ended in an accepting path of MB . Otherwise, M 0 rejects.After the �rst two steps, M 0 has at most 2p(n) 2q(n) computation paths. In the last step,M 0 ampli�es all paths (a) in which the guessed oracle answers are correct and that arecerti�ed by MB in the second step, i.e., at most totalMA(x) 2q(n) paths, and (b) all pathsin which the guessed oracle answers are false but are wrongly certi�ed by MB, i.e., at most2p(n) 2�(p(n)+4) 2q(n) paths. So we havetotalM 0(x) � 2p(n) 2q(n) + 2p(n)+4 �totalMA(x) 2q(n) + 2p(n) 2�(p(n)+4) 2q(n)� :The paths on which M 0 decides correctly include at least those paths that correspondto correct paths of M in the �rst step and are subsequently certi�ed in the second step.Since these paths are ampli�ed in the last step, we have#[M 0(x) = L(x)] � �78 totalMA(x)� �(1� 2�(p(n)+4)) 2q(n)� 2p(n)+4:Now, it is not hard to see that #[M 0(x) = L(x)] > 23 totalM 0(x). Thus, L 2 BPPpath.If we de�ne a function class FBPPpath in the natural manner (see the analogous classFBPP of Ko [Ko82]), then it is not hard to see that the same proof technique also establishesthat FBPPBPPpath = FBPPpath.Corollary 3.6 NPBPP � BPPpath.Indeed, we even have PNPBPP [log]�BPP � BPPpath.Babai [Bab85] introduced the Arthur-Merlin classes MA and AM. It is known thatNPBPP � MA � AM � BPPNP [Bab85,Zac88]. It is not known whether any of theinclusions is strict or not, though various relevant oracle separations are known (e.g., Fenneret al. [FFKL93] have constructed an oracle world in which NPBPP and MA di�er). Below,we strengthen Corollary 3.6 to show that even MA is contained in BPPpath. This improvesthe result of Vereshchagin [Ver92] that MA � PP.Theorem 3.7 MA � BPPpath. 13

Proof: Let L 2 MA. By standard ampli�cation technique, there exist a polynomial-timepredicate Q and polynomials p and q such that for all x 2 ��x 2 L =) (9y 2 �p(jxj)) [Pr[Q(x; y; z)]> 1� 2�(p(jxj)+4)];x 62 L =) (8y 2 �p(jxj)) [Pr[Q(x; y; z)]< 2�(p(jxj)+4)];where the probability is taken uniformly over all z 2 �q(jxj).Consider the machine M that on input x guesses y 2 �p(jxj) and z 2 �q(jxj), and ifQ(x; y; z) is false M rejects, otherwise, M produces 2p(jxj)+2 accepting paths.It is not di�cult to see that #[M(x) = L(x)] > 23 totalM(x). Thus, L 2 BPPpath.It is an open question whether AM is contained in BPPpath. Vereshchagin [Ver92]constructed an oracle A such that relative to A the class AM is not a subset of PP, i.e.,AMA 6� PPA. Thus, AM is not a subset of BPPpath relative to A. On the other hand,BPPpath is not a subset of AM unless the polynomial hierarchy collapses. This followsfrom the result of Boppana, H�astad, and Zachos [BHZ87] that if coNP � AM then thepolynomial hierarchy collapses to its second level. Since coNP � BPPpath, we get the sameconsequence from the assumption that BPPpath is contained in AM.Sipser and G�acs ([Sip83], see also [Lau83]) showed that BPP � RNP. It is an openquestion whether the same inclusion holds for BPPpath. However, we show that BPPpath �BPPNP. As a �rst step, we show that a BPPpath set can be decided by a deterministicpolynomial-time Turing machine making logarithmically many queries to a �p2 oracle, andhence BPPpath is in the polynomial hierarchy. A randomized version of this algorithm candecide a BPPpath set with an NP oracle. The proof applies Sipser's Coding Lemma foruniversal hashing [Sip83].We mention that we could get a shorter proof by applying the results of Stock-meyer [Sto85] to approximate #P functions and of Jerrum, Valiant, and Vazirani [JVV86],who showed a probabilistic version of Stockmeyer's theorem. However, we prefer to givea self-contained proof here, thereby encouraging the reader to see whether he or she canimprove our result, for example, by getting a one-sided error probabilistic algorithm (inPart 2 of Theorem 3.11). Since there is an oracle relative to which BPP is not contained inPNP [Sto85], one cannot obtain a deterministic algorithm with relativizable techniques.De�nition 3.8 [Sip83] Let X � �m and let H1; : : : ; Hk : �m ! �k be a collection oflinear functions given as k�m 0-1 matrices. The predicates Separate and Hash are de�ned14

as follows.1. SeparateX(H1; : : : ; Hk) () (8 y 2 X) (9 i : 1 � i � k) (8 z 2 X : y 6= z) [Hi(y) 6=Hi(z)], where Hi(y) means multiplication of the k�m matrix Hi with the m vector y,yielding a k vector, with the arithmetic done in GF[2].2. HashX(k) () (9H1; : : : ; Hk 2 �km) [SeparateX(H1; : : : ; Hk)].The intuition about predicate Hash is that the size of the range of the hash functions(which is determined by k) has to be su�ciently large, with respect to the size of X , for acollection H1; : : : ; Hk that separates X to exist.Lemma 3.9 [Sip83] Let X � �m and let k = blog kXkc + 2. For a random collectionof functions H1; : : : ; Hk : �m ! �k,Pr[SeparateX(H1; : : : ; Hk)] � 78 :As a consequence of this lemma, we get a lower bound for the size of a set X . The upperbound follows by the pigeon hole principle (see [Sto85]).Corollary 3.10 [Sip83] If X � �m and kX is the smallest k such that HashX(k) istrue, then 2kX�3 � kXk � kX 2kX .Theorem 3.111. BPPpath � P�p2[log].2. BPPpath � BPPNP.Proof: Let L 2 BPPpath. There exist a nondeterministic Turing machine M and apolynomial p that bounds the runtime ofM such that for all x 2 �� it holds that #[M(x) =L(x)] > (1� 2�jxj) totalM(x).Sipser's proof that BPP � �p2 uses the fact that totalM (x) is known a priori. However,here we have only an upper bound.Fix x 2 ��; let n denote jxj. De�neA = f y 0p(n)�jyj �� y is an accepting computation of M on input x g andR = f y 0p(n)�jyj �� y is a rejecting computation of M on input x g:Clearly, kAk = accM (x) and kRk = rejM(x).15

Observe that Separate is a coNP predicate in x and the hash functions H1; : : : ; Hk whenapplied to A or R, and Hash is a �p2 predicate in x and k.Let kA (kR) denote the minimal k such that HashA(k) (HashR(k)) is true. kA and kRcan be computed by a binary search making at most log p(n) many queries to HashA andHashR(k), respectively. From Corollary 3.10, it follows that 2kA�3 � accM(x) � kA 2kA andthat 2kR�3 � rejM(x) � kR 2kR . Now it is not di�cult to see that for all but �nitely manyx we have x 2 L () kR < kA. This proves L 2 P�p2[log].Next, we show that L 2 BPPNP. Consider the following probabilistic procedure, whichtries to approximate kA and kR by randomly generating a collection of functions H1; : : : ; Hk,and directly asking the oracle SeparateX about (H1; : : : ; Hk), for a given set X and increa-sing k.Approximate(x, X)k 0repeatk k + 1randomly choose H1; : : : ; Hkuntil SeparateX(H1; : : : ; Hk) or k = p(n)return kThe following main algorithm decides whether x is in L, and is correct with high pro-bability.Main(x)ka Approximate(x, A)kr Approximate(x, R)if ka > kr then acceptelse reject.By the de�nition of kA, we always have kA � ka. Note that, by the upper bound ofCorollary 3.10 and since kA � p(n), it follows that log(kAk=p(n)) � kA. From Lemma 3.9,it follows that ka � blog kAkc+2 holds with probability at least 7/8. Since the same boundshold for kr, we have that with probability at least 3/4 it holds that both (a) log accM (x)p(n) �ka � log accM(x) + 2, and (b) log rejM(x)p(n) � kr � log rejM (x) + 2. This implies that for allbut �nitely many x it holds that x 2 L () ka > kr, with probability at least 3/4. Thus,L 2 BPPNP. 16

As already mentioned before Theorem 3.5, BPPpath cannot be low for itself unless thepolynomial hierarchy collapses to BPPpath. From Theorem 3.11 we thus have the followingclaim.Corollary 3.12 If BPPBPPpathpath = BPPpath then PH = P�p2 [log].Zachos [Zac88] has shown that NP � BPP implies PH = BPP. Since this result relativi-zes (i.e., for all A, NPA � BPPA implies PHA = BPPA), we obtain the following corollaryfrom Theorem 3.11.Corollary 3.13 �p2 � BPPpath =) PH = BPPNP.Toda [Tod91] and Toda and Ogiwara [TO92] showed that PH � BPPC for any class Camong fPP;C=P;�Pg. As a consequence, none of these classes can be contained in thepolynomial hierarchy unless the polynomial hierarchy collapses. Thus, none of these classescan be contained in BPPpath unless the polynomial hierarchy collapses.Ogiwara and Hemachandra [OH93] and Fenner, Fortnow, and Kurtz [FFK94] indepen-dently de�ned the counting class SPP as follows.De�nition 3.14 [OH93,FFK94] SPP is the class of all sets L such that there exist anondeterministic polynomial-time Turing machine M and an FP function f such that forall x 2 �� it holds that x 2 L =) accM(x) = f(x) + 1; andx 62 L =) accM(x) = f(x):Fenner, Fortnow, and Kurtz [FFK94] argue that SPP is, in some sense, the smallestclass that is de�nable in terms of the number of accepting and rejecting computations.In particular, SPP is low for PP;C=P, and �P [FFK94]. Though it is an open questionwhether SPP is contained in BPPpath, there is an oracle relative to which this is not thecase.2Theorem 3.15 There is an oracle A such that SPPA 6� BPPApath.Proof: Let M1;M2; : : : be an enumeration of nondeterministic polynomial-time Turingmachines and let p1; p2; : : : be an enumeration of polynomials such that polynomial pi2Very recently, Fortnow [For94] has improved our result by constructing an oracle relative to which SPPis not contained in the polynomial hierarchy. 17

bounds the runtime of machineMi. Without loss of generality, we assume pi(n) = ni+i. Lets(i), i = 1; 2; : : :, be a sequence of integers de�ned by s(1) = 5 and, for i > 1, s(i+1) = 2s(i).We de�ne the test languageL(A) = f 1n �� (9j) [n = s(j) and kA=nk = 2n�1] g:Below, we will construct a set A such that for every i � 1, kA=s(i)k is either 2s(i)�1 or2s(i)�1 � 1. For such an A, we have L(A) 2 SPPA. Furthermore, we will construct A suchthat, for each i � 1, at least one of the following requirements holds.(R1) MAi is not a BPPApath machine. That is, there exists an x 2 �� such that14 totalMAi (x) � accMAi (x) � 34 totalMAi (x):(R2) There exists an n � 1 such that MAi (1n) accepts if and only if 1n 62 L(A).It follows from Theorem 3.1 that the existence of such an oracle establishes the theorem.We construct the set A in stages. In stage i, we diagonalize against machineMi. Initially,i = 1 and A1 = ;.Stage i. Let n = s(i). We will add only strings of length n to Ai. Since pj(s(j)) < n for allj < i, this will not e�ect the construction done in earlier stages.De�ne A = fAi [Z �� Z � �n and kZk = 2n�1 g andB = fAi [Z �� Z � �n and kZk = 2n�1 � 1 g:If there is a set X 2 A[B such that X ful�lls requirement (R1), i.e., MXi is not a BPPXpathmachine, then de�ne Ai+1 = X and go to the next stage. Otherwise, we show that there isa set in A [B such that requirement (R2) is ful�lled.Let X be a set such that the number of paths of MXi on input 1n is maximal for allX 2 A [B. That is, we have(8 Y 2 A [B) [totalMYi (1n) � totalMXi (1n)]: (?)Suppose X 2 A. If 1n 62 L(MXi) then we are done since 1n 2 L(X). So suppose that1n 2 L(MXi). For w 2 X \�n, de�ne Xw = X�fwg. By de�nition, 1n 62 L(Xw). We claimthat there exists a w 2 X \ �n such that 1n 2 L(MXwi). For such a w, de�ne Ai+1 = Xw.Then requirement (R2) is ful�lled. 18

To prove our claim, assume that, for all w 2 X \ �n, it holds that 1n 62 L(MXwi). Bytaking w out of X , at least accMXi (1n)� accMXwi (1n) accepting paths of M either changeto rejecting paths or disappear, and hence w must have been queried on those paths. SinceaccMXi (1n)� accMXwi (1n) � 34 totalMXi (1n)� 14 totalMXwi (1n)� 12 totalMXi (1n) by (?),each w 2 X \�n is queried byMXi on input 1n on at least half of all paths. Thus,MXi asksat least 2n�1 12 totalMXi (1n) = 2n�2 totalMXi (1n) queries to its oracle. On the other hand,MXi cannot ask more than pi(n) totalMXi (1n) queries to its oracle. Since pi(n) < 2n�2, thisyields a contradiction.The caseX 2 B is symmetric. Here, one has to de�ne Xw by adding a string w 2 �n�Xto X , and then, in case 1n 2 L(MXwi) for all w 2 �n �X , argue regarding the number ofrejecting instead of accepting paths of Mi.4 If Secure and Oblivious Computation Di�er, thenP 6=PSPACEWe show, for both threshold and probabilistic computation, that secure computationis more powerful than oblivious computation only if BPP 6= PP (which would resolve inthe a�rmative the important question of whether polynomial time di�ers from polynomialspace).Theorem 4.1 If there is a database D such that secureBPPDpath 6= obliviousBPPDpath, thenBPP 6= PP.Proof: Assume BPP = PP. Note that this implies that BPP = P#P (since PPP =P#P [BBS86] and BPP = PBPP). Let D be a database and let L be a language such thatL 2 secureBPPDpath. We will show that L 2 obliviousBPPDpath, thereby proving the theorem.Let N be the machine of De�nition 2.6 certifying that L 2 secureBPPDpath. We mayassume, without loss of generality (since it is easy to see that secureBPPDpath machines canbe ampli�ed in the standard way and still remain secure) that the � of De�nition 2.6 satis�es� > 1=4. Also, let p(n) be a polynomial, of the form ni + i for some integer i � 1, such thatfor all sets L the runtime of NL is at most p(n).19

Very informally summarized, in the following a secure computation of N is decomposed(query vector by query vector), to allow an oblivious BPPpath machine to mimic N 's com-putation. This will be possible because our assumption gives #P-like computational powerto our oblivious BPPpath machine.We will now de�ne an oblivious machine Q such that QD certi�es that L 2obliviousBPPDpath. Let x, jxj = n, be the input for ND. The computation of QD hasessentially two stages. In the �rst stage, as long as the oblivious machine QD asks oraclequeries, it only has 0n available as input. What it does is: QD simulates ND on input 0n.At the end of each path, QD has de�ned a query vector, say, v. By the de�nition of securecomputation, the proportion of occurrences of v is the same in ND(0n) and ND(x), that is,path-occurancesND(0n)(v)totalND(0n) = path-occurancesND(x)(v)totalND(x) : (1)In the second stage, Q gets access to its input x (and thus cannot ask anymore ora-cle queries). Let �ND(x)(v) denote the number of accepting paths of ND(x) thathave query vector v. Roughly speaking, at each path with query vector v found inthe �rst stage, Q will append a full binary tree having approximately a portion of�ND(x)(v)=path-occurancesND(x)(v) accepting paths. So, QD will have approximately thesame overall acceptance behavior as ND.More formally, we partition the unit interval into 2q intervals of equal length, for someappropriately chosen q, and take the largest k=2q, k 2 f 0; : : : ; 2q� 1 g, that is still less than�ND(x)(v)=path-occurancesND(x)(v) as an approximation for it. This is done as follows. Fora query vector v let V = f v �� v 2 D and v is a component of v g. Now, Q guesses k oflength q and tests whether (x; v; V; k) 2 A, where A is de�ned as follows. For y 2 ��, avector w of at most p(jyj) strings each of length at most p(jyj), a set of strings W eachoccurring as a component of vector w, and a string j of length q, interpreted as a binarynumber between 0 and 2q � 1,(y;w;W; j) 2 A () j � 2q �NW (y)(w)path-occurancesNW (y)(w) � 1:Clearly, A 2 P#P, and thus A is in BPP, by assumption. Hence, there exist a probabilisticmachine MA and a polynomial h such that MA accepts A with error probability boundedby 2�q, and furthermore, for any input (y;w;W; j), the computation tree of MA is a fullbinary tree with 2h(jyj) paths. 20

In order to test whether (x; v; V; k) is in A, Q simulates MA on input (x; v; V; k). Qaccepts x if and only if the simulation ends in an accepting state of MA. This completesthe de�nition of Q.We will argue that the machine Q has the desired properties. By the de�nition of Q, itis clearly an oblivious machine. Furthermore, for any given input x, let v be a query vectorthat actually occurs in the run of ND(x). From equation (1), we get that the portion ofpaths in the tree of QD that have query vector v is identical to the portion in the tree ofND(x) that have query vector v . We now argue that those paths in QD(x) having queryvector v have almost the same portion accepting as do those paths in ND(x). Since v wasan arbitrary occurring query vector, it will follow that QD(x) has appropriate behavior.By our construction, we can bound �QD(x)(v), the number of accepting paths of QDthat have query vector v as follows. Let V be the associated answer set for v. Note that�NV (x)(v) = �ND(x)(v) and path-occurancesNV (x)(v) = path-occurancesND(x)(v). Hence,we have (x; v; V; k) 2 A if and only if 0 � k � b2q �ND(x)(v)path-occurancesND(x)(v)c � 1. Since MA haserror probability at most 2�q, we get the following lower bound for �QD(x)(v):path-occurancesQD(x)(v) b2q �ND(x)(v)path-occurancesND(x)(v)c2q (1� 2�q) � �QD(x)(v):For an upper bound, we have to count the small number of extra accepting paths causedby the error probability of MA:�QD(x)(v) � path-occurancesQD(x)(v) 2q �ND(x)(v)path-occurancesND(x)(v) + 12q :With these bounds on �QD(x)(v), it is now easy to bound the error of QD for query vector v.Namely, leterror(v) = ����� �QD(x)(v)path-occurancesQD(x)(v) � �ND(x)(v)path-occurancesND(x)(v) ����� ;then we get from the above bounds on �QD(x)(v) that error(v) � 2�q+1. Since this holdsfor each occurring query vector v, it certainly holds that 2�q+1 bounds the overall errorportion: the di�erence between the portion of accepting paths of ND(x) and the portionof accepting paths of QD(x) is at most 2�q+1. Now, de�ne q = 4. Since ND had an � (ofDe�nition 2.6) of at least 1=4, and since we have 14 � 18 = 18 , we may conclude that QD isan oblivious machine accepting the same language as ND and having � (of De�nition 2.8)equal to 1/8. 21

The proof of Theorem 4.1 can easily be modi�ed to show the corresponding result forprobabilistic classes.Corollary 4.2 If there is a database D such that secureBPPD 6= obliviousBPPD, thenBPP 6= PP.Recall that sets in obliviousBPPD have small circuits. Thus, the existence of a set insecureBPPD not having a small circuit would separate obliviousBPPD from secureBPPD.Corollary 4.3 If there is a database D such that secureBPPD 6� P=poly, then BPP 6= PP.Since P � BPP � PP � PSPACE, we immediately have the result promised in thesection title.Corollary 4.4 If there is a database D such that secureBPPDpath 6= obliviousBPPDpath, thenP 6= PSPACE.5 Open ProblemsThere are several open problems regarding BPPpath. Is BPPpath contained in �p2 oreven in RNP? It seems that the proof technique of Theorem 3.11 doesn't su�ce to establisheither of these relationships. Does BPPpath have complete sets? There is a relativized worldin which BPP lacks complete sets [HH88]; we conjecture that the same holds for BPPpath.Regarding secure computation, does there exist a structural condition that completelycharacterizes the conditions under which (8D) [secureBPPD = obliviousBPPD] or that com-pletely characterizes the conditions under which (8D) [secureBPPDpath = obliviousBPPDpath]?The study, mentioned in Section 2.2, of classes between BPPD and secureBPPD, and ofclasses between BPPDpath and secureBPPDpath, also remains an interesting open area.AcknowledgmentsFor helpful discussions, we are grateful to F. Ablayev, G. Brassard, J. Cai, L. Fortnow,F. Green, J. Seiferas, and S. Toda. We thank an anonymous conference referee for pointingout Theorem 6.2, and for helpful pointers to the literature.22

6 Appendix: Randomized Databases Do Not StrengthenSecure Probabilistic ComputationThe secure probabilistic computation of De�nition 2.7 can be considered a special case of2-player interactive computation. In particular, the database can be considered a powerfulplayer that truthfully answers di�cult questions asked by a polynomial-time player. Whenthe powerful player in a secure probabilistic computation answers a query, it is unable totake the past history of transactions into consideration. In contrast, players in the usualinteractive computation models can remember the history of past transactions. Nonethe-less, the secure probabilistic computation model is quite powerful. Even if the database isreplaced with a deterministic player that has unlimited computation power and memory, itis clear that the resulting interactive computation can be simulated by a polynomial-timeplayer with a new database that is merely a set.In this section, we consider the e�ect of allowing the powerful player to be probabilistic.The resulting model is called a one-oracle instance-hiding scheme that leaks at most thelength of its input [BF90]. We present a slightly modi�ed but equivalent de�nition.De�nition 6.1 [One-oracle instance-hiding schemes that leaks at most thelength of its input] For a set L, a one-oracle instance-hiding scheme that leaks at mostthe length of its input is a synchronous protocol executed by two players,MA andMB . Thenumber of rounds is bounded by a polynomial in the length of the input. In each round,MAdoes a randomized polynomial-time local computation and sends a message (i.e., query) toMB. Upon receiving the query from MA, MB does an unbounded amount of local com-putation (possibly using an oracle and a random tape) and sends a message (i.e., answer)to MA. The round is completed when MA receives the answer sent by MB . Let � denotethe sequence of messages sent and received by MA along a computation path, and let TAdenote the random tape of MA. After the last round, MA uses � , TA, and the input x tocompute a value MA(x). The interactive computation scheme should satisfy the followingtwo conditions:1. [Probability of acceptance is bounded away from 1=2] There exists an � > 0 suchthat for all x 2 �� it holds that Pr[MA(x) = L(x)] > 1=2 + �. (Note that theprobability depends on the combined e�ect of the randomness of both MA and MB .)2. [The messages reveal no information to an observer other than perhapsthe length of the input] For every k 2 f0; 1; 2; � � �g, and every vector23

v = (q1; a1; q2; a2; � � � ; qk ; ak), q1; a1; q2; a2; � � � ; qk ; ak 2 ��, and every pair ofstrings x 2 �� and y 2 �� such that jxj = jyj, it holds thatPr[� = v on input x] = Pr[� = v on input y].For any polynomial p(�), the above probability 1=2 + � can be ampli�ed to 1 � 2�p(jxj)via the standard technique of repeating computations and using the most frequent result.Clearly, if L 2 secureBPPD for some database D, then L has a one-oracle instance-hidingscheme that leaks at most the length of its input. The following theorem, pointed out tous by an anonymous conference referee, shows that the converse is also true.Theorem 6.2 If L is a language that has a one-oracle instance-hiding scheme that leaksat most the length of its input, then there exists a database D such that L 2 secureBPPD.Proof: Let L be a language that has a one-oracle instance-hiding scheme that leaks atmost the length of its input. In this proof, we use the notation of De�nition 6.1. Follo-wing [AFK89], we use the term transcript to denote � , the sequence of queries and answersalong a computation path. Without loss of generality, we assume that no transcript is aproper pre�x of another transcript and that the length of an input is passed to MB asthe �rst query. In this proof, we �rst show that MB can be modi�ed so that it needsonly a polynomial number of random bits. Then we show that these random bits can besupplied by MA, thereby eliminating the need for MB to be random. It follows that theresulting powerful but deterministic player can be replaced with a set as claimed in thetheorem. In the rest of the proof, we call the machines MA and MB the client and theserver, respectively.Given an input of length n, the set of transcripts that have non-zero probabilities de�nea tree whose depth is bounded by a polynomial in n. Let's call this a strategy tree. (Aswill become clear later in this proof, the strategy tree e�ectively de�nes the strategy of theserver. Also, it serves as a convenient template for modifying the strategy of the server.)There are two types of nodes in a strategy tree: server nodes and client nodes. These twotypes of nodes alternate in each path from the root to a leaf. The root is a client node.The leaves are also client nodes. Each edge from a client node is labeled with a querystring; each edge from a server node is labeled with an answer string. Each leaf representsa transcript that has a non-zero probability; the transcript consists of labels read from theedges along the path from the root to the leaf. Edges from the same node have distinctlabels so that a transcript de�nes a unique path in a strategy tree. Corresponding to each24

internal node in a strategy tree, there exists a partial transcript that consists of the labelsthat are read from the edges along the path from the root to the node.Associated with each leaf is the probability with which the transcript corresponding tothe leaf occurs. Clearly, based on this probability distribution, we can associate with eachinternal node the probability with which the partial transcript corresponding to the nodeoccurs. To each edge from a node, we associate the conditional probability with which itslabel occurs as the next query or answer in a computation, given that the current partialtranscript of the computation is the one represented by the node. Note that the sum ofthe probabilities associated with all the edges from a node is one and that the probabilityassociated with each node is the product of the probabilities associated with the edges alongthe path from the root to the node.It is easy to see that an interactive computation reveals at most the length of the input(in the sense of Part 2 in De�nition 6.1) if and only if its strategy tree is the same for allinputs of the same length. In particular, the strategy of the server (that is, the probabilitydistribution among edges from each server node) is the same for all inputs of the same length.Further, if we modify the server but (i) we do not add new transcripts to the strategy treeand (ii) the client is not changed, then the resulting strategy tree is the same for all inputsof the same length. Hence, we may arbitrarily adjust the probability distribution amongthe existing edges from each server node without a�ecting the instance-hiding nature ofthe computation. However, such change could a�ect the acceptance probabilities of inputstrings. Therefore, in the following, we carefully modify the behavior of the server so thatthe acceptance of each input string remains intact. In particular, assuming without loss ofgenerality that the probability of correctness (in the sense of Part 1 in De�nition 6.1) of theoriginal instance-hiding computation is greater than 34 , we will ensure that the probabilityof correctness of the modi�ed instance-hiding computation is greater than 58 .Let q(n) be a polynomial that bounds both the length of the label of each edge and thedepth of the strategy tree. The main obstacle in transforming the randomized server to adeterministic one is the fact that the probability of an edge from a server node can be anarbitrary value. In order to get around the obstacle, we adjust the probability of each edgefrom server nodes so that it is an integral multiple of 2�q2(n)�q(n)�3 and that it di�ers fromthe original probability by less than 2�q2(n)�q(n)�3. Thus, the probability change at eachleaf of the strategy tree is less than q(n)2�q2(n)�q(n)�3. Since there are at most 2q2(n) leaves,it is easy to see that the change in the probability of correctness of the whole computationis less than 18 . Therefore, the probability of correctness of the modi�ed secure computation25

is greater than 58 . Note that the resulting strategy tree can be constructed by the serverupon receiving the �rst query (i.e., the length of the input). The server uses this strategytree to answer all the queries.The server modi�ed in this way needs at most a polynomial number (q(n)(q2(n) +q(n) + 3)) of random bits. Hence, the necessary random bits can be supplied to the serverby the client at the beginning of a computation. Note that this modi�cation a�ects neitherthe instance-hiding nature of the computation nor the probability of correctness of thecomputation. The resulting server is deterministic, but it may not yet be considered adeterministic function oracle since it may give di�erent answers to di�erent instances of thesame queried string. By pre�xing each query with an appropriate public information withwhich the server can uniquely locate the current stage of computation in the strategy tree(for example, hq1; : : : ; qi�1i can be used as a pre�x to the i-th query along a computationpath on which qj (0 < j < i) is the j-th query), the server can be transformed into adeterministic function oracle. It is easy to see that we can further modify the client so thatit securely accepts the same language with a set oracle (D) instead of a function oracle.Clearly, the resulting computation is a secure probabilistic computation.References[AFK89] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle.Journal of Computer and System Sciences, 39:21{50, 1989.[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the 17th ACMSymposium on Theory of Computing, pages 421{429, April 1985.[BBS86] J. Balc�azar, R. Book, and U. Sch�oning. The polynomial-time hierarchy andsparse oracles. Journal of the ACM, 33(3):603{617, 1986.[Bei92] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. In Proceedings of the7th Structure in Complexity Theory Conference, pages 14{19. IEEE ComputerSociety Press, June 1992.[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Procee-dings of the 7th Annual Symposium on Theoretical Aspects of Computer Science,pages 37{48. Springer-Verlag Lecture Notes in Computer Science #415, 1990.[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAMJournal on Computing, 4(4):431{442, 1975.[BHZ87] R. Boppana, J. H�astad, and S. Zachos. Does co-NP have short interactive proofs?Information Processing Letters, 25:127{132, 1987.26

[Boo89] R. Book. Restricted relativizations of complexity classes. In J. Hartmanis,editor, Computational Complexity Theory, pages 47{74. American MathematicalSociety, 1989. Proceedings of Symposia in Applied Mathematics #38.[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-de�nable counting classes. Journal ofComputer and System Sciences, 48(1):116{148, 1994.[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. InProceedings of the 8th Structure in Complexity Theory Conference, pages 120{131. IEEE Computer Society Press, May 1993.[FFLS92] J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adap-tiveness and additional queries in random-self-reductions. In Proceedings of the7th Structure in Complexity Theory Conference, pages 338{346. IEEE ComputerSociety Press, June 1992. Final version appears in Computational Complexity,v. 4, 1994.[For94] L. Fortnow, December 1994. Personal Communication.[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAMJournal on Computing, 6(4):675{695, 1977.[Hem89] L. Hemachandra. The strong exponential hierarchy collapses. Journal of Com-puter and System Sciences, 39(3):299{322, 1989.[HH88] J. Hartmanis and L. Hemachandra. Complexity classes without machines: Oncomplete languages for UP. Theoretical Computer Science, 58:129{142, 1988.[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. Wagner. Onthe power of polynomial time bit-reductions (extended abstract). In Proceedingsof the 8th Structure in Complexity Theory Conference, pages 200{207. IEEEComputer Society Press, May 1993.[JMT94] B. Jenner, P. McKenzie, and D. Th�erien. Logspace and logtime leaf languages.In Proceedings of the 9th Structure in Complexity Theory Conference, pages 242{253. IEEE Computer Society Press, June/July 1994.[JVV86] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinato-rial structures from a uniform distribution. Theoretical Computer Science,43(2,3):169{188, 1986.[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uniformcomplexity classes. In Proceedings of the 12th ACM Symposium on Theory ofComputing, pages 302{309, April 1980. An extended version has also appearedas: Turing machines that take advice, L'Enseignement Math�ematique, 2nd series28, 1982, pages 191{209.[Ko82] K. Ko. Some observations on the probabilistic algorithms and NP-hard problems.Information Processing Letters, 14(1):39{43, 1982.27

[KSTT92] J. K�obler, U. Sch�oning, S. Toda, and J. Tor�an. Turing machines with few accep-ting computations and low sets for PP. Journal of Computer and System Sci-ences, 44(2):272{286, 1992.[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information ProcessingLetters, 14:215{217, 1983.[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reduci-bilities. Theoretical Computer Science, 1(2):103{124, 1975.[LS86] T. Long and A. Selman. Relativizing complexity classes with sparse oracles.Journal of the ACM, 33(3):618{627, 1986.[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressi-ons with squaring requires exponential space. In Proceedings of the 13th IEEESymposium on Switching and Automata Theory, pages 125{129, 1972.[OH93] M. Ogiwara and L. Hemachandra. A complexity theory for closure properties.Journal of Computer and System Sciences, 46:295{325, 1993.[Sim75] J. Simon. On Some Central Problems in Computational Complexity. PhD thesis,Cornell University, Ithaca, N.Y., January 1975. Available as Cornell Departmentof Computer Science Technical Report TR75-224.[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings ofthe 15th ACM Symposium on Theory of Computing, pages 330{335, 1983.[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,3:1{22, 1977.[Sto85] L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Com-puting, 14(4):849{861, 1985.[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316{328, 1992.[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal onComputing, 20(5):865{877, 1991.[Ver92] N. Vereshchagin. On the power of PP. In Proceedings of the 7th Structure inComplexity Theory Conference, pages 138{143. IEEE Computer Society Press,June 1992.[Zac82] S. Zachos. Robustness of probabilistic complexity classes under de�nitional per-turbations. Information and Computation, 54:143{154, 1982.[Zac88] S. Zachos. Probabilistic quanti�ers and games. Journal of Computer and SystemSciences, 36:433{451, 1988.[ZH86] S. Zachos and H. Heller. A decisive characterization of BPP. Information andControl, 69:125{135, 1986. 28

