The Isomorphism Problem for
Read-Once Branching Programs
and Arithmetic Circuits

Thomas Thierauf *

Abt. Theoretische Informatik
Universitat Ulm
89069 Ulm, Germany

thierauf@informatik.uni-ulm.de

Abstract

We investigate the computational complexity of the isomorphism
problem for read-once branching programs (1-BPI): on input of two
read-once branching programs By and Bj, decide whether there exists
a permutation of the variables of By such that 1t becomes equivalent
to Bo.

Our main result i1s that 1-BPI cannot be NP-hard unless the poly-
nomial hierarchy collapses. The result is extended to the isomorphism
problem for arithmetic circuits over large enough fields.

We use the known arithmetization of read-once branching programs
and arithmetic circuits into multivariate polynomials over the ratio-
nals. Hence, another way of stating our result is: the isomorphism
problem for multivariate polynomials over large enough fields is not
NP-hard unless the polynomial hierarchy collapses.

We derive this result by providing a two-round interactive proof
for the nonisomorphism problem for multivariate polynomials. The
protocol is based on the Schwartz-Zippel Theorem to probabilistically
check polynomial identities.

Finally, we show that there is a perfect zero-knowledge interactive
proof for the isomorphism problem for multivariate polynomials.

*Supported in part by DAAD, Acciones Integradas.

1 Introduction

An interesting computational issue is to decide the equivalence of two given
programs with respect to some computational model such as Boolean cir-
cuits, branching programs, or Boolean formulas. A more general problem
is to decide the isomorphism of two given circuits (for example). That is,
whether the circuits become equivalent after permuting the input variables
of one of the circuits. Isomorphism is one way of formalizing the idea that
two circuits are “almost” equivalent.

The isomorphism problem for Boolean circuits is in fact a very old one
dating back to the last century (see [BRS96] for background and early re-
ferences on this problem and variants of it). More recently, the problem
has been reconsidered with respect to its computational complexity (see for
example [AT96, BR93, BRS96, CK91]).

The equivalence problems for Boolean circuits, branching programs, and
Boolean formulas are known to be coNP-complete. Asking for isomorphism
roughly amounts to putting an existential quantifier in front of the problem.
Therefore, the corresponding isomorphism problems are in the second level of
the polynomial hierarchy, ¥5. An obvious question is whether these isomor-
phism problems are complete for X5. This question was solved by Agrawal
and Thierauf [AT96] who showed that none of these isomorphism problems
is complete for ¥¥, unless the polynomial hierarchy collapses. Thus, loosely
speaking, the existential quantifier we get by seeking for an isomorphism
does not seem to add full NP-power to the corresponding equivalence pro-
blem.

The most prominent example that supports the latter observation might
be the graph isomorphism problem, GI. Here, the equivalence problem for
graphs, which is in fact an equality problem, is trivially solvable in polyno-
mial time. Therefore GI is in NP. But GI is not NP-complete, unless the
polynomial hierarchy collapses [GMW91, BHZ87] (see also [Sch89]).

For a restricted class of branching programs, the read-once branching
programs, where, on each path, each variable is tested at most once (see
next section for precise definitions), the equivalence problem is easier then
for general ones: it can be efficiently solved by a randomized Monte-Carlo
type algorithm [BCWS80] with one-sided error, it is in the complexity class
coRP. Therefore, putting an existential quantifier in front, the isomorphism
problem for read-once branching programs, 1-BPI, is in NP-coRP. Motivated
by the examples above, we ask whether 1-BPI is NP-hard.

In this paper we show that 1-BPI is also in the Arthur-Merlin class

coAM = BP - coNP. As a consequence, it is not NP-hard, unless the poly-
nomial hierarchy collapses. The result is extended to arithmetic circuits (or
straight-line programs) over large enough fields.

One crucial point to prove these results is that both read-once bran-
ching programs and arithmetic circuits can be arithmetized, yielding equi-
valent multivariate polynomials [BCWS80, IM83]. In the case of read-once
branching programs, these polynomials are multilinear. Therefore, our main
results can be restated in purely algebraic terms: the isomorphism problem
for multivariate polynomials over large enough fields is not NP-hard, unless
the polynomial hierarchy collapses.

Our proof is based on a two-round interactive proof for the nonisomor-
phism problem for multivariate polynomials. In principle, the interactive
proof protocol follows the one for graph nonisomorphism, GNI. However,
there is a crucial difference: in our protocol, the verifier needs to compute
a normal form of a polynomial in order to hide the syntactic structure of
the input polynomials that are manipulated. This problem does not occur
when dealing with graphs. However, this seems to exceed the computational
power of the verifier. We get around this difficulty by computing a rando-
mized normal form instead. The randomized normal form is based on the
Schwartz-Zippel Theorem for testing polynomial identities.

Combining these ideas with the ones from Goldreich, Micali and Wigder-
son [GMW91], we obtain perfect zero-knowledge interactive proofs for these
isomorphism problems.

An extension of an isomorphism is a congruence, where in addition to
permuting variables, one can exchange a variable with its negation. Alt-
hough we formulate our results only for isomorphism problems, it can easily
be checked that all our theorems also hold for the corresponding congruence
problems.

2 Preliminaries

2.1 Basic Definitions

We will use fairly standard notions of complexity theory. We refer the reader
to [BDGR8S, BDGI91, HUT79] for definitions of complexity classes such as P,
NP, RP or BPP. The kth level of the polynomial hierarchy is denoted by
¥P. For any class C, we denote the complement class by co C.

BP - NP is the class of sets L such that there exists a set A € NP and a

polynomial p such that for every x

re€l = Prl(z,y) €A =
r¢ L = Pr[z,y)e A] <

—_

b

N | —

where y is chosen uniformly at random from Y2(#D. The obvious definition
of BP - NP would be with two-sided error. But this is equivalent with the
one given here.

NP - coRP is the class of sets L such that there exists a set A € coRP
and a polynomial p such that for every z, we have

rel <« yexrlh: (4 y)e A

Interactive proofs were defined in [GMRR9]. An interactive proof system
for a set L consists of a prover P and verifier V. The verifier is a randomized
polynomial-time algorithm that can communicate with the prover. The pro-
ver can make arbitrary computations. After following some communication
protocol, the verifier finally has to accept or reject a given input such that

r€l = dprover P: Pr[(V,P)(z) accepts] =

17
r¢L = Vprover P: Pr[(V,P)(z) accepts] < %,
where the probability is taken over the random choices of the verifier.

IP denotes the class of sets that have an interactive proof system. IP[k]
is the subclass of IP where the verifier and the prover exchange at most k
messages.

Arthur-Merlin games were introduced in [Bab85]. They are defined si-
milar to interactive proofs with Arthur corresponding to the verifier and
Merlin to the prover. The only difference is that Arthur has to make his
random bits available to Merlin, whereas in the interactive proof model, the
prover does not know the random bits of the verifier. AM[k] denotes when
k many messages can be sent, and AM = AM[2].

In this paper, we are interested in constant round interactive proof sy-
stems. It is known that for both, interactive proof systems and Arthur-
Merlin games, constantly many rounds are the same as one round: for
any k > 2, IP[k] = AM[k] = AM [Bab85, GS89]. Moreover, it is known
that AM = BP - NP.

An IP protocol for a set L is a perfect zero-knowledge protocol [GMRS9],
if it decides L correctly in the usual way and, in addition, for any = € L, the

prover does not reveal any extra information to any verifier V* besides the
fact that x is in L: the messages exchanged with the prover look random to
V*. That is, these messages could have been produced by V* himself.

Definition 2.1 A prover P is perfectly zero-knowledge on L, if, for any
interactive machine V* running in expected polynomial-time, there is a pro-
babilistic machine My~ running in expected polynomial-time such that for
any x € L and any string H, |H| < |z|° for some ¢ > 0, the communication
between P and V* on input (x, H), seen as a random variable, is identically
distributed to the output of My« on the same input.

P and V are a perfect zero-knowledge proof system for L if it is an
interactive proof system for L and P is perfectly zero-knowledge on L.

The string H in the definition is needed for being able to compose two
zero-knowledge protocols to one zero-knowledge protocol: the history H
from the first protocol, which is known to the verifier in the second pro-
tocol, does not help the verifier. For a more detailed discussion of this
definition see [GMR89, GMW91]. Also the need for expected polynomial
time is explained there.

2.2 Verifying Polynomial Identities

Let F be some field and p = p(z1,...,2,) be a multivariate polynomial
over F. The degree of p is the maximum exponent of any variable when
p is written as a sum of monomials. Polynomials of degree 1 are called
multilinear. Note the difference to the total degree of a polynomial, where
one first adds the exponents of the variables in each monomial and then
takes the maximum over these sums.

Given some polynomial p written as an arithmetic expression, we want
to find out whether p is in fact the zero polynomial. Note that the obvious
algorithm, namely to transform the arithmetic expression in a sum of mono-
mials and check whether all coefficients are zero, can have up to exponential
running time (in the size of the input). Efficient probabilistic zero tests were
developed by Schwartz [Sch80] and Zippel [Zip79]. The version below is a
variant shown by Ibarra and Moran [IM83]. They extended the correspon-
ding theorem for multilinear polynomials shown by Blum, Chandra, and
Wegman [BCWS80] to arbitrary degrees. We give a proof for completeness.

Theorem 2.2 [IM83, Sch80, Zip79] Let p(z1,...,z,) be a multivariate
polynomial of degree d over field F that is not the zero polynomial. LetT C F

with |T| > d. Then there are at least (|T| — d)™ points (aq,...,a,) € T"
such that p(aq,...,a,) #0.

Proof. The proof is by induction on n. For n = 1 the theorem is true
because a degree d polynomial has at most d roots in F.

Let n > 1 and let p(21,...,2,) be a nonzero polynomial of degree d. Let
furthermore @ = (a4,...,a,) be a point such that p(a) # 0. We define two
polynomials, both are subfunctions of p.

pO(wlv"wxn—l) = p(xlv"'vxn—lvan)v

pl(wn) = p(alv"'van—hxn)-

By construction, both polynomials are nonzero and have degree bounded
by d. po has n—1 variables and therefore differs from 0 on at least (|T'|—d)"~1
points in T™ by the induction hypothesis. Similarly, p; has one variable and
therefore at least |T'| — d nonzero points.

For each of the |T'| — d choices for a,, where p; is nonzero, the correspon-
ding polynomial py has (|T'| — d)"~! nonzero points. Therefore the number
of nonzero points of p in T™ is at least (|T'| — d)(|T| — d)"~! = (|T] — d)".

O

We mention two important consequences of this theorem. First of all,
let T be any subset of F that has at least d + 1 elements. Then any nonzero
polynomial of degree d has a nonzero point in T™.

Corollary 2.3 Let p(z1,...,2,) be a polynomial of degree d over F, and
TCF with|T|>d. Thenp#0<= Jda €T1" p(a)#0.

By enlarging T even further, we can achieve that any nonzero polynomial
p does not vanish on most of the points of T™. This provides the tool for
the probabilistic zero test.

Corollary 2.4 Let p(z1,...,2,) be a polynomial of degree d over F, and
T CF with |T| > 2nd. Letr = (r1,...,7r,) be a random element from T".
Then p(r) # 0 with probability at least 1/2.

Proof. Prp(r) # 0] > (|:F||T—|Cl)n > (1 - 21_n)” > % O

2.3 Branching Programs

A branching program B in n Boolean variables z1, ..., 2, is a directed acyclic
graph with the following type of nodes. There is a single node of indegree
zero, the initial node of B. All nodes have outdegree two or zero. A node
with outdegree two is an internal node of B. One of its edges is labelled
with a;, the other with Z;, for some i € {1,...,n}. A node with outdegree
zero is a final node of B. The final nodes are labelled either by accept or
reject.

We call a branching program read-once, if, on each path from the initial
node to a final node, every variable or its complement occurs at most once
as an edge label.

A read-once branching program is called ordered, if the order of occu-
rence of the variables on each path is consistent with some ordering on the
set of variables.

Branching programs are also called binary decision diagrams (BDD) or
Boolean graphs. Read-once branching programs and ordered branching pro-
grams are also called free binary decision diagrams (FBDD) or free Boolean
graphs and ordered binary decision diagrams (OBDD), respectively.

A branching program B defines an n-ary Boolean function from {0,1}"
to {0,1} as follows. For an assignment a = (ay,...,a,) € {0,1}", we walk
through B, starting at the initial node, always following the (unique) edge
that evaluates to one under a, until we reach a final node. If the final node
is an accepting node, we define B(a) = 1, and B(a) = 0 otherwise.

Two branching programs B and B’ in n variables are equivalent, B = B’
for short, if they define the same Boolean function. By BPE we denote the
problem to decide whether two given branching programs are equivalent.
That is,

BPE ={(B,B')|B=PB}.

It is not hard to see that branching programs can compute CNF Boolean
formulas. Therefore, the satisfiability problem for branching programs is
NP-complete, and hence, BPE is coNP-complete.

Blum, Chandra, and Wegman [BCW&80] showed that the equivalence
problem for read-once branching programs, 1-BPE, is easier because one can
transform them into equivalent multilinear polynomials over the rational
numbers, Q. To see this, note first that a branching program B can be
viewed as a compact way of denoting a DNF formula Fpg: each path of B
can be written as a monomial, the conjunction of the literals occurring along

that path. Then the function computed by B is simply the disjunction of
all monomials coming from accepting paths of B.

We convert Fp into a polynomial pp over the rational numbers Q as
follows. A variable z; is kept as z;. A negated variable Z; is replaced by
1 — 2;. A conjunction is replaced by multiplication and a disjunction is
replaced by addition. For each satisfying assignment a € {0,1}", exactly
one path of B evaluates to true under a. Therefore, at most one product
term in pg will be one on input a. Hence, B and pg agree on {0, 1}". That
is,

B(a) = pp(a) forall a € {0,1}".

It is easy to get an arithmetic expression for pp from B that has about the
same size as B. Note however that, written as a sum of monomials, pg
may consist of exponentially many terms in the size of B. So in general,
we cannot write down pp in this normal form in polynomial time in |B]|.
However, with the expression at hand, we can evaluate pp at a given point
in Q™ in polynomial time, and this suffices for our purposes. To evaluate
pB at a point @ = (aq,...,a,), we start by writing a 1 at the initial node.
Suppose now that a node got value v and its edges are labelled by variable z;.
Then values va; and v(1—a;) are sent along the z;- and 7;-edge, respectively.
When all incoming edges of a node u have sent values, the value of u is the
sum of all these incoming values. Finally, the value of pp appears at the
accepting node.

Since B is read-once, pp is a multilinear polynomial. Now let B’ be
another read-once branching program and let pp: be the corresponding po-
lynomial. If B and B’ are equivalent, then pg and pgr agree on {0, 1}", a two
element set. By Corollary 2.3 (applied to p = pg — pp/), it follows that pp
and pg: agree on Q. Now, choosing T in Corollary 2.4 as T' = {1,...,2n},
we will detect an inequivalence with probability more than 1/2. It follows
that 1-BPE € coRP.

Fortune, Hopcroft, and Schmidt [FHS78] have shown that if one of two
given read-once branching programs is even ordered, then the equivalence
can be decided in polynomial time. In particular, the equivalence problem
for ordered branching programs is solvable in polynomial time.

Two branching programs B and B’ are isomorphic, denoted by B =
B, if there exists a permutation ¢ on {xy,...,2,}, such that B becomes
equivalent to B’ when permuting the variables of B’ according to . That
is B = B’ o¢. In this case, we call ¢ an isomorphism between B and B’.

The isomorphism problem for branching programs is
BPI = {(B,B)| BB}

The isomorphism problem for read-once branching programs, 1-BPI, is de-
fined analogously. It follows directly from the definition that BPI € XE, the
second level of the polynomial hierarchy. Agrawal and Thierauf [AT96] sho-
wed that BPNT is in BP-X%. By a result of Schoning [Sch89], it follows that
BPI cannot be complete for ¥4, unless the polynomial hierarchy collapses
to its third level, ¥¥.

For read-once branching programs, we have 1-BPI € NP - coRP. An
obvious question is whether 1-BPI is NP-hard. In this paper, we show that
the problem to decide whether two read-once branching programs are not
isomorphic, 1-BPNI, is in BP - NP. Combined with the result of Boppana,
Hastad, and Zachos [BHZ87] (see also Schoéning [Sch89]), it follows that
1-BPI cannot be NP-hard, unless the polynomial hierarchy collapses to its
second level, 3.

This result covers also the case of ordered branching programs. Note
however that here, the isomorphism problem is in NP.

2.4 Arithmetic Circuits

An arithmetic circuit over a field F is a circuit, where the inputs are field
elements and the (fan-in two) gates perform the field operations +, —, and
X. (We could also allow division as long as a circuit guarantees to not divide
by zero on any input.) Circuit size and depth are defined as usual.

Ibarra and Moran [IM83] considered the equivalence problem for arith-
metic circuits (called straight-line programs there). They give probabilistic
polynomial-time algorithms for circuits over infinite fields. This is split into
two cases, depending on whether the field has characteristic 0 or greater
than 0. If the field F has characteristic 0, it contains a subfield isomorphic
to Q, the rational numbers. Therefore it is enough to consider F = Q. We
show how a zero test can be done in this case.

If a circuit C' has n input variables zq,...,2,, then C' computes a mul-
tivariate polynomial po over Q. If C' has depth d then po has degree at
most 2¢. Therefore, to obtain a zero-test for pc, we have to choose T in
Corollary 2.4 as T = {1,...,2n2%}, in order to detect a nonzero point with
probability more than 1/2 at a random point from 7.

However, we do not have a polynomial-time procedure yet because the
function values of pc on T™ could be as large as (2n2d)”2d < 2NV for

N = nd. Represented in binary, such numbers would be exponentially
long. Instead, we evaluate po modulo smaller numbers, namely from M =
{1,...,2?N}. (For a zero test, we can assume that all coefficients are integers
so that the function values of pc are integers too.) pc (mod m) might have
more zeros than pc, however, not too many:

Lemma 2.5 [IM83] For any y < 2N2Y ind a randomly chosen m € M,
we have y 0 (mod m) with probability at least %, for large enough N .

Proof. Any y < 2V2Y has at most N2V prime divisors. By the prime
N . .
number theorem, there are more than % primes in M for large enough

N. Therefore M contains at least % — N2V primes that do not divide y.
Hence, for m randomly chosen from M, we have

22N

~-N2Y 1 N 1

2N
Prly £ 0 (mOdm)]ZT_ﬁ_QN 23—
O
The probabilistic zero test now works as follows.

Corollary 2.6 Let p(z1,...,2,) be a nonzero polynomial of degree 2¢ over
Q 7T = {1,....2n2%} and M = {1,...,2*N}, where N = nd. Choose
P1,...,ren from T" and mq,...,mgn from M independently at random.
Then p(r;) #0 (mod my), for some i, with probability at least 1/2.
Proof. By Corollary 2.4 and Lemma 2.5, Pr[p(r;) # 0 (mod m;)] >
%%, for a;y pair r;, m;. Therefore, Pr[p(r;) =0 (mod m;) for all i] <

6
(- &) <1 O

We only sketch briefly the case of infinite fields with finite characteristic
and refer the reader to [IM83] for a more detailed treatment. Let F be a
field with characteristic ¢ (which must therefore be a prime number). The
trick now is to switch from F to the ring of polynomials over GF(q). This
is certified by the the following lemma.

Lemma 2.7 [IM83] Let p(z1,...,2,) be a polynomial. p = 0 over F if
and only if p = 0 over GF(q)[z].

Since ¢ is prime, GF(q) is a field and therefore, the ring GF(¢)[z] is
a principal ideal domain, that is, a ring with a one and no zero divisors

10

such that every ideal is principal. (In fact, GF(¢)[=] is what is sometimes
called a Fuclidean ring.) One can easily verify that this already suffices in
the assumption of Theorem 2.2 and its corollaries, instead of having a field.
Hence, we can apply the zero test for p over the polynomial ring GF(q)[z].

However, we can only deal with polynomials up to polynomial size in
the input length. In the case of Q, we did computations modulo small
enough prime numbers. Now, we do computations modulo polynomials of
small degree. There is an analog of Lemma 2.5 bounding the probability
that p(aq,...a,) # 0, but p(as,...a,) =0 (mod r) for a randomly chosen
polynomial r € GF(q)[z] of small degree and a; € GF(q)[z],fori=1,...,n.

Putting things together, we get a zero test analogous to the one for
polynomials over Q. just the domain has changed to a polynomial ring
instead of numbers.

Clearly, for any polynomial p in Flzy,...,2,] given as an arithmetic
expression one can construct an arithmetic circuit computing p that has
about the same size as p. In particular, it follows from the discussion in the
preceding section that one can transform a read-once branching program into
an equivalent arithmetic circuit of about the same size. Though arithmetic
circuits are the more general concept, we prove our main result for read-
once branching programs first, and then explain how to extend it to solve
the isomorphism problem for arithmetic circuits.

3 An Interactive Proof for 1-BPNI

We show that there is a two-round interactive proof for the nonisomorphism
problem for read-once branching programs, 1-BPNI.

We start by recalling the idea of the interactive proof for the graph
nonisomorphism problem, GNI [GMRS89] (see also [Sch88]). There, on input
of two graphs Gy and G, the verifier randomly picks ¢ € {0,1} and a
permutation ¢, and sends H = ¢(G;) to the prover. Now the prover is
asked to find out what the value of 7 is. The verifier will accept only if the
prover gives the right answer.

When the input graphs are not isomorphic, then the prover can find
out ¢ easily. However, when the graphs are isomorphic, both could have
been used by the verifier to compute H, so that no prover can find out 7.
Therefore, the answer of any prover is correct with probability at most 1/2.

First of all note that we cannot directly adapt this protocol to branching
programs. The reason for this is that the syntactic structure of two given

11

isomorphic branching programs might tell the prover which of two given
branching programs was selected by the verifier, at least, if the verifier simply
exchanges variables according to some permutation.

A way out of this would be a normal form for read-once branching
programs that is easy to compute. However, such a normal form is not
known. At this point, in the case of general branching programs, Agra-
wal and Thierauf [AT96] used a result from learning theory by Bshouty
et. al. [BCG196]: there is a randomized algorithm that uses an NP-oracle
and outputs branching programs equivalent to a given one. The important
point is that although the algorithm might output (syntactically) different
branching programs depending on its random choices, the output does not
depend on the syntactic structure of its input. However, in our case, the
verifier does not have an NP-oracle available and there is no analog learning
result for read-once branching programs without an NP-oracle.

The idea to get around this problem is as follows. On input of two
given read-once branching programs By and By with n variables, the verifier
randomly chooses one of them and permutes it with a random permutation
to obtain a branching program B. Instead of trying to manipulate all of
B, the verifier takes the arithmetization pg of B and evaluates pg at a
randomly chosen point » € T™, where T is some appropriate test domain.
The prover is now asked to tell which of By, By was used to obtain the
point (v, pp(r)). If By and By are isomorphic, then the prover cannot detect
this and has to guess. So she will fail with probability 1/2. On the other
hand, if By and By are not isomorphic, then the prover has a good chance of
detecting the origin of (v, pg(»)). This is because, by Corollary 2.4, different
multilinear polynomials can agree on T on at most 1/2 of the points for
|T| > 2n. That is, the origin of (v, pg(7)) is unique with high probability.
With an additional round of communication the prover can always convince
the verifier of the nonisomorphism of By and By. We give the details below.

Theorem 3.1 1-BPNI € IP[4].

Proof. We give a protocol for 1-BPNI. The inputs are two read-once
branching programs By, By, both in n variables. Let T'= {1,...,2n}.

V1: The verifier randomly picks ¢ € {0,1}, a permutation ¢, and
r1,...,75 € T, where k = [nlogn]| 4+ 2. Then he permutes the varia-
bles of B; according to ¢, computes y; = pg, o p(r;), for I =1,...,k,
and sends the set of pairs R = { (v,) |l =1,...,k} to the prover.

12

P1: The prover sends j € {0,1} and a permutation ¢’ to the verifier.

V2: If i = j, then the verifier accepts. If ¢ # j, the verifier checks whether
pB, © @' matches the set R, that is, whether pg; o ¢'(r;) = yi, for
I =1,...,k. If the test fails, the verifier rejects. Otherwise, he sends
o to the prover.

P2: The prover sends a point ' € T™ to the verifier.

V3: Finally, the verifier accepts iff pg, o (') # pp, o ¢'(7').

We show that the above protocol works correctly.

Case 1: By % By. We show that there is a prover such that the verifier
always accepts.

The prover can cycle through all permutations and check for both, pg,
and pp,, whether it matches with the set R sent by the verifier in step V1.
Say that polynomial pg, o ¢’ does so. Then the prover sends j = 0 and ¢
to the verifier in step P1.

If no permutation of polynomial pg, matches R as well, then 7 must have
been 0 and therefore the verifier will accept in the first round.

On the other hand, if some permutation of polynomial pp, matches R,
then the prover cannot tell which one was used by the verifier. If the prover
is lucky, ¢ has anyway been zero and the verifier accepts. On the other
hand, if ¢ # 7, then the verifier will send ¢ to the prover in step V2, because
PB, © ¢’ matches R. Since PB; © ¢ # pp, o ¢, these polynomials can agree
on at most 1/2 of the points of T™ by Corollary 2.4. Therefore, the prover
can find a point #' € T™ such that pg; o ¢'(v') # pp, o ¢(r'), and send it to
the verifier in step P2 who will accept in step V3. In summary, the verifier
accepts with probability one.

Case 2: By 2 B;. We show that for any prover, the verifier accepts with
probability at most 3/4. By executing the protocol several times in parallel,
the acceptance probability can be made exponentially small.

The prover will always find permutations of pg, and pp, that match the
set R sent by the verifier in step V1. Therefore, with respect to the test i = j
made by the verifier, the best the prover can do is to guess 7 randomly. This
will make the verifier accept with probability 1/2 in step V2. However, the
prover can improve her chances by the condition checked in the second round
by the verifier: fix ¢ and ¢ chosen by the verifier, say ¢ = 0. Then there might
exist a permutation ¢’ such that pp, o ¢’ matches R, but pg, 0@ # pp, 0 ¢'.

13

Now the prover can choose a point r’ such that pg, o p(7') # pp, o ¢'(r'),
and make the verifier accept in step V3 by sending j = 1, ¢/, and 7. We
give an upper bound on the probability of this event.

By Corollary 2.4, for any ¢ such that pg, o ¢ # pp, o ¢’ we have

Prlpp, o o(r) = pp, o ¢(T)] < 3,

for a randomly chosen » € T". Since points r,...,7; € T™ are chosen
independently and uniformly at random from 7", we have

Pr[pp, o ¢’ matches R] < 27%,

Therefore, considering all such ¢, we get that

E

Pr[3¢ (pB, o ¢ # pB, 0 ¢ and pp, o ¢’ matches R] < n!27% <

by our choice of k. We conclude that the probability that any of the con-
ditions tested by the verifier is satisfied is bounded by (1/2)+ (1/4) = 3/4.
That is, the verifier accepts with probability at most 3/4, irrespective of the
prover. O

We can directly come down to a one round interactive proof by choosing
T large, for example T' = {1,...,2nn!}. Then, in case By ¥ By, the prover
can always find a point »’ as above without knowing ¢, and hence can
already send it in the first round to the verifier, who can then make all his
tests. However, then we get another difficulty: when 7T has exponential size,
the values of the polynomials might be up to double exponential. Then the
polynomial time verifier can no longer deal with such numbers. We will
show in the next section how the verifier can still manage his task.

As already mentioned in Section 2.1, the class of sets that can be decided
by a constant round interactive proof system coincides with the Arthur-
Merlin class AM which, in turn, is the same as BP - NP [Bab85, GS89].

Corollary 3.2 1-BPNI € BP - NP.

Schéning [Sch88] gives a direct proof that the graph isomorphism pro-
blem is in AM (i.e., without using the relationship between IP and AM)
by using the Sipser hashing technique [Sip83]. We remark that we can
modify Schoning’s proof based on our technique and also directly obtain
Corollary 3.2.

14

Note that both classes, BP - NP and NP - coRP can, very loosely, be
considered as some slight extensions of NP. In this sense, we have shown
that 1-BPI is in a slight extension of NP N coNP.

Corollary 3.3 1-BPI € NP - coRP N BP -coNP.

Boppana, Hastad, and Zachos [BHZ8&7] (see also Schéning [Sch89]) have
shown that a coNP-complete set cannot be in BP - NP unless the polynomial
hierarchy collapses to the second level, in fact, even to BP - NP. Hence we
get the main result of this section.

Corollary 3.4 1-BPI is not NP-hard, unless PH = X%,

Since ordered branching programs are a restricted form of read-once bran-
ching programs, Corollary 3.4 can be applied. Since the equivalence problem
for ordered branching programs is in P [FHS78], the isomorphism problem
for ordered branching programs is in NP.

Corollary 3.5 The isomorphism problem for ordered branching programs
is not NP-complete, unless PH = Xb.

Since computational models such as branching programs work over
inputs from {0, 1}, a set of size two, Corollary 2.3 restricts our techniques
to multilinear polynomials. But if we start with polynomials of degree d
over Q, for some constant d > 0, then we can apply the above protocol for
testing the nonisomorphism of two such polynomials. Just take the test do-
main T of size 2dn for polynomials with n variables. For the representation
of the polynomials it is enough that we can evaluate them efficiently at any
point. Therefore, the nonisomorphism problem for polynomials over Q is in
BP - NP.

Corollary 3.6 The isomorphism problem for polynomials of degree d over
Q is not NP-hard, unless PH = X%,

Our interactive proof system for 1-BPNI was motivated by the one for
GNI. However, it is more general now in the sense that it can be used to
solve GNI as a special case. Namely, one can assign a polynomial to a graph
such that nonisomorphic graphs are mapped to nonisomorphic polynomials:

15

let G = (V,F)be a graph, where V = {1,...,n}. We take one variable z;
for each node ¢ € V. Define

el(®1,. . a,) = af H z;, and
(i.5)€E
pe(®1,...,8,) = Zei(xl, ey X))
=1
For graphs Gg, Gy we have that Go =2 Gy <= pg, = pg,. Therefore we
obtain again the result about GI from Corollary 3.6.

4 Extension to Arithmetic Circuits

In this section we extend the above protocol for branching programs to an
interactive proof to decide the nonisomorphism of two arithmetic circuits
over a large enough field F. We start with F = Q for an infinite field of
characteristic 0.

Let Cy, Cy be two arithmetic circuits with » inputs that are of depth d.
We take the protocol from the previous section and modify it according to
Corollary 2.6. Let T = {1,...,2n2% and M = {1,...,2?N}, where N = nd.

V1: the verifier starts by randomly choosing ¢ € {0,1} and a permuta-
tion ¢ as before, and now 6Nk points ry,...,rgnr € 1", where
k = [nlogn| + 2, and for each point 7; a number m; € M. Then
the verifier computes y; = pc, o ¢(r;) mod my, forl =1,...,6 Nk, and
sends the set of triples R = {(r;,yi,my) | | = 1,...,6 Nk} to the
prover.

P1: The prover sends j € {0,1} and a permutation ¢’ to the verifier.

V2: If i = j, then the verifier accepts. If ¢ # j, the verifier checks whether
po; o @' matches the set R, that is, whether y; = pg, o ¢'(7;) mod my,
for Il =1,...,6 Nk. If the test fails, the verifier rejects. Otherwise, he
sends ¢ to the prover.

P2: The prover sends a point »’ € T™ and m’ € M to the verifier.
V3: Finally, the verifier accepts iff pg, o (') # pc, o ¢'(7') (mod m').

Combining the argument in the previous section with Corollary 2.6, the
verifier will accept two isomorphic arithmetic circuits with probability at

16

most 3/4. Note that the prover in step P2 has to prove to the verifier that
two numbers differ. Therefore the computation modulo some number does
not work in favour of the prover in that case. Two nonisomorphic arithmetic
circuits are still accepted with probability one.

The case of infinite fields of characteristic greater than 0 is analogous. As
briefly explained in Section 2.4 the test domain becomes now the polynomial
ring GF(g)[z] when the field has characteristic ¢. Computations are done
modulo randomly chosen polynomials of small degree and can therefore be
done in polynomial time.

Theorem 4.1 The nonisomorphism problem for arithmetic circuits over
infinite fields is in BP - NP,

If the arithmetic circuits are over a finite field, say GF(q), where ¢ is
some prime power, we run into the problem that there might not be enough
elements for our set 7' in order to make the above protocol work. Instead
of GF(q), we take the extension field GF(q"), where ¢ is the smallest integer
such that ¢* > 2n2, so that ¢ = [log, 2n2%]. Then we can set T = GF(q").
By Corollary 2.3, when ¢ > 27, we have that two polynomials over GF(q)
are equivalent if and only if they are equivalent over any extension field.

The verifier must be able to evaluate a polynomial at a given point in the
extension field. For this, he needs an irreducible polynomial ¢(z) € GF(q¢)[x]
of degree t. The verifier can cycle through all the ¢*' < 2n2%¢? < 2n¢®
polynomials in GF(g)[z] of degree t and check irreducibility in polynomial
time using the Berlekamp algorithm (see [Ber68], Ch. 6). So the verifier will
find an irreducible polynomial ¢(z) in polynomial time . Then GF(¢') is
isomorphic to GF(¢)[z]/¢(z). Therefore, knowing ¢(z), the verifier can do
all computation needed in polynomial time. Now, the protocol can proceed
as in the case of branching programs.

Theorem 4.2 The nonisomorphism problem for arithmetic circuits of
depth d over a finite field of size more than 2% is in BP - NP.

The lower bound on the field size is crucial: for small fields the equiva-
lence problem for arithmetic circuits is coNP-complete [IM83].

5 Perfect Zero-Knowledge Interactive Proofs

Goldreich, Micali, and Wigderson [GMW91] show that there are perfect
zero-knowledge interactive proofs for the graph isomorphism problem GI and

17

its complement, GNI. Adapting their ideas, we show the existence of a per-
fect zero-knowledge interactive proof for the isomorphism of branching pro-
grams or arithmetic circuits. Fortnow [For89] and Aiello and Hastad [AH91]
have shown that any set that has a perfect zero-knowledge interactive proof
is in AM N coAM. Thus it follows again from the result in this section that
1-BPI € coAM.

Theorem 5.1 There is a perfect zero-knowledge interactive proof system
for 1-BPI.

Proof. The IP-protocol described below accepts 1-BPI and has the perfect
zero-knowledge property. The inputs are two read-once branching programs
By and By, both over n variables. Let T' = {1,...,2n}. The following steps
are repeated m times, each time using independent random bits.

V1: the verifier randomly picks points rq,...,7z € 1", where k =
[nlogn] 4+ 2 and sends them to the prover.

P1: the prover randomly chooses a permutation ¢ and sends y; = pp, ©
o(ry), for I =1,...,k, to the verifier.

V2: the verifier randomly picks j € {0,1} and sends it to the prover.

P2: the prover sends a permutation 7 to the verifier such that pg, o7 (7)) =
y, forl=1,...,k.

V3: finally, the verifier accepts iff this latter condition about 7 in fact holds.

By arguments similar to those in Section 3, the above protocol consti-
tutes an interactive proof system for 1-BPI: if By = B; and the prover
behaves as described in the protocol, then the verifier will always accept. If
By # By, then the verifier will accept with probability at most 3/4 in each
round, no matter what the prover does, and hence, with probability at most
(3/4)™ after m rounds.

For the zero-knowledge property, it is easy to see that the specific veri-
fier in the protocol gets no extra information. The communication between
P and V can be produced with equal distribution by the following algo-
rithm My : randomly pick j € {0,1}, ry,...,7; € T™, and a permutation ¢
and output r; and pp, o ¢(r;), for I = 1,...,k, and furthermore j and .

By arguments similar to those in [GMW91] one can show that P in fact
conveys no knowledge to any verifier, even ones that deviate from the above

18

protocol. We give a very short description so that a reader familiar with
[GMWO1] can easily fill in the details.

Let V* be an interactive machine. We cannot simply define My« the
same way as for the specific verifier V' above, because he has chose j uni-
formly at random in step V2, and therefore My could do the same thing.
However, in general V* can make his choice of j dependent on the points
((r1,91)s- -+, (7, yk)) he gets from the prover after the first round. On the
other hand, only by knowing j in advance, My could produce an isomor-
phism ¢ as above.

The way My« works is as follows. My« starts by simulating V* to
produce the points ry,...,7; € T". Then My« randomly picks j € {0,1}
and a permutation ¢. This is like My above, but j is now considered only
as a candidate for the value that will actually produced by V*. Next, My«
simulates V* when V* gets the points (r1,41),...,(7k, yx) from the prover.
Thereby My« obtains the value jy« that V* will send to the prover after
the first round. Now, in case that j = jy+, My« was lucky and can make
the same output as My above, namely r; and pp, o (7)), for I = 1,....k,
and j and . If j # jy», then ¢ is the wrong permutation and My cannot
make a legal output. Instead, My« repeats this whole process until it gets
lucky, i.e., until j = jy+ and then makes an output.

The probability that My« is lucky is 1/2. Therefore we expect My« to
repeat this process twice, and hence, My+ runs in expected polynomial time.

Finally, the output distribution of My« is identical to that of the con-
versation of P and V™. Intuitively this is clear because, roughly speaking,
My« simply waits until it can do the same trick as My from above. The-
refore, the output of My« might be delayed, but has the same distribution.
There are some subtleties one has to take care of, but a formal argument
can now easily be adapted from [GMWO91]. Note also that in fact My« has
to produce the conversation of several rounds of the protocol. O

Clearly, Theorem 5.1 extends to to the isomorphism problem for arith-
metic circuits.

The interactive proof for 1-BPNI presented in Section 3 might not be
zero-knowledge since in the first step, the verifier can present points to the
prover that are obtained in a different way than by random guesses. Then
the answers from the prover later on might give some extra information
to the verifier. For the graph nonisomorphism problem GNI, this problem
is solved by letting the verifier “prove to the prover” that he has a per-
mutation in hand which was used to produce the the graph sent to the

19

prover [GMWO91]. However, there are some problems to adapt this method
to 1-BPNI that arise from the way we describe polynomials in the interac-
tive proofs, namely as a set of points. We leave it as an open problem to
show that 1-BPNI has a zero-knowledge interactive proof.

Acknowledgments

We thank Manindra Agrawal for many enjoyable discussions. In particular,
the observation that the isomorphism problem for polynomials is more gene-
ral than the one for graphs (see end of Section 3) is due to him. Thanks also
go to Bernd Borchert, Lance Fortnow, and Uwe Schoning for very helpful
comments.

References

[AH91] W. Aiello and J. Hastad. Statistical zero-knowledge languages
can be recognized in two rounds. Journal of Computer and Sy-
stem Sciences, 42:327-345, 1991.

[AT96] M. Agrawal and T. Thierauf. The boolean isomorphism problem.
In 37th Symposium on Foundation of Computer Science, pages
422-430. IEEE Computer Society Press, 1996.

[Bab85] L. Babai. Trading group theory for randomness. In 17th ACM
Symposium on Theory of Computing, pages 421-429, 1985.

[BCGT96] N. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon.
Oracles and queries that are sufficient for exact learning. Journal
of Computer and System Sciences, 52:421-433, 1996.

[BCW80] M. Blum, A. Chandra, and M. Wegman. Equivalence of free
boolean graphs can be decided probabilistically in polynomial
time. Information Processing Letters, 10:80-82, 1980.

[BDGS88] J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complexity
Theory I. EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1988.

[BDGI1] J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complezity
Theory II. EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1991.

20

[Ber68]

[BHZS87]

[BR93]

[BRS96]

[CK91]

[FHST8]

[For89]

[GMRS9]

[GMWOL1]

[GS89)]

E. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New
York, 1968.

R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short
interactive proofs? Information Processing Lelters, 25:27-32,
1987.

B. Borchert and D. Ranjan. The subfunction relations are :5-
complete. Technical Report MPI-1-93-121, MPI Saarbriicken,
1993.

B. Borchert, D. Ranjan, and F. Stephan. On the computatio-
nal complexity of some classical equivalence relations on boolean
functions. Technical Report TR96-033, Electronic Colloquium on
Computational Complexity, http://www.eccc.uni-trier.de/eccc/,
1996.

P. Clote and E. Kranakis. Boolean functions, invariance groups,
and parallel complexity. SIAM Journal on Computing, 20:553—
590, 1991.

S. Fortune, J. Hopcroft, and E. Schmidt. The complexity of
equivalence and containment for free single variable program
schemes. In 5th Annual International Colloquium on Automata,

Languages and Programming, Lecture Notes in Computer Sci-
ence 62, pages 227-240. Springer-Verlag, 1978.

L. Fortnow. The complexity of perfect zero-knowledge. Advances
in Computing Research, 5:327-343, 1989.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge comple-
xity of interactive proof systems. STAM Journal on Computing,
18:186-208, 1989.

0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM, 38:691-729, 1991.

S. Goldwasser and M. Sipser. Private coins versus public coins
in interactive proof systems. Advances in Computing Research,
5:73-90, 1989.

21

[HUT79]

[IMS83]

[Sch&0]

[Sch&8]

[Sch&9]

[Sip8&3]

[Zip79]

J. Hopcroft and J. Ullman. [Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, Reading, Mass.,
USA, 1979.

O. Ibarra and S. Moran. Probabilistic algorithms for deciding
equivalence of straight-line programs. Journal of the ACM,
30:217-228, 1983.

J. Schwartz. Fast probabilistic algorithms for verification of po-
lynomial identities. Journal of the ACM, 27:701-717, 1980.

U. Schéning. Graph isomorphism is in the low hierarchy. Journal
of Computer and System Sciences, 37:312-323, 1988.

U. Schéning. Probabilistic complexity classes and lowness. Jour-
nal of Computer and System Sciences, 39:84-100, 1989.

M. Sipser. A complexity theoretic approach to randomness. In
15th ACM Symposium on Theory of Computing, pages 330-335,
1983.

R. Zippel. Probabilistic algorithms for sparse polynomials. In In-
ternational Symposium on Symbolic and Algebraic Computation,
Lecture Notes in Computer Science 72, pages 216-226. Springer-
Verlag, 1979.

22

