
The Isomorphism Problem forRead-Once Branching Programsand Arithmetic CircuitsThomas Thierauf �Abt. Theoretische InformatikUniversit�at Ulm89069 Ulm, Germanythierauf@informatik.uni-ulm.deAbstractWe investigate the computational complexity of the isomorphismproblem for read-once branching programs (1-BPI): on input of tworead-once branching programs B0 and B1, decide whether there existsa permutation of the variables of B1 such that it becomes equivalentto B0.Our main result is that 1-BPI cannot be NP-hard unless the poly-nomial hierarchy collapses. The result is extended to the isomorphismproblem for arithmetic circuits over large enough �elds.We use the known arithmetization of read-once branching programsand arithmetic circuits into multivariate polynomials over the ratio-nals. Hence, another way of stating our result is: the isomorphismproblem for multivariate polynomials over large enough �elds is notNP-hard unless the polynomial hierarchy collapses.We derive this result by providing a two-round interactive prooffor the nonisomorphism problem for multivariate polynomials. Theprotocol is based on the Schwartz-Zippel Theorem to probabilisticallycheck polynomial identities.Finally, we show that there is a perfect zero-knowledge interactiveproof for the isomorphism problem for multivariate polynomials.�Supported in part by DAAD, Acciones Integradas.1



1 IntroductionAn interesting computational issue is to decide the equivalence of two givenprograms with respect to some computational model such as Boolean cir-cuits, branching programs, or Boolean formulas. A more general problemis to decide the isomorphism of two given circuits (for example). That is,whether the circuits become equivalent after permuting the input variablesof one of the circuits. Isomorphism is one way of formalizing the idea thattwo circuits are \almost" equivalent.The isomorphism problem for Boolean circuits is in fact a very old onedating back to the last century (see [BRS96] for background and early re-ferences on this problem and variants of it). More recently, the problemhas been reconsidered with respect to its computational complexity (see forexample [AT96, BR93, BRS96, CK91]).The equivalence problems for Boolean circuits, branching programs, andBoolean formulas are known to be coNP-complete. Asking for isomorphismroughly amounts to putting an existential quanti�er in front of the problem.Therefore, the corresponding isomorphism problems are in the second level ofthe polynomial hierarchy, �p2. An obvious question is whether these isomor-phism problems are complete for �p2. This question was solved by Agrawaland Thierauf [AT96] who showed that none of these isomorphism problemsis complete for �p2, unless the polynomial hierarchy collapses. Thus, looselyspeaking, the existential quanti�er we get by seeking for an isomorphismdoes not seem to add full NP-power to the corresponding equivalence pro-blem.The most prominent example that supports the latter observation mightbe the graph isomorphism problem, GI . Here, the equivalence problem forgraphs, which is in fact an equality problem, is trivially solvable in polyno-mial time. Therefore GI is in NP. But GI is not NP-complete, unless thepolynomial hierarchy collapses [GMW91, BHZ87] (see also [Sch89]).For a restricted class of branching programs, the read-once branchingprograms , where, on each path, each variable is tested at most once (seenext section for precise de�nitions), the equivalence problem is easier thenfor general ones: it can be e�ciently solved by a randomized Monte-Carlotype algorithm [BCW80] with one-sided error, it is in the complexity classcoRP. Therefore, putting an existential quanti�er in front, the isomorphismproblem for read-once branching programs, 1-BPI, is in NP�coRP. Motivatedby the examples above, we ask whether 1-BPI is NP-hard.In this paper we show that 1-BPI is also in the Arthur-Merlin class2



coAM = BP � coNP. As a consequence, it is not NP-hard, unless the poly-nomial hierarchy collapses. The result is extended to arithmetic circuits (orstraight-line programs) over large enough �elds.One crucial point to prove these results is that both read-once bran-ching programs and arithmetic circuits can be arithmetized, yielding equi-valent multivariate polynomials [BCW80, IM83]. In the case of read-oncebranching programs, these polynomials are multilinear. Therefore, our mainresults can be restated in purely algebraic terms: the isomorphism problemfor multivariate polynomials over large enough �elds is not NP-hard, unlessthe polynomial hierarchy collapses.Our proof is based on a two-round interactive proof for the nonisomor-phism problem for multivariate polynomials. In principle, the interactiveproof protocol follows the one for graph nonisomorphism, GNI . However,there is a crucial di�erence: in our protocol, the veri�er needs to computea normal form of a polynomial in order to hide the syntactic structure ofthe input polynomials that are manipulated. This problem does not occurwhen dealing with graphs. However, this seems to exceed the computationalpower of the veri�er. We get around this di�culty by computing a rando-mized normal form instead. The randomized normal form is based on theSchwartz-Zippel Theorem for testing polynomial identities.Combining these ideas with the ones from Goldreich, Micali and Wigder-son [GMW91], we obtain perfect zero-knowledge interactive proofs for theseisomorphism problems.An extension of an isomorphism is a congruence, where in addition topermuting variables, one can exchange a variable with its negation. Alt-hough we formulate our results only for isomorphism problems, it can easilybe checked that all our theorems also hold for the corresponding congruenceproblems.2 Preliminaries2.1 Basic De�nitionsWe will use fairly standard notions of complexity theory. We refer the readerto [BDG88, BDG91, HU79] for de�nitions of complexity classes such as P,NP, RP or BPP. The kth level of the polynomial hierarchy is denoted by�pk. For any class C, we denote the complement class by co C.BP �NP is the class of sets L such that there exists a set A 2 NP and a3



polynomial p such that for every xx 2 L =) Pr[(x; y) 2 A] = 1;x 62 L =) Pr[(x; y) 2 A] � 12 ;where y is chosen uniformly at random from �p(jxj). The obvious de�nitionof BP � NP would be with two-sided error. But this is equivalent with theone given here.NP � coRP is the class of sets L such that there exists a set A 2 coRPand a polynomial p such that for every x, we havex 2 L () 9y 2 �p(jxj) : (x; y) 2 A:Interactive proofs were de�ned in [GMR89]. An interactive proof systemfor a set L consists of a prover P and veri�er V . The veri�er is a randomizedpolynomial-time algorithm that can communicate with the prover. The pro-ver can make arbitrary computations. After following some communicationprotocol, the veri�er �nally has to accept or reject a given input such thatx 2 L =) 9 prover P : Pr[(V; P )(x) accepts] = 1;x 62 L =) 8 prover P : Pr[(V; P )(x) accepts] � 12 ;where the probability is taken over the random choices of the veri�er.IP denotes the class of sets that have an interactive proof system. IP[k]is the subclass of IP where the veri�er and the prover exchange at most kmessages.Arthur-Merlin games were introduced in [Bab85]. They are de�ned si-milar to interactive proofs with Arthur corresponding to the veri�er andMerlin to the prover. The only di�erence is that Arthur has to make hisrandom bits available to Merlin, whereas in the interactive proof model, theprover does not know the random bits of the veri�er. AM[k] denotes whenk many messages can be sent, and AM = AM[2].In this paper, we are interested in constant round interactive proof sy-stems. It is known that for both, interactive proof systems and Arthur-Merlin games, constantly many rounds are the same as one round: forany k � 2, IP[k] = AM[k] = AM [Bab85, GS89]. Moreover, it is knownthat AM = BP �NP.An IP protocol for a set L is a perfect zero-knowledge protocol [GMR89],if it decides L correctly in the usual way and, in addition, for any x 2 L, the4



prover does not reveal any extra information to any veri�er V � besides thefact that x is in L: the messages exchanged with the prover look random toV �. That is, these messages could have been produced by V � himself.De�nition 2.1 A prover P is perfectly zero-knowledge on L, if, for anyinteractive machine V � running in expected polynomial-time, there is a pro-babilistic machine MV � running in expected polynomial-time such that forany x 2 L and any string H, jH j � jxjc for some c > 0, the communicationbetween P and V � on input (x;H), seen as a random variable, is identicallydistributed to the output of MV � on the same input.P and V are a perfect zero-knowledge proof system for L if it is aninteractive proof system for L and P is perfectly zero-knowledge on L.The string H in the de�nition is needed for being able to compose twozero-knowledge protocols to one zero-knowledge protocol: the history Hfrom the �rst protocol, which is known to the veri�er in the second pro-tocol, does not help the veri�er. For a more detailed discussion of thisde�nition see [GMR89, GMW91]. Also the need for expected polynomialtime is explained there.2.2 Verifying Polynomial IdentitiesLet F be some �eld and p = p(x1; : : : ; xn) be a multivariate polynomialover F. The degree of p is the maximum exponent of any variable whenp is written as a sum of monomials. Polynomials of degree 1 are calledmultilinear . Note the di�erence to the total degree of a polynomial, whereone �rst adds the exponents of the variables in each monomial and thentakes the maximum over these sums.Given some polynomial p written as an arithmetic expression, we wantto �nd out whether p is in fact the zero polynomial. Note that the obviousalgorithm, namely to transform the arithmetic expression in a sum of mono-mials and check whether all coe�cients are zero, can have up to exponentialrunning time (in the size of the input). E�cient probabilistic zero tests weredeveloped by Schwartz [Sch80] and Zippel [Zip79]. The version below is avariant shown by Ibarra and Moran [IM83]. They extended the correspon-ding theorem for multilinear polynomials shown by Blum, Chandra, andWegman [BCW80] to arbitrary degrees. We give a proof for completeness.Theorem 2.2 [IM83, Sch80, Zip79] Let p(x1; : : : ; xn) be a multivariatepolynomial of degree d over �eld F that is not the zero polynomial. Let T � F5



with jT j � d. Then there are at least (jT j � d)n points (a1; : : : ; an) 2 Tnsuch that p(a1; : : : ; an) 6= 0.Proof. The proof is by induction on n. For n = 1 the theorem is truebecause a degree d polynomial has at most d roots in F.Let n > 1 and let p(x1; : : : ; xn) be a nonzero polynomial of degree d. Letfurthermore a = (a1; : : : ; an) be a point such that p(a) 6= 0. We de�ne twopolynomials, both are subfunctions of p.p0(x1; : : : ; xn�1) = p(x1; : : : ; xn�1; an);p1(xn) = p(a1; : : : ; an�1; xn):By construction, both polynomials are nonzero and have degree boundedby d. p0 has n�1 variables and therefore di�ers from 0 on at least (jT j�d)n�1points in Tn by the induction hypothesis. Similarly, p1 has one variable andtherefore at least jT j � d nonzero points.For each of the jT j�d choices for an where p1 is nonzero, the correspon-ding polynomial p0 has (jT j � d)n�1 nonzero points. Therefore the numberof nonzero points of p in Tn is at least (jT j � d)(jT j � d)n�1 = (jT j � d)n.2We mention two important consequences of this theorem. First of all,let T be any subset of F that has at least d+1 elements. Then any nonzeropolynomial of degree d has a nonzero point in Tn.Corollary 2.3 Let p(x1; : : : ; xn) be a polynomial of degree d over F, andT � F with jT j > d. Then p 6� 0() 9a 2 Tn p(a) 6= 0.By enlarging T even further, we can achieve that any nonzero polynomialp does not vanish on most of the points of Tn. This provides the tool forthe probabilistic zero test.Corollary 2.4 Let p(x1; : : : ; xn) be a polynomial of degree d over F, andT � F with jT j � 2nd. Let r = (r1; : : : ; rn) be a random element from Tn.Then p(r) 6= 0 with probability at least 1=2.Proof. Pr[p(r) 6= 0] � � jT j�djT j �n � �1� 12n�n � 12 . 26



2.3 Branching ProgramsA branching program B in n Boolean variables x1; : : : ; xn is a directed acyclicgraph with the following type of nodes. There is a single node of indegreezero, the initial node of B. All nodes have outdegree two or zero. A nodewith outdegree two is an internal node of B. One of its edges is labelledwith xi, the other with xi, for some i 2 f1; : : : ; ng. A node with outdegreezero is a �nal node of B. The �nal nodes are labelled either by accept orreject .We call a branching program read-once, if, on each path from the initialnode to a �nal node, every variable or its complement occurs at most onceas an edge label.A read-once branching program is called ordered , if the order of occu-rence of the variables on each path is consistent with some ordering on theset of variables.Branching programs are also called binary decision diagrams (BDD) orBoolean graphs . Read-once branching programs and ordered branching pro-grams are also called free binary decision diagrams (FBDD) or free Booleangraphs and ordered binary decision diagrams (OBDD), respectively.A branching program B de�nes an n-ary Boolean function from f0; 1gnto f0; 1g as follows. For an assignment a = (a1; : : : ; an) 2 f0; 1gn, we walkthrough B, starting at the initial node, always following the (unique) edgethat evaluates to one under a, until we reach a �nal node. If the �nal nodeis an accepting node, we de�ne B(a) = 1, and B(a) = 0 otherwise.Two branching programs B and B0 in n variables are equivalent , B � B0for short, if they de�ne the same Boolean function. By BPE we denote theproblem to decide whether two given branching programs are equivalent.That is, BPE = f (B;B0) j B � B0 g:It is not hard to see that branching programs can compute CNF Booleanformulas. Therefore, the satis�ability problem for branching programs isNP-complete, and hence, BPE is coNP-complete.Blum, Chandra, and Wegman [BCW80] showed that the equivalenceproblem for read-once branching programs , 1-BPE, is easier because one cantransform them into equivalent multilinear polynomials over the rationalnumbers, Q. To see this, note �rst that a branching program B can beviewed as a compact way of denoting a DNF formula FB : each path of Bcan be written as a monomial, the conjunction of the literals occurring along7



that path. Then the function computed by B is simply the disjunction ofall monomials coming from accepting paths of B.We convert FB into a polynomial pB over the rational numbers Q asfollows. A variable xi is kept as xi. A negated variable xi is replaced by1 � xi. A conjunction is replaced by multiplication and a disjunction isreplaced by addition. For each satisfying assignment a 2 f0; 1gn, exactlyone path of B evaluates to true under a. Therefore, at most one productterm in pB will be one on input a. Hence, B and pB agree on f0; 1gn. Thatis, B(a) = pB(a) for all a 2 f0; 1gn:It is easy to get an arithmetic expression for pB from B that has about thesame size as B. Note however that, written as a sum of monomials, pBmay consist of exponentially many terms in the size of B. So in general,we cannot write down pB in this normal form in polynomial time in jBj.However, with the expression at hand, we can evaluate pB at a given pointin Qn in polynomial time, and this su�ces for our purposes. To evaluatepB at a point a = (a1; : : : ; an), we start by writing a 1 at the initial node.Suppose now that a node got value v and its edges are labelled by variable xi.Then values vai and v(1�ai) are sent along the xi- and xi-edge, respectively.When all incoming edges of a node u have sent values, the value of u is thesum of all these incoming values. Finally, the value of pB appears at theaccepting node.Since B is read-once, pB is a multilinear polynomial. Now let B0 beanother read-once branching program and let pB0 be the corresponding po-lynomial. If B and B0 are equivalent, then pB and pB0 agree on f0; 1gn, a twoelement set. By Corollary 2.3 (applied to p = pB � pB0), it follows that pBand pB0 agree on Q. Now, choosing T in Corollary 2.4 as T = f1; : : : ; 2ng,we will detect an inequivalence with probability more than 1=2. It followsthat 1-BPE 2 coRP.Fortune, Hopcroft, and Schmidt [FHS78] have shown that if one of twogiven read-once branching programs is even ordered , then the equivalencecan be decided in polynomial time. In particular, the equivalence problemfor ordered branching programs is solvable in polynomial time.Two branching programs B and B0 are isomorphic, denoted by B �=B0, if there exists a permutation ' on fx1; : : : ; xng, such that B becomesequivalent to B0 when permuting the variables of B0 according to '. Thatis B � B0 � '. In this case, we call ' an isomorphism between B and B0.8



The isomorphism problem for branching programs isBPI = f (B;B0) j B �= B0 g:The isomorphism problem for read-once branching programs, 1-BPI, is de-�ned analogously. It follows directly from the de�nition that BPI 2 �p2, thesecond level of the polynomial hierarchy. Agrawal and Thierauf [AT96] sho-wed that BPNI is in BP ��p2. By a result of Sch�oning [Sch89], it follows thatBPI cannot be complete for �p2, unless the polynomial hierarchy collapsesto its third level, �p3.For read-once branching programs, we have 1-BPI 2 NP � coRP. Anobvious question is whether 1-BPI is NP-hard. In this paper, we show thatthe problem to decide whether two read-once branching programs are notisomorphic, 1-BPNI, is in BP �NP. Combined with the result of Boppana,H�astad, and Zachos [BHZ87] (see also Sch�oning [Sch89]), it follows that1-BPI cannot be NP-hard, unless the polynomial hierarchy collapses to itssecond level, �p2.This result covers also the case of ordered branching programs. Notehowever that here, the isomorphism problem is in NP.2.4 Arithmetic CircuitsAn arithmetic circuit over a �eld F is a circuit, where the inputs are �eldelements and the (fan-in two) gates perform the �eld operations +, �, and�. (We could also allow division as long as a circuit guarantees to not divideby zero on any input.) Circuit size and depth are de�ned as usual.Ibarra and Moran [IM83] considered the equivalence problem for arith-metic circuits (called straight-line programs there). They give probabilisticpolynomial-time algorithms for circuits over in�nite �elds. This is split intotwo cases, depending on whether the �eld has characteristic 0 or greaterthan 0. If the �eld F has characteristic 0, it contains a sub�eld isomorphicto Q, the rational numbers. Therefore it is enough to consider F = Q. Weshow how a zero test can be done in this case.If a circuit C has n input variables x1; : : : ; xn, then C computes a mul-tivariate polynomial pC over Q. If C has depth d then pC has degree atmost 2d. Therefore, to obtain a zero-test for pC , we have to choose T inCorollary 2.4 as T = f1; : : : ; 2n2dg, in order to detect a nonzero point withprobability more than 1=2 at a random point from Tn.However, we do not have a polynomial-time procedure yet because thefunction values of pC on Tn could be as large as (2n2d)n2d � 2N2N for9



N = nd. Represented in binary, such numbers would be exponentiallylong. Instead, we evaluate pC modulo smaller numbers , namely from M =f1; : : : ; 22Ng. (For a zero test, we can assume that all coe�cients are integersso that the function values of pC are integers too.) pC (mod m) might havemore zeros than pC , however, not too many:Lemma 2.5 [IM83] For any y � 2N2N and a randomly chosen m 2 M ,we have y 6� 0 (mod m) with probability at least 13N , for large enough N .Proof. Any y � 2N2N has at most N2N prime divisors. By the primenumber theorem, there are more than 22N2N primes in M for large enoughN . Therefore M contains at least 22N2N �N2N primes that do not divide y.Hence, for m randomly chosen from M , we havePr[y 6� 0 (mod m)] � 22N2N �N2N22N = 12N � N2N � 13N 2The probabilistic zero test now works as follows.Corollary 2.6 Let p(x1; : : : ; xn) be a nonzero polynomial of degree 2d overQ, T = f1; : : : ; 2n2dg and M = f1; : : : ; 22Ng, where N = nd. Chooser1; : : : ; r6N from Tn and m1; : : : ; m6N from M independently at random.Then p(ri) 6� 0 (mod mi), for some i, with probability at least 1=2.Proof. By Corollary 2.4 and Lemma 2.5, Pr[p(ri) 6� 0 (mod mi)] �12 13N , for any pair ri, mi. Therefore, Pr[p(ri) � 0 (mod mi) for all i ] ��1� 16N �6N � 12 : 2We only sketch briey the case of in�nite �elds with �nite characteristicand refer the reader to [IM83] for a more detailed treatment. Let F be a�eld with characteristic q (which must therefore be a prime number). Thetrick now is to switch from F to the ring of polynomials over GF(q). Thisis certi�ed by the the following lemma.Lemma 2.7 [IM83] Let p(x1; : : : ; xn) be a polynomial. p � 0 over F ifand only if p � 0 over GF(q)[x].Since q is prime, GF(q) is a �eld and therefore, the ring GF(q)[x] isa principal ideal domain, that is, a ring with a one and no zero divisors10



such that every ideal is principal. (In fact, GF(q)[x] is what is sometimescalled a Euclidean ring .) One can easily verify that this already su�ces inthe assumption of Theorem 2.2 and its corollaries, instead of having a �eld.Hence, we can apply the zero test for p over the polynomial ring GF(q)[x].However, we can only deal with polynomials up to polynomial size inthe input length. In the case of Q, we did computations modulo smallenough prime numbers. Now, we do computations modulo polynomials ofsmall degree. There is an analog of Lemma 2.5 bounding the probabilitythat p(a1; : : :an) 6= 0, but p(a1; : : :an) = 0 (mod r) for a randomly chosenpolynomial r 2 GF(q)[x] of small degree and ai 2 GF(q)[x], for i = 1; : : : ; n.Putting things together, we get a zero test analogous to the one forpolynomials over Q, just the domain has changed to a polynomial ringinstead of numbers.Clearly, for any polynomial p in F[x1; : : : ; xn] given as an arithmeticexpression one can construct an arithmetic circuit computing p that hasabout the same size as p. In particular, it follows from the discussion in thepreceding section that one can transform a read-once branching program intoan equivalent arithmetic circuit of about the same size. Though arithmeticcircuits are the more general concept, we prove our main result for read-once branching programs �rst, and then explain how to extend it to solvethe isomorphism problem for arithmetic circuits.3 An Interactive Proof for 1-BPNIWe show that there is a two-round interactive proof for the nonisomorphismproblem for read-once branching programs, 1-BPNI.We start by recalling the idea of the interactive proof for the graphnonisomorphism problem, GNI [GMR89] (see also [Sch88]). There, on inputof two graphs G0 and G1, the veri�er randomly picks i 2 f0; 1g and apermutation ', and sends H = '(Gi) to the prover. Now the prover isasked to �nd out what the value of i is. The veri�er will accept only if theprover gives the right answer.When the input graphs are not isomorphic, then the prover can �ndout i easily. However, when the graphs are isomorphic, both could havebeen used by the veri�er to compute H , so that no prover can �nd out i.Therefore, the answer of any prover is correct with probability at most 1=2.First of all note that we cannot directly adapt this protocol to branchingprograms. The reason for this is that the syntactic structure of two given11



isomorphic branching programs might tell the prover which of two givenbranching programs was selected by the veri�er, at least, if the veri�er simplyexchanges variables according to some permutation.A way out of this would be a normal form for read-once branchingprograms that is easy to compute. However, such a normal form is notknown. At this point, in the case of general branching programs, Agra-wal and Thierauf [AT96] used a result from learning theory by Bshoutyet. al. [BCG+96]: there is a randomized algorithm that uses an NP-oracleand outputs branching programs equivalent to a given one. The importantpoint is that although the algorithm might output (syntactically) di�erentbranching programs depending on its random choices, the output does notdepend on the syntactic structure of its input. However, in our case, theveri�er does not have an NP-oracle available and there is no analog learningresult for read-once branching programs without an NP-oracle.The idea to get around this problem is as follows. On input of twogiven read-once branching programs B0 and B1 with n variables, the veri�errandomly chooses one of them and permutes it with a random permutationto obtain a branching program B. Instead of trying to manipulate all ofB, the veri�er takes the arithmetization pB of B and evaluates pB at arandomly chosen point r 2 Tn, where T is some appropriate test domain.The prover is now asked to tell which of B0, B1 was used to obtain thepoint (r; pB(r)). If B0 and B1 are isomorphic, then the prover cannot detectthis and has to guess. So she will fail with probability 1=2. On the otherhand, if B0 and B1 are not isomorphic, then the prover has a good chance ofdetecting the origin of (r; pB(r)). This is because, by Corollary 2.4, di�erentmultilinear polynomials can agree on T on at most 1=2 of the points forjT j � 2n. That is, the origin of (r; pB(r)) is unique with high probability.With an additional round of communication the prover can always convincethe veri�er of the nonisomorphism of B0 and B1. We give the details below.Theorem 3.1 1-BPNI 2 IP[4].Proof. We give a protocol for 1-BPNI. The inputs are two read-oncebranching programs B0, B1, both in n variables. Let T = f1; : : : ; 2ng.V1: The veri�er randomly picks i 2 f0; 1g, a permutation ', andr1; : : : ; rk 2 Tn, where k = dn logne+2. Then he permutes the varia-bles of Bi according to ', computes yl = pBi � '(rl), for l = 1; : : : ; k,and sends the set of pairs R = f (rl; yl) j l = 1; : : : ; k g to the prover.12



P1: The prover sends j 2 f0; 1g and a permutation '0 to the veri�er.V2: If i = j, then the veri�er accepts. If i 6= j, the veri�er checks whetherpBj � '0 matches the set R, that is, whether pBj � '0(rl) = yl, forl = 1; : : : ; k. If the test fails, the veri�er rejects. Otherwise, he sends' to the prover.P2: The prover sends a point r0 2 Tn to the veri�er.V3: Finally, the veri�er accepts i� pBi � '(r0) 6= pBj � '0(r0).We show that the above protocol works correctly.Case 1: B0 6�= B1. We show that there is a prover such that the veri�eralways accepts.The prover can cycle through all permutations and check for both, pB0and pB1 , whether it matches with the set R sent by the veri�er in step V1.Say that polynomial pB0 � '0 does so. Then the prover sends j = 0 and '0to the veri�er in step P1.If no permutation of polynomial pB1 matches R as well, then i must havebeen 0 and therefore the veri�er will accept in the �rst round.On the other hand, if some permutation of polynomial pB1 matches R,then the prover cannot tell which one was used by the veri�er. If the proveris lucky, i has anyway been zero and the veri�er accepts. On the otherhand, if i 6= j, then the veri�er will send ' to the prover in step V2, becausepBj � '0 matches R. Since pBj � '0 6= pBi � ', these polynomials can agreeon at most 1=2 of the points of Tn by Corollary 2.4. Therefore, the provercan �nd a point r0 2 Tn such that pBj � '0(r0) 6= pBi � '(r0), and send it tothe veri�er in step P2 who will accept in step V3. In summary, the veri�eraccepts with probability one.Case 2: B0 �= B1. We show that for any prover, the veri�er accepts withprobability at most 3=4. By executing the protocol several times in parallel,the acceptance probability can be made exponentially small.The prover will always �nd permutations of pB0 and pB1 that match theset R sent by the veri�er in step V1. Therefore, with respect to the test i = jmade by the veri�er, the best the prover can do is to guess j randomly. Thiswill make the veri�er accept with probability 1=2 in step V2. However, theprover can improve her chances by the condition checked in the second roundby the veri�er: �x i and ' chosen by the veri�er, say i = 0. Then there mightexist a permutation '0 such that pB1 �'0 matches R, but pB0 �' 6= pB1 �'0.13



Now the prover can choose a point r0 such that pB0 � '(r0) 6= pB1 � '0(r0),and make the veri�er accept in step V3 by sending j = 1, '0, and r0. Wegive an upper bound on the probability of this event.By Corollary 2.4, for any '0 such that pB0 � ' 6= pB1 � '0 we havePr[pB0 � '(r) = pB1 � '0(r)] < 12 ;for a randomly chosen r 2 Tn. Since points r1; : : : ; rk 2 Tn are chosenindependently and uniformly at random from Tn, we havePr[pB1 � '0 matches R] < 2�k ;Therefore, considering all such '0, we get thatPr[9'0 (pB0 � ' 6= pB1 � '0 and pB1 � '0 matches R] < n! 2�k � 14by our choice of k. We conclude that the probability that any of the con-ditions tested by the veri�er is satis�ed is bounded by (1=2)+ (1=4) = 3=4.That is, the veri�er accepts with probability at most 3=4, irrespective of theprover. 2We can directly come down to a one round interactive proof by choosingT large, for example T = f1; : : : ; 2nn!g. Then, in case B0 6�= B1, the provercan always �nd a point r0 as above without knowing ', and hence canalready send it in the �rst round to the veri�er, who can then make all histests. However, then we get another di�culty: when T has exponential size,the values of the polynomials might be up to double exponential. Then thepolynomial time veri�er can no longer deal with such numbers. We willshow in the next section how the veri�er can still manage his task.As already mentioned in Section 2.1, the class of sets that can be decidedby a constant round interactive proof system coincides with the Arthur-Merlin class AM which, in turn, is the same as BP �NP [Bab85, GS89].Corollary 3.2 1-BPNI 2 BP �NP.Sch�oning [Sch88] gives a direct proof that the graph isomorphism pro-blem is in AM (i.e., without using the relationship between IP and AM)by using the Sipser hashing technique [Sip83]. We remark that we canmodify Sch�oning's proof based on our technique and also directly obtainCorollary 3.2. 14



Note that both classes, BP � NP and NP � coRP can, very loosely, beconsidered as some slight extensions of NP. In this sense, we have shownthat 1-BPI is in a slight extension of NP \ coNP.Corollary 3.3 1-BPI 2 NP � coRP \ BP � coNP.Boppana, H�astad, and Zachos [BHZ87] (see also Sch�oning [Sch89]) haveshown that a coNP-complete set cannot be in BP �NP unless the polynomialhierarchy collapses to the second level, in fact, even to BP � NP. Hence weget the main result of this section.Corollary 3.4 1-BPI is not NP-hard, unless PH = �p2.Since ordered branching programs are a restricted form of read-once bran-ching programs, Corollary 3.4 can be applied. Since the equivalence problemfor ordered branching programs is in P [FHS78], the isomorphism problemfor ordered branching programs is in NP.Corollary 3.5 The isomorphism problem for ordered branching programsis not NP-complete, unless PH = �p2.Since computational models such as branching programs work overinputs from f0; 1g, a set of size two, Corollary 2.3 restricts our techniquesto multilinear polynomials. But if we start with polynomials of degree dover Q, for some constant d > 0, then we can apply the above protocol fortesting the nonisomorphism of two such polynomials. Just take the test do-main T of size 2dn for polynomials with n variables. For the representationof the polynomials it is enough that we can evaluate them e�ciently at anypoint. Therefore, the nonisomorphism problem for polynomials over Q is inBP �NP.Corollary 3.6 The isomorphism problem for polynomials of degree d overQ is not NP-hard, unless PH = �p2.Our interactive proof system for 1-BPNI was motivated by the one forGNI. However, it is more general now in the sense that it can be used tosolve GNI as a special case. Namely, one can assign a polynomial to a graphsuch that nonisomorphic graphs are mapped to nonisomorphic polynomials:15



let G = (V;E) be a graph, where V = f1; : : : ; ng. We take one variable xifor each node i 2 V . De�neei(x1; : : : ; xn) = x2i Y(i;j)2E xj ; andpG(x1; : : : ; xn) = nXi=1 ei(x1; : : : ; xn):For graphs G0; G1 we have that G0 �= G1 () pG0 �= pG1 . Therefore weobtain again the result about GI from Corollary 3.6.4 Extension to Arithmetic CircuitsIn this section we extend the above protocol for branching programs to aninteractive proof to decide the nonisomorphism of two arithmetic circuitsover a large enough �eld F. We start with F = Q for an in�nite �eld ofcharacteristic 0.Let C0, C1 be two arithmetic circuits with n inputs that are of depth d.We take the protocol from the previous section and modify it according toCorollary 2.6. Let T = f1; : : : ; 2n2dg andM = f1; : : : ; 22Ng, where N = nd.V1: the veri�er starts by randomly choosing i 2 f0; 1g and a permuta-tion ' as before, and now 6Nk points r1; : : : ; r6Nk 2 Tn, wherek = dn logne + 2, and for each point rl a number ml 2 M . Thenthe veri�er computes yl = pCi �'(rl) mod ml, for l = 1; : : : ; 6Nk, andsends the set of triples R = f (rl; yl; ml) j l = 1; : : : ; 6Nk g to theprover.P1: The prover sends j 2 f0; 1g and a permutation '0 to the veri�er.V2: If i = j, then the veri�er accepts. If i 6= j, the veri�er checks whetherpCj � '0 matches the set R, that is, whether yl = pCi � '0(rl) mod ml,for l = 1; : : : ; 6Nk. If the test fails, the veri�er rejects. Otherwise, hesends ' to the prover.P2: The prover sends a point r0 2 Tn and m0 2M to the veri�er.V3: Finally, the veri�er accepts i� pCi � '(r0) 6� pCj � '0(r0) (mod m0).Combining the argument in the previous section with Corollary 2.6, theveri�er will accept two isomorphic arithmetic circuits with probability at16



most 3=4. Note that the prover in step P2 has to prove to the veri�er thattwo numbers di�er . Therefore the computation modulo some number doesnot work in favour of the prover in that case. Two nonisomorphic arithmeticcircuits are still accepted with probability one.The case of in�nite �elds of characteristic greater than 0 is analogous. Asbriey explained in Section 2.4 the test domain becomes now the polynomialring GF(q)[x] when the �eld has characteristic q. Computations are donemodulo randomly chosen polynomials of small degree and can therefore bedone in polynomial time.Theorem 4.1 The nonisomorphism problem for arithmetic circuits overin�nite �elds is in BP �NP.If the arithmetic circuits are over a �nite �eld, say GF(q), where q issome prime power, we run into the problem that there might not be enoughelements for our set T in order to make the above protocol work. Insteadof GF(q), we take the extension �eld GF(qt), where t is the smallest integersuch that qt � 2n2d, so that t = dlogq 2n2de. Then we can set T = GF(qt).By Corollary 2.3, when q > 2d, we have that two polynomials over GF(q)are equivalent if and only if they are equivalent over any extension �eld.The veri�er must be able to evaluate a polynomial at a given point in theextension �eld. For this, he needs an irreducible polynomial �(x) 2 GF(q)[x]of degree t. The veri�er can cycle through all the qt+1 � 2n2dq2 < 2nq3polynomials in GF(q)[x] of degree t and check irreducibility in polynomialtime using the Berlekamp algorithm (see [Ber68], Ch. 6). So the veri�er will�nd an irreducible polynomial �(x) in polynomial time . Then GF(qt) isisomorphic to GF(q)[x]=�(x). Therefore, knowing �(x), the veri�er can doall computation needed in polynomial time. Now, the protocol can proceedas in the case of branching programs.Theorem 4.2 The nonisomorphism problem for arithmetic circuits ofdepth d over a �nite �eld of size more than 2d is in BP �NP.The lower bound on the �eld size is crucial: for small �elds the equiva-lence problem for arithmetic circuits is coNP-complete [IM83].5 Perfect Zero-Knowledge Interactive ProofsGoldreich, Micali, and Wigderson [GMW91] show that there are perfectzero-knowledge interactive proofs for the graph isomorphism problem GI and17



its complement, GNI. Adapting their ideas, we show the existence of a per-fect zero-knowledge interactive proof for the isomorphism of branching pro-grams or arithmetic circuits. Fortnow [For89] and Aiello and H�astad [AH91]have shown that any set that has a perfect zero-knowledge interactive proofis in AM\ coAM. Thus it follows again from the result in this section that1-BPI 2 coAM.Theorem 5.1 There is a perfect zero-knowledge interactive proof systemfor 1-BPI.Proof. The IP-protocol described below accepts 1-BPI and has the perfectzero-knowledge property. The inputs are two read-once branching programsB0 and B1, both over n variables. Let T = f1; : : : ; 2ng. The following stepsare repeated m times, each time using independent random bits.V1: the veri�er randomly picks points r1; : : : ; rk 2 Tn, where k =dn logne + 2 and sends them to the prover.P1: the prover randomly chooses a permutation ' and sends yl = pB0 �'(rl), for l = 1; : : : ; k, to the veri�er.V2: the veri�er randomly picks j 2 f0; 1g and sends it to the prover.P2: the prover sends a permutation � to the veri�er such that pBj ��(rl) =yl, for l = 1; : : : ; k.V3: �nally, the veri�er accepts i� this latter condition about � in fact holds.By arguments similar to those in Section 3, the above protocol consti-tutes an interactive proof system for 1-BPI: if B0 �= B1 and the proverbehaves as described in the protocol, then the veri�er will always accept. IfB0 6�= B1, then the veri�er will accept with probability at most 3=4 in eachround, no matter what the prover does, and hence, with probability at most(3=4)m after m rounds.For the zero-knowledge property, it is easy to see that the speci�c veri-�er in the protocol gets no extra information. The communication betweenP and V can be produced with equal distribution by the following algo-rithm MV : randomly pick j 2 f0; 1g, r1; : : : ; rk 2 Tn, and a permutation 'and output rl and pBj � '(rl), for l = 1; : : : ; k, and furthermore j and '.By arguments similar to those in [GMW91] one can show that P in factconveys no knowledge to any veri�er, even ones that deviate from the above18



protocol. We give a very short description so that a reader familiar with[GMW91] can easily �ll in the details.Let V � be an interactive machine. We cannot simply de�ne MV � thesame way as for the speci�c veri�er V above, because he has chose j uni-formly at random in step V2, and therefore MV could do the same thing.However, in general V � can make his choice of j dependent on the points((r1; y1); : : : ; (rk; yk)) he gets from the prover after the �rst round. On theother hand, only by knowing j in advance, MV could produce an isomor-phism ' as above.The way MV � works is as follows. MV � starts by simulating V � toproduce the points r1; : : : ; rk 2 Tn. Then MV � randomly picks j 2 f0; 1gand a permutation '. This is like MV above, but j is now considered onlyas a candidate for the value that will actually produced by V �. Next, MV �simulates V � when V � gets the points (r1; y1); : : : ; (rk; yk) from the prover.Thereby MV � obtains the value jV � that V � will send to the prover afterthe �rst round. Now, in case that j = jV � , MV � was lucky and can makethe same output as MV above, namely rl and pBj � '(rl), for l = 1; : : : ; k,and j and '. If j 6= jV � , then ' is the wrong permutation and MV � cannotmake a legal output. Instead, MV � repeats this whole process until it getslucky, i.e., until j = jV � and then makes an output.The probability that MV � is lucky is 1=2. Therefore we expect MV � torepeat this process twice, and hence, MV � runs in expected polynomial time.Finally, the output distribution of MV � is identical to that of the con-versation of P and V �. Intuitively this is clear because, roughly speaking,MV � simply waits until it can do the same trick as MV from above. The-refore, the output of MV � might be delayed, but has the same distribution.There are some subtleties one has to take care of, but a formal argumentcan now easily be adapted from [GMW91]. Note also that in fact MV � hasto produce the conversation of several rounds of the protocol. 2Clearly, Theorem 5.1 extends to to the isomorphism problem for arith-metic circuits.The interactive proof for 1-BPNI presented in Section 3 might not bezero-knowledge since in the �rst step, the veri�er can present points to theprover that are obtained in a di�erent way than by random guesses. Thenthe answers from the prover later on might give some extra informationto the veri�er. For the graph nonisomorphism problem GNI, this problemis solved by letting the veri�er \prove to the prover" that he has a per-mutation in hand which was used to produce the the graph sent to the19



prover [GMW91]. However, there are some problems to adapt this methodto 1-BPNI that arise from the way we describe polynomials in the interac-tive proofs, namely as a set of points. We leave it as an open problem toshow that 1-BPNI has a zero-knowledge interactive proof.AcknowledgmentsWe thank Manindra Agrawal for many enjoyable discussions. In particular,the observation that the isomorphism problem for polynomials is more gene-ral than the one for graphs (see end of Section 3) is due to him. Thanks alsogo to Bernd Borchert, Lance Fortnow, and Uwe Sch�oning for very helpfulcomments.References[AH91] W. Aiello and J. H�astad. Statistical zero-knowledge languagescan be recognized in two rounds. Journal of Computer and Sy-stem Sciences, 42:327{345, 1991.[AT96] M. Agrawal and T. Thierauf. The boolean isomorphism problem.In 37th Symposium on Foundation of Computer Science, pages422{430. IEEE Computer Society Press, 1996.[Bab85] L. Babai. Trading group theory for randomness. In 17th ACMSymposium on Theory of Computing, pages 421{429, 1985.[BCG+96] N. Bshouty, R. Cleve, R. Gavald�a, S. Kannan, and C. Tamon.Oracles and queries that are su�cient for exact learning. Journalof Computer and System Sciences, 52:421{433, 1996.[BCW80] M. Blum, A. Chandra, and M. Wegman. Equivalence of freeboolean graphs can be decided probabilistically in polynomialtime. Information Processing Letters, 10:80{82, 1980.[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural ComplexityTheory I. EATCS Monographs on Theoretical Computer Sci-ence. Springer-Verlag, 1988.[BDG91] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural ComplexityTheory II. EATCS Monographs on Theoretical Computer Sci-ence. Springer-Verlag, 1991.20



[Ber68] E. Berlekamp. Algebraic Coding Theory. McGraw-Hill, NewYork, 1968.[BHZ87] R. Boppana, J. H�astad, and S. Zachos. Does co-NP have shortinteractive proofs? Information Processing Letters, 25:27{32,1987.[BR93] B. Borchert and D. Ranjan. The subfunction relations are �p2-complete. Technical Report MPI-I-93-121, MPI Saarbr�ucken,1993.[BRS96] B. Borchert, D. Ranjan, and F. Stephan. On the computatio-nal complexity of some classical equivalence relations on booleanfunctions. Technical Report TR96-033, Electronic Colloquium onComputational Complexity, http://www.eccc.uni-trier.de/eccc/,1996.[CK91] P. Clote and E. Kranakis. Boolean functions, invariance groups,and parallel complexity. SIAM Journal on Computing, 20:553{590, 1991.[FHS78] S. Fortune, J. Hopcroft, and E. Schmidt. The complexity ofequivalence and containment for free single variable programschemes. In 5th Annual International Colloquium on Automata,Languages and Programming, Lecture Notes in Computer Sci-ence 62, pages 227{240. Springer-Verlag, 1978.[For89] L. Fortnow. The complexity of perfect zero-knowledge. Advancesin Computing Research, 5:327{343, 1989.[GMR89] S. Goldwasser, S. Micali, and C. Racko�. The knowledge comple-xity of interactive proof systems. SIAM Journal on Computing,18:186{208, 1989.[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yieldnothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38:691{729, 1991.[GS89] S. Goldwasser and M. Sipser. Private coins versus public coinsin interactive proof systems. Advances in Computing Research,5:73{90, 1989. 21



[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory,Languages and Computation. Addison-Wesley, Reading, Mass.,USA, 1979.[IM83] O. Ibarra and S. Moran. Probabilistic algorithms for decidingequivalence of straight-line programs. Journal of the ACM,30:217{228, 1983.[Sch80] J. Schwartz. Fast probabilistic algorithms for veri�cation of po-lynomial identities. Journal of the ACM, 27:701{717, 1980.[Sch88] U. Sch�oning. Graph isomorphism is in the low hierarchy. Journalof Computer and System Sciences, 37:312{323, 1988.[Sch89] U. Sch�oning. Probabilistic complexity classes and lowness. Jour-nal of Computer and System Sciences, 39:84{100, 1989.[Sip83] M. Sipser. A complexity theoretic approach to randomness. In15th ACM Symposium on Theory of Computing, pages 330{335,1983.[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In In-ternational Symposium on Symbolic and Algebraic Computation,Lecture Notes in Computer Science 72, pages 216{226. Springer-Verlag, 1979.
22


