
The Boolean Isomorphism ProblemManindra Agrawal �Dept. of Computer ScienceIndian Institute of TechnologyKanpur 208016, India Thomas Thierauf yAbt. Theoretische InformatikUniversit�at Ulm89069 Ulm, GermanyMarch 12, 1996AbstractWe investigate the computational complexity of the Boolean Isomorphism problem (BI):on input of two Boolean formulas F and G decide whether there exists a permutation of thevariables of G such that F and G become equivalent.Our main result is a one-round interactive proof for BI, where the veri�er has access to anNP oracle. To obtain this, we use a recent result from learning theory by Bshouty et.al. thatBoolean formulas can be learned probabilistically with equivalence queries and access to anNP oracle. As a consequence, BI cannot be �p2 complete unless the Polynomial Hierarchycollapses. This solves an open problem posed in [BRS95].Further properties of BI are shown: BI has And- and Or-functions, the counting version,#BI, can be computed in polynomial time relative to BI, and BI is self-reducible.1 IntroductionAn interesting computational issue is to decide the equivalence of two given programs with re-spect to some computational model. While the problem is undecidable for computational modelssuch as Turing machines, LOOP-programs, or context-free languages (see [HU79]), it is coNPcomplete for LOOP(1)-programs (no nested loops), circuits, branching programs, and Booleanformulas. Moreover, it can be e�ciently solved for one-time-only branching programs by a ran-domized algorithm [BCW80]. For regular languages it can be e�ciently solved deterministically(see [HU79]).In this paper, we consider the complexity of a generalized version of the equivalence problem:decide whether two given programs become equivalent via some bijective transformation of theinput. One of the simplest such transformation is an isomorphism, i.e., a permutation of theinput bits. A slightly more general transformation is the congruence, where the permutation ofthe variables is composed with a negation mapping which maps each variable either to itself orto its complement. The congruence problem for Boolean functions is in fact a very old problemthat has already been investigated in the last century. To motivate the name, the Booleancongruence relation can be seen as a geometrical congruence. There are 2n assignments for nvariables, forming the nodes of a n-dimensional cube in Rn. The assignments where a Booleanformula F evaluates to one form a subgraph of the cube, the n-dimensional geometrical cube�Research done while visiting the university of Ulm, Germany. Supported in part by an Alexander vonHumboldt fellowship.ySupported in part by DAAD, Acciones Integradas 1995, 322-AI-e-dr.1



representing F . Two formulas F and G are congruent if and only if the n-dimensional geometricalcubes representing F and G are geometrically congruent, that is, there is a distance-preservingbijection from one subgraph to the other.The paper by Borchert et.al. [BRS95] gives extensive background and provides a list ofearly references on this problem. In recent years, these problems have been reconsidered withrespect to their computational complexity [BR93, BRS95, CK91] for di�erent repesentations likeformulas or circuits.We call the isomorphism and congruence problem for Boolean formulas the Boolean Iso-morphism (BI) and Boolean Congruence (BC) problem, respectively. Although congruence is abroader notion than isomorphism, BC is many-one equivalent to BI [BRS95].BI is coNP hard but not known to be in coNP. Therefore it is at least as di�cult as theBoolean equivalence problem. As an upper bound on its complexity, BI is in the second level ofthe Polynomial Hierarchy, �p2. It is posed as an open problem by Borchert et.al. [BRS95] whetherBI is complete for �p2. They conjectured that it is not. In this paper we will solve this questionin the a�rmative by showing that BI is not complete for �p2 unless the Polynomial Hierarchycollapses. We also give a lower bound for BI: we show that the problem of deciding if a graphhas a unique optimal clique|which is not known to be in the Boolean Hierarchy|many-onereduces to it.The Boolean Isomorphism problem shares many similarities with the Graph Isomorphismproblem, GI (see [Hof82] and [KST93] for a comprehensive study on Graph Isomorphism). Manyof the results for GI carry over to BI with similar proofs, although with some crucial di�erences.We can rewrite any permutation of n variables x = (x1; : : : ; xn) as a product of a permutationmatrix P with x over GF(2). That is, an isomorphism can be written as xP, and a congruencecan be written as xP+ c, for a vector c 2 f0; 1gn. A natural generalization of the above notionsis therefore to consider linear and a�ne transformations xA and xA + c, respectively, whereA has to be a bijection on f0; 1gn. We call two formulas linear equivalent or a�ne equivalentif they become equivalent after a linear or an a�ne transformation of the variables of one ofthe formulas, respectively. As in the case of isomorphism and congruence, the Boolean LinearEquivalence problem, BLE, and the Boolean A�ne Equivalence problem, BAE, are many-oneequivalent [BRS95]. Also, BI many-one reduces to BAE [BRS95].Looking at circuits instead of Boolean formulas, we get the corresponding problems CI, CC,CLE, and CAE. CAE is the most complex problem we considered so far: all the other problemsare many-one reducible to it. The above mentioned result for BI holds in fact more general forCAE. That is, CAE is not complete for �p2 unless the Polynomial Hierarchy collapses.The paper is organized as follows. In Section 3 we show that the complement of BI hasan one-round interactive proof, where the veri�er has access to an NP oracle. The interactiveproof can be extended to the complement of CAE. From this we conclude the above mentionednon-completeness results. In Section 4 we show that BI has And- and Or-functions. This willprovide us with a lower bound for BI: the Unique Optimal CLIQUE problem can be many-onereduced to it. In Section 5 we show that the counting version of BI can be solved in polynomialtime relative to BI. This is an result that holds analogously for the Graph Isomorphism problem.Finally, in Section 6 we show that BI is self-reducible.2 PreliminariesAn n-ary Boolean function f = f(x1; : : : ; xn) is a mapping from f0; 1gn to f0; 1g. An assignmentfor (the variables of) f is a mapping a : fx1; : : : ; xng 7! f0; 1gn.2



Every Boolean function f can be expressed as a Boolean formula F over variablesfx1; : : : ; xng using the 2-ary conjunction (^) and disjunction (_) and the 1-ary negation (:)as basis. We will additionally use implication (!) and equivalence($). The semantic of aformula is de�ned as usual. By convention, we use small letters for functions and capital lettersfor formulas. Note that there can be several formulas representing the same function.Two formulas F and G are equivalent if f = g. That is, the associated functions are identical.Since F and G are equivalent if and only if the formula F $ G is a tautology, the problem ofdeciding whether two formulas are equivalent is coNP complete.Two formulas F and G are isomorphic, denoted by F �= G, if there exists a permutation 'on fx1; : : : ; xng, such that f = g � '. In this case, we call ' an isomorphism between F andG. The Boolean Isomorphism problem is BI = f hF;Gi j F �= G g. It follows directly from thede�nition that BI 2 �p2, the second level of the Polynomial Hierarchy.Iso(F;G) denotes the set of isomorphism between F and G. An automorphism of a formula Fis an isomorphism between F and F , Aut(F ) = Iso(F; F ). Aut(F ) is a group with composition �as group operation. It is a subgroup of the permutation group (on n variables). The BooleanAutomorphism problem, BA, is the set of formulas F that have a non-trivial automorphism, i.e.,jAut(F )j > 1.A negation mapping on n variables is a function � such that �(xi) 2 fxi; xig for 1 � i � n.Two formulas F and G are congruent , if there exists a permutation ' and a negation mapping �on fx1; : : : ; xng, such that f = g � � � '. The Boolean Congruence problem, BC, is the set ofpairs of formulas that are congruent. Congruence is a more exible notion than isomorphism,however, BC is clearly in �p2, moreover BI �pm BC [BRS95].Formulas F and G are a�ne equivalent if there exists a non-singular n � n matrix A anda 1 � n vector c over GF(2) such that for every x = (x1; : : : ; xn), we have f(x) = g(xA+ c)(here addition and multiplication is over GF(2)). The formulas are linear equivalent if they area�ne equivalent with the vector c being zero. We use BAE and BLE to denote the set of pairsof formula that are respectively a�ne and linear equivalent.The above de�nitions can be applied to circuits instead of formulas. We use CI, CC, CLE,and CAE to denote the set of circuit pairs that are isomorphic, congruent, linear equivalent,and a�ne equivalent, respectively. The reductions shown in [BRS95] can easily be seen tocarry over to circuits. That is, we have CI �pm CC �pm CLE �pm CAE. Since a formula caneasily be transformed to a circuit, each Boolean formula problem is many-one reducible to itscorresponding circuit version. It follows that CLE and CAE are the computationally hardestproblems we have de�ned here.We will use (fairly standard) notions of complexity theory. We refer the reader to [BDG-I&II,HU79] for de�nitions of these. Here, we only give an informal description of a few notions.Interactive proofs were de�ned in [GMR89]. Informally, a language has an interactive proof ifthere is a probabilistic polynomial-time veri�er that accepts the strings in the language with thehelp of an all powerful prover with high probability, and rejects the strings not in the languagewith high probability irrespective of the prover. If the veri�er needs at most k rounds of messageexchanges with the prover to accept the language, we say that the language belongs to the classIP[k] (one round consists of a question by veri�er and its answer by prover). Arthur-Merlingames were introduced in [Bab85]. These are similar to interactive proofs with Arthur beingthe veri�er and Merlin, the prover except that here the veri�er is obliged to make all its randombits also available to the prover. The class AM[k] is similarly de�ned.A language L is in the class BP � C if there exists a language A 2 C, and a polynomial p suchthat for every x 2 L, (x; y) 2 A for at least 2=3 of the y's of length p(jxj), and for every x 62 L,(x; y) 62 A for at least 2=3 of the y's of length p(jxj). Similarly, one de�nes NP � C.3



3 An Interactive Proof for BIWe show that there is a one round interactive proof for the complement of the Boolean Isomor-phism problem, BI, where the veri�er has access to an NP oracle. It follows that BI is in BP ��p2and is therefore not �p2 complete unless the Polynomial Hierarchy collapses.Our interactive proof is based on the one for GI [GMR89] (see also [Sch88]), however, itdi�ers from it in one crucial aspect. Let us �rst recall the protocol for GI:On input (G1; G2), the veri�er randomly picks i 2 f1; 2g, applies a random permu-tation of the vertices of Gi to obtain a new graph H and sends H to the prover. Theprover answers by sending j 2 f1; 2g to the veri�er. Finally, the veri�er accepts ifand only if i = j.When the input graphs are not isomorphic, the prover can �nd out from which of G1 orG2 the graph H was obtained by the veri�er, and can therefore make the veri�er accept withprobability one. On the other hand, when the graphs are isomorphic, then no prover can �ndout the graph that was chosen by the veri�er to construct H . Therefore, the answer of anyprover is correct with the probability at most 1=2.Unfortunately the analog protocol for BI does not work. To see this, consider the aboveprotocol on input (F1; F2), whereF1 = x1 ^ (x1 _ x2); andF2 = x1 ^ x2:Note that F1 and F2 are isomorphic (exchange x1 and x2). The veri�er randomly picks i 2 f1; 2g,obtains a formula G by randomly permuting Fi and sends it to the prover. However, even thoughF1 and F2 are isomorphic, the prover can easily detect from which one G has been obtained,because of the syntactic structure of G: any permutation of F1 will have three literals and anypermutation of F2 will have two literals.It seems as what we need is a normal form for equivalent Boolean formulas that can becomputed by the veri�er. (Recall that the veri�er has access to an NP oracle.) For a formula F ,let [F ] denote the set of all Boolean formulas that are equivalent to F . If we have a way to mapevery formula in [F ] to a particular formula in [F ], then the protocol works: the veri�er canmap the formula G in the above protocol to its normal form G0, and then the prover cannotdistinguish whether G0 is coming from F1 or F2 if the formulas are isomorphic.Clearly, we cannot simply go for DNF or CNF, because this might lead to exponentiallylonger formulas. Another obvious candidate for a normal form is the smallest equivalent Booleanformula (under some suitable total ordering). However, computing this seems to require a �p2oracle, and our veri�er only has an NP oracle available.To overcome this di�culty, we use a result from learning theory by Bshoutyet.al. [BCGKT95].Lemma 3.1 [BCGKT95] There is a probabilistic polynomial-time algorithm having access toan NP oracle that learns a Boolean formula using equivalence queries. 1The scenario is roughly as follows. There is a Boolean formula F given in a black box . Aprobabilistic polynomial-time machine, the learner , which cannot see F , has to compute withhigh probability a formula that is equivalent to F . The learner can use an NP oracle, and1The result is stated there only for DNF formulas, but their proof works for general Boolean formulas too.4



furthermore ask equivalence queries to a teacher who knows F . That is, the learner can sendformulas G to the teacher. If F and G are equivalent, the learner has succeeded in learning Fand the teacher will answer `yes'. Otherwise, the teacher will send a counter example to thelearner, that is, an x such that f(x) 6= g(x).The most important thing to note is that the output of the learner does not depend on thespeci�c input formula F : because of the black box approach the learner makes the same outputson every F 0 2 [F ] as input. Note also that this does not provide us with a normal form becausethe learner produces possibly several equivalent formulas depending on the random choices.However, on each random path the output remains the same on any F 0 2 [F ]. This will su�cefor our purposes.Furthermore, the teacher can in fact be replaced by an NP oracle: an equivalence querycan be simulated deterministically by the learner, since testing equivalence of two formulas is acoNP problem and computing counter examples can easily be done with several queries to NP.Therefore, the above lemma gives a functional ZPPNP-type algorithm to learn Boolean for-mulas. More precisely, we have the following.Lemma 3.2 [BCGKT95] (restated) There is a probabilistic polynomial-time algorithm thathas access to an NP oracle such that on input of a Boolean formula F , the algorithm� outputs a Boolean formula that is equivalent to F with probability at least 2=3,� never outputs a Boolean formula that is not equivalent to F , and� uses the input F only to test its equivalence to some formula or to �nd counter examplesvia the NP oracle.Now the idea should be clear. The veri�er, instead of directly sending the randomly producedformula G to the prover, �rst learns G via the above algorithm and then sends the formula ithas learned. We give the full protocol below.Theorem 3.3 BI 2 IP[1]NP.Proof. The following IP-protocol accepts BI.Input (F1; F2) with both the formulas being over variables x1; : : : ; xn.Question Is F1 not isomorphic to F2?Protocol The veri�er randomly picks i 2 f1; 2g and a random permutation ' on n variables.Let G = Fi � '. Now, the veri�er uses the algorithm of Lemma 3.2 on input G to obtainan equivalent Boolean formula G0 and sends G0 to the prover. On those paths where thealgorithm does not make an output, the veri�er directly accepts.The prover answers by sending j 2 f1; 2g to the veri�er. Finally, the veri�er accepts ifi = j, and rejects otherwise. 5



We show that the above protocol works correctly. If F1 is not isomorphic to F2, a provercan determine which of F1 and F2 formula G0 is isomorphic to, and tell it to the veri�er. Also,on the random paths where no equivalent formula is produced the veri�er accepts. Therefore,the veri�er accepts with probability one.Now consider the case when F1 is isomorphic to F2. Then formula G is isomorphic to both,F1 and F2. Since the algorithm of Lemma 3.2 has the same (set of) outputs on any formula in[G], any G0 that is sent to the prover has the same probability irrespective of whether G wasobtained from F1 or F2. Hence, the prover has no way of �nding out which of F1 and F2 wereused to construct G0. Thus, the best way for the prover is to answer randomly and so its answeris correct with probability at most 1=2. Therefore, the veri�er will accept with probability atmost 1=2 + 1=3 = 5=6 (the 1=3 comes from the paths on which the veri�er accepts withoutasking the prover).The veri�er can execute the above protocol in parallel to obtain exponentially small boundson the error. This proves the theorem. 2We remark that the same idea can be used to give a perfect zero-knowledge interactive prooffor BI, where the veri�er has access to an NP oracle.It is known that the private coins of an IP protocol can be made public with only twomore rounds [GS89]. Moreover, a constant round AM protocol can be reduced to a singleround [Bab85]. Both results hold in the presence of an NP oracle as well. Therefore, we haveBI 2 AMNP:Finally, it is known that AM = BP �NP, because in an AM protocol, Arthur can be replacedby a BPP machine that just passes the result of the coin tosses to Merlin. After receiving theanswer, the �nal decision is a polynomial-time computation. Now, in AMNP the �nal decisionis in PNP. Therefore we have AMNP = BP �NP �PNP = BP ��p2:Corollary 3.4 BI 2 BP � �p2.Sch�oning [Sch88] gives a direct proof that the graph isomorphism problem is in AM by usinghash functions. We remark that we can extend Sch�oning's proof by our technique to directlyobtain Corollary 3.4Sch�oning [Sch89] showed that a �p2 complete set cannot be in BP ��p2 unless the PolynomialHierarchy collapses.Corollary 3.5 If BI is �p2-complete then PH = �p3.Bshouty et.al. [BCGKT95] show the analog result to Lemma 3.2 for circuits. Therefore wecan adapt the interactive proof for BI for the Circuit Isomorphism problem, CI which givesCI 2 IP[1]NP.Corollary 3.6 If CI is �p2-complete then PH = �p3.We can extend the interactive proof for BI even to the linear and a�ne equivalence problems.The only di�erence is when the veri�er randomly generates a permutation. Now, the veri�er mustrandomly generate an a�ne transformation. To achieve this, the veri�er randomly generates ann-bit vector and an n � n 0-1 matrix. If the matrix is singular, the veri�er accepts. Otherwise,the protocol proceeds as in the case of a permutation.Observe that we get an extra error because some random paths of the veri�er might lead tosingular matrices. However, the next lemma ensures that a constant fraction of all matrices arenon-singular. Therefore, the veri�er can repeat the experiment to �nd a non-singular matrix afew number of times so that the probability of not �nding one is very small.6



Lemma 3.7 At least 1=4 of the n� n matrices over GF(2) are non-singular.Proof. We successively choose the column vectors of a n�n matrix such that the next columnvector is linearly independent of the previous ones. The �rst column can be chosen arbitrary,except that it can't be zero. So there are 2n � 1 choices.Any k linearly independent vectors in GF(2)n span a vector space of size 2k. Therefore,when we choose the (k + 1)-st column, we have 2n � 2k choices.In total, Qn�1k=0(2n � 2k) of the 2n2 n � n matrices over GF(2) are non-singular. Thus, theirproportion is 12n2 n�1Yk=0(2n � 2k) = nYk=1(1� 12k )= 12 nYk=2(1� 12k ) (for n � 2)� 12 nYk=2(1� 1k2 ) (for n � 6)= 12 (12 n+ 1n )� 14 ;where the second line from bottom follows by induction on n. For values of n smaller than 6also the above bound holds, as can be checked directly. 2Corollary 3.8 CAE 2 IP[1]NP.Proof. Let C1 and C2 be the input circuits with variables x = (x1; : : : ; xn). We have alreadydescribed the protocol of the interactive proof. It remains to show that the prover cannot detectwhich of the two input circuits was used to obtain the circuit he got, when C1 and C2 are a�neequivalent.Let xA+ c be the a�ne transformation so that C2(xA+ c) is equivalent to C1. For arandom a�ne transformation, say xR+ r, applied to C2, we get C2(xR+ r). Applied to C1, weget C1(xR+ r) which is equivalent to C2(xAR+ cR+ r). Now note that x 7! xAR+ cR + ris still a random a�ne transformation for �xed A and c. 2Corollary 3.9 If CAE is �p2-complete then PH = �p3.4 BI has AND and OR FunctionsThe complexity of sets can be compared by reductions. It two sets are equivalent with respect tosome reduction, they are considered as having similar complexity, where this similarity increasesthe more restrictive the reduction is. As an example, in the Turing degree of SAT one can alreadysolve NP optimization problems while this might not be possible in the many-one degree of SAT.On the other hand, a conjecture of Berman and Hartmanis is that the many-one degree of SATcollapses to its isomorphism degree.In this section we show that for BI, the disjunctive and conjunctive truth-table degree col-lapses to the many-degree of BI. This is a consequence of BI having And- and Or-functions.7



De�nition 4.1 An And-function for a set A is a function And : �� � �� 7! �� such that forany x; y 2 ��, we have x 2 A and y 2 A if and only if And(x; y) 2 A. Similar, an Or-function dfor A ful�lls x 2 A or y 2 A if and only if Or(x; y) 2 A.Before we can de�ne the And- and Or-functions, we need some technical lemmas providingus with some marking or labelling mechanism for the variables of a Boolean formula such that alabelled variable is a �xpoint of any automorphism of the formula. It is not clear whether thereexists such labellings that are e�ciently computable. However, the following weaker labellingoften su�ces.Let F = F (x1; : : : ; xn) be a Boolean formula. We call variables xi and xj equivalent (withrespect to F ) if for any assignment a that satis�es F , we have a(xi) = a(xj). Let E(xi) denotethe set of variables that are equivalent to xi. Now consider any automorphism ' 2 Aut(F ). If' maps xi to xk , then ' must map all variables equivalent to xi to variables that are equivalentto xk , i.e., '(E(xi)) = E(xk). We conclude that, in this case, E(xi) and E(xk) must be of thesame size. Thus, we can label variable xi by taking n new variables y1; : : : ; yn, and make themequivalent to xi as follows. De�ne F[i] = F ^ L(xi; y1; : : : ; yn); whereL(xi; y1; : : : ; yn) = n̂j=1(xi $ yj):Then xi has more equivalent variables (with respect to F[i]) than any other variable xk 62E(xi), and hence, any automorphism of F[i] stabilizes E(xi). Moreover, we can modify anyautomorphism to pointwise stabilize E(xi) and still have an automorphism of F[i]. The newvariables yi of F[i] are referred to as the labelling variables .Lemma 4.2 For all ' 2 Aut(F[i]),1. '(E(xi)) = E(xi).2. De�ne '0 to coincide with ' on all variables not in E(xi) and to be the identity on E(xi).Then '0 2 Aut(F[i]).Now let G = G(x1; : : : ; xn) be a second formula. We label variable xj with the same labelas xi, namely L(xj ; y1; : : : ; yn) and de�ne G[j] = G ^ L(xj ; y1; : : : ; yn). Then any isomorphismfor (F[i]; G[j]) must map all the variables equivalent to xj in G[j] to the variables equivalent toxi in F[i].Corollary 4.3 For all ' 2 Iso(F[i]; G[j]),1. '(EG(xj)) = EF (xi).2. De�ne '0 to coincide with ' on all variables not in EG(xj) and to map xj to xi, bethe identity on y1; : : : ; yn, and arbitrary on the remaining variables of EG(xj). Then'0 2 Iso(F[i]; G[j]).It follows that when two formulas F[i] and G[j] as above are isomorphic, we know that thereis an isomorphism that maps xj to xi and keeps the new variables from the labelling process onthemselves. We will therefore omit to explicitly mention the new variables in a label and willsimply write L(xi; n) when we label xi with n variables that do not yet occur in the consideredformula. 8



A more general task is to force automorphisms to stabilize a set of variables. Let x =(x1; : : : ; xn) and y = (y1; : : : ; ym), let F = F (x;y) and suppose we want to consider onlyautomorphisms of F that map x- to x-variables and y- to y-variables. Let n � m. Extendingthe technique from Lemma 4.2, we could simply label variable yi with L(yi; m), for i = 1; : : : ; m.However, the formula we get could increase quadratically in size. In order of being able to dothis process iteratively a logarithmic number of times, the size of the formula we obtain shouldincrease only linearly in size. Here is a trick to achieve this. De�neS(x;y; s;M) = ( n_i=1 xi ! s) ^ ( m_i=1 yi ! s) ^ L(s;M):Let S = S(x;y; s; n+m). S has the following property: let a be a satisfying assignment of S.If a assigns a one to any of the x-variables, then a(s) = 1 which implies that a(s) = 0, andtherefore a must assign zero to all the y-variables. Symmetrically, if a assigns a one to any ofthe y-variables then a(s) = 1 which implies that a(s) = 0, and therefore a must assign zero toall the x-variables.Now consider F ^ S. We claim that any automorphism of F ^ S must map x- to x-variablesand y- to y-variables, unless they are equivalent.Lemma 4.4 Let F be a formula as above such that the all-zero assignment does not satisfy F .Let ' 2 Aut(F ^ S).1. If '(xi) = yj for some i and j, then xi and yj are equivalent with respect to F .2. De�ne '0 to coincide with ' on all variables where ' maps x- to x-variables and y- toy-variables, and to be the identity on the remaining variables. Then '0 2 Aut(F ^ S).Proof. Any automorphism ' of F ^ S must stabilize s because of its label. Let a be anassignment that satis�es F ^ S and let xi be a variable such that a(xi) = 1 (recall that the allzero assignment does not satisfy F ). Since xi ! s we have that a(s) = 1. Since yj ! s, wehave that a(yj) = 0 for j = 1; : : : ; m. Therefore, ' cannot map xi to some yj in order of '(a) tosatisfy F ^ S. We conclude that ' must map xi to some xj . It follows that whenever ' maps,say, xi to yj , then any satisfying assignment of F ^S assigns zero to both, xi and yj . This meansthat xi and yj are equivalent (with respect to F ^ S). 2We extend the lemma to isomorphisms. Let G = G(x;y). Then any isomorphism of (F ^S;G ^ S) must map x- to x-variables and y- to y-variables, unless they are equivalent.Corollary 4.5 Let F and G be formulas as above such that the all-zero assignment does notsatisfy F or G. If (F;G) 2 BI then there is a ' 2 Iso(F ^ S;G ^ S) that maps all the x- tox-variables and all the y- to y-variables.For a last generalization step, consider again F = F (x;y) where n = m. Now we wantto allow automorphisms of F to map x- variables to y-variables in the following way: eitherx-variables are only mapped to x-variables or x-variables are only mapped to y-variables. Wecan achieve this as follows. De�neST (x;y; s; t;M) = ( n_i=1xi ! s) ^ ( n_i=1 yi ! s) ^ (s$ t) ^ L(s;M) ^ L(t;M):Let ST = ST (x;y; s; t; 2n). As above for S, a satisfying assignment of ST can assign a oneto either any of the x-variables or any of the y-variables, but not to both. The di�erence to Sis that now an automorphism of ST can interchange s and t because they have the same label.Now consider F ^ ST . We claim that any automorphism of F ^ ST9



(i) either maps x- to x-variables and y- to y-variables,(ii) or interchanges x- and y-variables,unless they are equivalent.Lemma 4.6 Let F be a satis�able formula as above such that the all-zero assignment does notsatisfy F . For all ' 2 Aut(F ^ ST ),(i) either '(s) = s and then we have that if '(xi) = yj for some i and j, then xi and yj areequivalent with respect to F ,(ii) or '(s) = t and then we have that if '(xi) = xj for some i and j, then xi and xj areequivalent with respect to F .Furthermore, we can modify ' to an automorphism of F ^ ST that keeps x- on x-variables incase (i), and interchanges x- and y-variables in case (ii).Proof. We have to distinguish two cases according to whether an automorphism ' maps s tos or t. In the case that '(s) = s we can directly use the proof of Lemma 4.4. If '(s) = t, thenby the same argument again, ' has to interchange all the x- and y-variables as well. 2Corollary 4.7 Let F and G be formulas as above such that the all-zero assignment does notsatisfy F or G. If (F;G) 2 BI then there is a ' 2 Iso(F ^ ST;G^ ST ) that(i) either maps x- to x-variables and y- to y-variables,(ii) or interchanges x- and y-variables,Theorem 4.8 BI has And- and Or-functions.Proof. Let (F 01; F 02) and (G01; G02) be two instances for BI, the F 0i 's have variables x1; : : : ; xn�1and the G0i's have variables y1; : : : ; ym�1, and let n � m.Our �rst step is to switch to formulasFi = Fi ^ xn andGi = Gi ^ ym;for i = 1; 2. The new formulas have the following properties.(a) (F 01; F 02) 2 BI() (F1; F2) 2 BI and (G01; G02) 2 BI() (G1; G2) 2 BI, and(b) 0n and 0m are not satisfying assignments of F1; F2 and G1; G2, respectively.Property (b) is obvious. To see (a) note that any satisfying assignment for F1 or F2 mustset xn to one. Thus, any isomorphism for (F1; F2) must stabilize E(xn), and hence there is anisomorphism that stabilizes xn. This gives an isomorphism for (F 01; F 02).For constructing the And-function, we simply combine the formulas by or-ing together F1 andG1 on one side, and F2 and G2 on the other side. However, we have to make sure that we don't getautomorphisms that map x-variables to y-variables. For this we use formula S = S(x;y; s;M)from above, where M = n+m. De�neAnd((F1; F2); (G1; G2)) = (C1; C2); whereC1 = (F1 _G1) ^ S andC2 = (F2 _G2) ^ S10



If (F1; F2) 2 BI and (G1; G2) 2 BI, then clearly (C1; C2) 2 BI. For the reverse directionassume that (C1; C2) 2 BI. By Corollary 4.5 there is an isomorphism ' that maps x- to x-variables and y- to y-variables, i.e., ' can be written as ' = 'x [ 'y [ 'S , where 'x is apermutation on fx1; : : : ; xng, 'y on fy1; : : : ; yng, and 'S on the extra variables from formula S.Moreover, 'x has to be an isomorphism for (F1; F2): we know that g1(0m) = 0, and g2('y(0m)) =g2(0m) = 0. Therefore, we must have f1(ax) = f2 � 'x(ax) for any assignment ax of the x-variables.By a symmetric argument we have that 'y must be an isomorphism for (G1; G2).For constructing the Or-function, we need a copy of the variables x = (x1; : : : ; xn) andy = (y1; : : : ; ym) used yet. Let u = (u1; : : : ; un) and v = (v1; : : : ; vm). De�neOr((F1; F2); (G1; G2)) = (D1; D2); whereD1 = ((F1(x) _ G1(y)) _ (F2(u) _G2(v))) ^R andD2 = ((F2(x) _ G1(y)) _ (F1(u) _G2(v))) ^ R; whereR = S((x;u); (y;v); s0;M0) ^ ST ((x;y); (u;v); s; t;M);where M0 = n+m and M = 2M0. (The additional brackets for the variables in formulas S andST indicate the two groups of variables occuring in the de�nition of these formulas.)The rough idea of this de�nition is that if one of (F1; F2) or (G1; G2) are isomorphic thenwe can use such an isomorphism for (D1; D2) extended by the identity mapping for the other,maybe non-isomorphic, pair. Formula R will ensure that we don't get more isomorphisms thanthe ones just described.Suppose �rst that (F1; F2) 2 BI and let 'x be an isomorphism. Let 'u be '�1x but on theu-variables. That is, de�ne 'u(ui) = uj ; if '�1x (xi) = xj :De�ne ' as the union of 'x and 'u and the identity on all the other variables of D2. Then it isstraight forward to check that ' is an isomorphism of (D1; D2) which is therefore in BI.Now assume that (G1; G2) 2 BI via isomorphism 'y. Then we get an isomorphism ' for(D1; D2) as follows. De�ne'(xi) = ui; '(s) = t;'(ui) = xi; '(t) = s;'(vi) = yj ; if 'y(yi) = yj ; '(s0) = s0;'(yi) = vj ; if '�1y (yi) = yj :The remaining variables coming from the labelling process are mapped according to the variablesthey are equivalent to.In summary, the isomorphisms we constructed have the following property:(i) either they map s and t to itself, respectively, and map x- to x-variables, u- to u-variables,y- to y-variables, and v- to v-variables,(ii) or they interchange s with t and interchange x- with u-variables and y- with v-variables.Conversely, if there is an isomorphism for (D1; D2) ful�lling property (i) or (ii), then it is easyto see that we get an isomorphism for either (F1; F2) or (G1; G2) from it, respectively. We nowshow that every isomorphism for (D1; D2) must (almost) satisfy one of these two properties.11



Assume that (D1; D2) are isomorphic. We consider formula R. By Corollary 4.5, its �rstpart, S((x;u); (y;v); s0;M0), implies that there is an isomorphism ' of (D1; D2) that can bewritten as a union of permutations 'x;u on x- and u-variables, 'y;v on y- and v-variables, 's;t ons and t, and 'L for the remaining variables from the labelling. Combined with its second part,ST ((x;y); (u;v); s; t;M), we get by Corollary 4.7, that 'x;u, depending on 's;t, either maps allx-variables to x-variables or interchanges x- and u-variables. The same holds analogously for'y;v . Thus we get an isomorphism ful�lling property (i) or (ii) above. 2We remark that we can extend the And- and Or- functions to more than two arguments bycombining them in a binary tree like fashion with the above functions for two arguments. Sincethe size of the output of our And- and Or- function is linear in the size of the input formulas, itis polynomial when having more arguments.Corollary 4.9 If a set L is disjunctively or conjunctively reducible to BI, then L �pm BI.We give two applications of Corollary 4.9. The Boolean Automorphism problem, BA, isdisjunctively reducible to BI, because a formula F = F (x1; : : : ; xn) is in BA if and only if forsome pair i; j 2 f1; : : : ; ng; i 6= j we have that (F[i]; F[j]) is in BI. It follows that BA is many-onereducible to BI.Corollary 4.10 BA �pm BI.We have already seen that BI is coNP hard. Unique Satis�ability (USAT) [BG82] is the set ofall Boolean formulas that have exactly one satisfying assignment. The function F (x1; : : : ; xn) 7!(F ^ z) _ (Vni=1 xi ^ z) reduces unsatis�able formulas to uniquely satis�able ones. ThereforeUSAT is coNP hard. Since USAT can be written as the di�erence of two NP sets, USAT is inDP, the second level of the Boolean Hierarchy. On the other hand, USAT is not known to be NPhard. The function F (x1; : : : ; xn) 7! (F;Vni=1 xi) reduces USAT to BC, the Boolean Congruenceproblem. Since BI �pm BC [BRS95], USAT can be reduced to BI.A seemingly harder problem than USAT is the Unique Optimal Clique problem (UOCLI-QUE), that is, whether the largest clique of a given graph is unique. The standard reductionfrom SAT to CLIQUE also reduces USAT to UOCLIQUE. An upper bound for the complexityof UOCLIQUE is PNP[log]: with logarithmically many queries to an NP oracle one can computethe size of the largest clique of a given graph. Then, with one more query, one can �nd outwhether there is more than one clique of that size. Papadimitriou and Zachos [PZ83] askedwhether UOCLIQUE is complete for PNP[log]. This is still an open problem. Buhrman andThierauf [BT96] provide strong evidence that UOCLIQUE is not complete for PNP[log].UOCLIQUE can be disjunctively reduced to USAT [BT96]. To see this let UCLIQUE bethe unique CLIQUE version. That is, given a graph G and a integer k, decide whether G hasa unique clique of size k. Now, observe that G 2 UOCLIQUE () 9k : (G; k) 2 UCLIQUE.Since the Cook reduction is parsimonious, this provides a disjunctive reduction of UOCLIQUEto USAT.Combined with the reduction from USAT to BI, we have that UOCLIQUE can be disjunc-tively reduced to BI. By Corollary 4.9, this can be turned into a many-one reduction.Corollary 4.11 UOCLIQUE �pm BI.As for UOCLIQUE, it is not known whether BI is NP hard.12



5 The Counting Version of BIMathon [Mat79] showed that the counting version of the Graph Isomorphism problem can be(truth-table) reduced to the decision version. Thus GI behaves di�erently than the known NPcomplete problems. This was historically the �rst hint that GI might not be NP complete.We will show an anlogous result for BI. The proof follows essentially the one for GI, however,there is again a technical di�culty to get around. For GI, the idea is as follows.First of all it is enough to compute the number of automorphism of a graph G,because there are exactly as many isomorphism to any graph, G is isomorphic to. Inthe beginning, label all nodes ofG (with pairwise di�erent labels), so that the identityis the only automorphism of the resulting graph. Then successively take away thelabels. If i is the node where the label was cancelled last, compute the orbit of i byasking queries to GI. When all labels are taken away, the number of automorphismsof G is the product of the orbit sizes constructed during this procedure.In the above algorithm one needs to construct a graph G[I], where I � f1; : : : ; ng such thatany automorphism of G[I] pointwise stabilizes the nodes in I . Correspondingly, given a formulaF in n variables, we need to construct a formula F[I] whose set of automorphisms (roughly)corresponds to the pointwise stabilizer of I in Aut(F ). More precisely, F[I] must retain exactlythose automorphisms of F that map variables in E(xi) to themselves, for all i 2 I . Observe thatthe labelling method given in Section 4 takes m new variables to label a variable in a formulawith m variables. Thus, starting with n variables, we would get n(2jIj � 1) new variables tocarry out the marking which is exponential in n when jI j = �(n). This is clearly too much ingeneral.Here, we give a method of computing F[I] that works in FPNP. Recall that BI is coNP hard.Therefore we can especially use this method when having BI as an oracle.Lemma 5.1 F[I] is computable in FPNPjj .Proof. Recall from Section 4 that for any automorphism ' of F , we have jE(xi)j = jE('(xi))jfor any variable xi. The trick in Lemma 4.2 was to make jE(xi)j unique by appending enoughequivalent variables to xi. Now, with an NP oracle, we can actually compute sets E(xi) by�nding out whether F is equivalent with F ^ (xi $ xj), for all j. Then, if we want to label xi,we take the smallest label such that xi gets a unique number of equivalent variables. This willkeep the number of new variables needed small.We construct formula F[I] by successively labelling the variables in I . Let F0 = F . Supposethat we have already labelled the �rst k variables of I and obtained the formula Fk, for somek � 0. Say that xi is the next variable to label, for some i 2 I . That is, xi is not equivalent toany of the variables already labelled. Now, let t be the smallest number such that, with respectto Fk, we have jE(xi)j+ t 6= jE(xj)j for any xj 62 E(xi);and de�ne Fk+1 = Fk ^ L(xi; t). This ensures that any automorphism of the new formula Fk+1stabilizes the set E(xi). Thus Fk+1 has the desired property. Furthermore, the only equivalenceclass of variables that changed in this process is E(xi) which has now all the new variables addedto it. Therefore, no equivalence class will have size more than n during any stage of the aboveconstruction, and thus the number t will be at most n. It follows that in total at most n2 newvariables are introduced, and the construction works in polynomial time. 2Using the labelling technique from Lemma 5.1, we can compute the number of isomorphismsof a Boolean formula in polynomial time relative to BI.13



Theorem 5.2 #BI 2 FPBIjj .Mathon's algorithm for computing the number of isomorphisms of two graphs is an inductiveprocess, where at each intermediate stage one knows the number of isomorphisms of the labelledgraphs that are considered. This observation led to the result that GI 2 LWPP [KST92]. SinceLWPP is low for PP, that is, PPLWPP = PP [FFK94], it follows that GI is low for PP.Using Lemma 5.1, an analogous argument shows that BI 2 LWPPNP. Since PPLWPPNP =PPNP, we get kind of a lowness result for BI.Theorem 5.3 PPBI = PPNP.6 BI is self-reducibleA set A is self-reducible if, very informally, the decision problem whether a given instance xis in A can be reduced to the same problem but for smaller (under some ordering) instances.Self-reducibility is a very useful property of a set. For example, if an NP set is self-reduciblethen the (seemingly more complex) construction problem, i.e., constructing a witness, can bereduced to the decision problem. In this section we show that BI is self-reducible.De�nition 6.1 A partial ordering � on �� is polynomially related if � is decidable in polyno-mial time and there is a polynomial p such that(i) for any x; y 2 ��, we have x � y =) jxj � p(jyj),(ii) any chain is polynomially length bounded, that is, if x1 � x2 � � � � � xk, then k � p(jxkj).De�nition 6.2 A set A is self-reducible if there is a polynomially related partial ordering �and a deterministic polynomial-time Turing machine M such that(i) MA accepts A and(ii) on input x and any oracle B, MB queries only strings y such that y � x.Theorem 6.3 BI is self-reducible.Proof. We �rst give an informal description of the self-reducing machine for BI. For twoformulas F and G, we have that(F;G) 2 BI() 9i; j : (F[i]; G[j]) 2 BI:Thus, the self-reducing machine simply constructs these formulas for all values of i and j andqueries the oracle. However, we need to de�ne a polynomially related partial ordering accordingto these queries. There are some subtle points that one has to take care of.The self-reducing machine uses the labelling scheme from Lemma 5.1, which yields a poly-nomially sized formula even after several labellings. To ensure polynomially-sized chains, themachine must check if some variables in F and G are already labelled, and, in this case, notrelabel them. This is possible since a label is easily detectable: it is of the form x$ y. We usethe variable with the smallest index as a representative for a label and call it a basic variable ofF . Note that the variables that don't have a label are also basic variables. The other variableswe refer to as labelling variables . The label size of a basic variable is the number of labellingvariables labelling it. 14



When all the basic variables of F and G have a unique label size, they de�ne a permutationon the variables which the machine can use to permute the variables of F . Then it checks if thepermuted formula F is equivalent to G. This checking is done by setting the �rst variable ofboth formulas to zero and one, respectively, and then verifying that both pairs of the resultingformulas are equivalent. Note that all tests can be done with BI as an oracle.The underlying polynomially related partial ordering � is de�ned in the following way.By Truen we denote a �xed formula over n variables that is a tautology (e.g., Vni=1(xi _ �xi)).In the following, we drop the subscript n and simply write True to denote such a formulawhen the number of variables is clear from the context. For formulas F;G; F 0; G0, we de�ne(F;G) � (F 0; G0) if jF j and jGj is bounded by a �xed polynomial in jF 0j and jG0j respectively,and one of the following conditions hold:(i) the number of basic variables in F is less than that in F 0, and either G = True or thenumber of basic variables in G is less than or equal to that in G0,(ii) the number of basic variables in G is less than that in G0, and either F = True or thenumber of basic variables in F is less than or equal to that in F 0, or(iii) the number of basic variables in F and G equals that in F 0 and G0, and more basic variablesin F and G have unique label sizes than in F 0 and G0, respectively.We now describe the self-reducing machine, M , in detail. At several places, M has to testwhether a Boolean formula T is a tautology. This is done by checking that (T [0];True) and(T [1];True) belong to BI, where by T [b], b 2 f0; 1g, we denote the formula obtained from T bysetting its �rst basic variable|and the labelled variables associated with it|to the value b.Let F and G be formulas over variables x1; : : : ; xn.M on input (F;G) �rst checks if any of F and G equals True. If both of them do,then they are isomorphic and so M accepts. If exactly one of them, say G, does,then F and G are isomorphic if F is also a tautology. This can be checked using thescheme described above. M accepts i� F is a tautology.If none of F and G equals True, M does the following. It detects the basic variablesof F and G, and �nds out if any two basic variables of F are equivalent by checkingif the formula TF;i;j is a tautology, whereTF;i;j = (F ^ (xi $ xj))$ F;for every pair of basic variables xi and xj of F . If TF;i;j is a tautology then xiand xj are equivalent in F , otherwise not. If there are xi and xj in F that areequivalent then M accepts i� (F 0; G) 2 BI where F 0 is obtained from F by replacingall occurrences of xj in F by xi. Then we `and' the formula xi $ xj to the resultingformula. By this transformation, F and F 0 are equivalent and F 0 has one less basicvariables than F . If F has no equivalent basic variables, then the above is repeatedfor G instead of F .If no two basic variables of F or G are equivalent, M computes, for each basicvariable, its label size. It then checks whether these numbers of F and G match. Ifnot, then M rejects as there cannot be any isomorphism between F and G.If the numbers match, and all basic variables of F are uniquely labelled, then Mconstructs a permutation ' of variables of F such that '(xi) = xj , where the label15



size of xi in F and xj in G are the same. ' also maps labelled variables associatedwith xi to those associated with xj . Now, M permutes the variables of F using 'to obtain the formula F � ' and then checks whether F � '$ G is a tautology, andaccepts in this case.Finally, if there are some basic variables of F with identical label sizes, for everysuch variable xi of F , and for every basic variable xj of G that has the same labelsize, M queries the oracle whether (F[i]; G[j]) 2 BI. It accepts i� at least one of thesepairs belong to BI.It is straight forward to see thatM respects the partial order de�ned above, works in polynomial-time, and accepts BI. 27 Open ProblemsIn the known examples, isomorphism does not appear to add full NP power to the correspondingequivalence problem, as in the case of graphs and Boolean formulas. Note that for graphs,the equivalence asks for equality, which is trivial. The equivalence of two deterministic �niteautomatons (DFA) can be decided in P. It is not hard to see that the isomorphism problem forDFA's, where one can permute the states of a DFA, is still in P.The equivalence problem for one-time-only branching programs is known to be in coRP.Therefore, the corresponding isomorphism problem is in NP�coRP. We ask for some betterbound on the complexity of the isomorphism problem for one-time-only branching programs.AcknowledgementsWe bene�ted from discussions with V. Arvind, Bernd Borchert, Jin-yi Cai, Toni Lozano, andLance Fortnow.References[Bab85] L. Babai. Trading group theory for randomness. In 17th ACM Symposium on Theoryof Computing , 421-429, 1985.[BDG-I&II] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I & II. EATCSMonographs on Theoretical Computer Science, Springer-Verlag, 1988 und 1991.[BCGKT95] N. Bshouty, R. Cleve, R. Gavald�a, S. Kannan, C. Tamon. Oracles and que-ries that are su�cient for exact learning. ECCC TR95-015, 1995. Available via:http://www.eccc.uni-trier.de/eccc/[BG82] A. Blass, Y. Gurevich. On the unique satis�ability problem. Information and Control55, 80-88, 1982.[BR93] B. Borchert, D. Ranjan. The Subfunction Relations are �p2{complete, Technical ReportMPI-I-93-121, MPI Saarbr�ucken, 1993.[BRS95] B. Borchert, D. Ranjan, F. Stephan. On the Computational Complexity of some Clas-sical Equivalence Relations on Boolean Functions. Forschungsberichte MathematischeLogik, Universit�at Heidelberg, Bericht Nr. 18, Dezember 1995.16
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