
COMPLEXITY-RESTRICTED ADVICE FUNCTIONSJOHANNES K�OBLER� AND THOMAS THIERAUFyAbstract. We consider uniform subclasses of the nonuniform complexity classes de-�ned by Karp and Lipton [23] via the notion of advice functions. These subclasses areobtained by restricting the complexity of computing correct advice. We also investigatethe e�ect of allowing advice functions of limited complexity to depend on the input ratherthan on the input's length. Among other results, using the notions described above, wegive new characterizations of (a) NPNP\SPARSE, (b) NP with a restricted access to an NPoracle and (c) the odd levels of the boolean hierarchy.As a consequence, we show that every set that is nondeterministically truth-tablereducible to SAT in the sense of Rich [35] is already deterministically truth-table reducibleto SAT. Furthermore, it turns out that the NP reduction classes of bounded versions ofthis reducibility coincide with the odd levels of the boolean hierarchy.Key words. nonuniform complexity classes, advice classes, optimization functions,restricted oracle access, sparse NP sets, relativization, boolean hierarchy, truth-table redu-cibilityAMS(MOS) subject classi�cations. 68Q151. Introduction. In their fundamental paper, Karp and Lipton [23] introdu-ced the notion of advice functions and investigated nonuniform complexity classeswhich they denoted by C=F , where C is a class of sets and F is a class of (advice)functions. A typical class is P=poly, where poly is the set of polynomially lengthbounded functions. The interest in P=poly stems from the fact that it consistsexactly of the languages that can be computed by polynomially size-bounded cir-cuits [34].Intuitively, a set A is in C=F , if A can be solved by a machine of type Cthat gets, in addition to the input x, the advice f(x), where f is a function in Fdepending only on the length of x. Many researchers have considered nonuniformclasses where the function class F is de�ned by a quantitative length restrictionsuch as poly and log (see, for example, [3, 5, 23, 36]). Note that for such F there arenonrecursive functions in F , and therefore C=F contains nonrecursive languages.Here, we consider uniform language classes obtained by imposing complexitybounds on the advice functions. Note that K�amper [22] investigates re�nements ofthe original C=F de�nition by delimiting the complexity of proof sets, i.e., special� Abteilung f�ur Theoretische Informatik, Universit�at Ulm, Oberer Eselsberg, D-W-7900 Ulm,Germany. Supported in part by the DAAD through Acciones Integradas 1991, 313-AI-e-es/zk.y Abteilung f�ur Theoretische Informatik, Universit�at Ulm, Oberer Eselsberg, D-W-7900 Ulm,Germany. Work done in part while visiting the University of Rochester. Supported in part by DFGPostdoctoral Stipend Th 472/1-1, NSF Grant CCR-8957604, and by the DAAD through AccionesIntegradas 1991, 313-AI-e-es/zk. 1



sets of correct advice. In contrast to this, we directly bound the complexity ofcomputing correct advice. With this concept, we are able to show characterizationsas well as �ner distinctions of several complexity classes. For example, we showthat the class NPNP\SPARSE coincides with the class NP=OptP[O(log n)], a subclassof NP= log, where correct advice is computable by an OptP function [29], i.e.,NPNP\SPARSE = NP=OptP[O(log n)]:(1.1)One can interpret equality (1.1) as stating that (exactly) the languages inNPNP\SPARSE can be computed in the following way: on input x of length n, at�rst an OptP[O(log n)] precomputation takes place that gets as input only 1n.The (logarithmically length-bounded) output of this precomputation is then pas-sed along with x to the subsequent NP computation, that decides the membershipof x.Motivated by the relativized separation of P and NP of Baker, Gill, and Solo-vay [2] (exploiting the fact that an NP oracle machine can ask superpolynomiallymany queries), Book, Long, and Selman [11] introduced restricted relativizationsof NP by bounding the number of oracle queries in various ways. Subsequently,Long [32] investigated the relationship between restricted access of nondetermini-stic machines to an oracle and full access to a sparse oracle set. Let NPAR be theclass of all languages whose membership in NPA is witnessed by an oracle machinesuch that the number of potential oracle queries in A (asked on some oracle) ispolynomially bounded. From this de�nition, it is clear that NPNP\SPARSE is contai-ned in NPNPR . Since also coNP is contained in NPNPR , NPNP\SPARSE and NPNPR aredi�erent unless the polynomial hierarchy collapses [21]. By considering the proof ofequality (1.1), we will see that if we let the OptP[O(log n)] advice function dependnot only on the length of the input but on the input itself, we get a characterizationof NPNPR . This leads us to de�ne the class C==F , that is de�ned in the same way asC=F , but with the advice functions depending on the input. Thus, we obtain thefollowing characterization of NPNPR ,NPNPR = NP==OptP[O(log n)](1.2)The characterizations (1.1) and (1.2) give insight into the di�erence between re-stricted access to NP oracles and full access to sparse NP sets.It seems that the notion of C==F is an appropriate concept for studying di�erentkinds of truth-table reducibilities. Let �SATk be the k-ary characteristic function ofSAT. Then, P==�SATk �FP is the class of sets that are k-truth-table reducible to someNP set. It is known that these classes are interleaved with levels of the booleanhierarchy: NP(k) � P==�SATk �FP � NP(k+1) for all k � 1 [28]. Since P==�SATk �FPis closed under complementation, these classes are all di�erent unless the booleanhierarchy collapses.NP==�SATk �FP is the class of sets that are k-truth-table reducible to some NPset, where the evaluator is an NP machine. These classes turn out to coincide with2



the odd levels of the boolean hierarchy, giving for the �rst time a charcterizationof the levels of the boolean hierarchy in terms of reduction classes,NP(2k + 1) = NP==�SATk � FP:Furthermore, we show that NP(2k + 1) = NPNPk-tt, where NPNPk-tt is the classof sets that are nondeterministically k-truth-table reducible to a set in NP in thesense of [35]1, whereas in the unbounded case all sets nondeterministically truth-table reducible to SAT are already deterministically truth-table reducible to SAT,i.e., NPNPtt = PNPtt . The latter result also holds for the strong nondeterministictruth-table reducibility �SNtt introduced by Long [31], i.e., we show that fA j A �SNttSATg = fA j A �Ptt SATg.The paper is organized as follows. Section 2 introduces notation and givesbasic de�nitions. In Section 3, we prove the above mentioned characterizati-ons of NPNP\SPARSE and NPNPR and we show that changing from OptP[O(log n)]to the larger function class FewOptP (containing all functions whose member-ship in OptP is witnessed by an NP transducer that generates only polynomiallymany di�erent outputs) does not increase the power of NP=OptP[O(log n)] andNP==OptP[O(log n)].In Section 4, we separate some of these complexity classes in relativized world;the main result is a separation of P=OptP[O(log n)] and PNP\SPARSE[O(logn)].In Section 5, we give several characterizations of certain levels of the booleanhierarchy in terms of various complexity restricted advice function classes.2. Preliminaries and Notation. All languages considered here are over thealphabet � = f0; 1g. For a string x 2 ��; jxj denotes its length. We assume the exi-stence of a pairing function h�; �i : �� ��� ! �� that is computable in polynomialtime and has inverses also computable in polynomial time. h�; �i can be extended toencode �nite sequences (x1; : : : ; xk) of strings into a string hx1; : : : ; xki 2 ��. For aset A, jAj denotes its cardinality. The complement �� � A of A is denoted by A.A�n is the set of all strings in A of length less than or equal to n.A languages S is sparse, if there is a polynomial p such that for all n, thenumber of words in S up to length n is at most p(n). Let SPARSE be the classof all sparse languages. A set T is tally, if T is a subset of 1�. Let TALLY be theclass of all tally sets.We assume that the reader is familiar with (nondeterministic, polynomial-timebounded, oracle) Turing machines and complexity classes (see [4, 36]). FP is theclass of functions computable by a deterministic polynomial-time bounded Turingtransducer. An NP transducer is a nondeterministic polynomial-time boundedTuring machine T that on every branch either accepts and writes a binary number1 By requiring the NP generator to be single valued, Rich [35] has modi�ed the nondeterministictruth-table reducibility originally de�ned by Ladner, Lynch, and Selman [30].3



on its output tape or rejects. The set of outputs generated by T on input x isdenoted by outT (x).Krentel [29] de�nes an NP metric Turing machine to be an NP transducerthat accepts on every branch. For an NP metric Turing machine T and an inputx 2 �� let maxT (x) [minT (x)] be the maximum [minimum] output generated by Ton input x on any accepting computation of T . The class OptP [29] of optimizationfunctions is de�ned asOptP = f maxT ;minT j T is an NP metric Turing machine g:For a class R of functions on the natural numbers (called restricting functions), wede�ne the subclassOptP[R] = ff 2 OptP j 9 r 2 R 8x 2 �� : jf(x)j � r(jxj)gcontaining all optimization functions f 2 OptP such that the length of f(x) inbinary is bounded in jxj by a function from R.PNP[R] denotes the class of sets whose membership in PNP can be witnessed byan oracle machineM making for some r 2 R at most r(n) many queries on inputsof length n. In the case that R is a singleton set frg we simply write OptP[r] andPNP[r], respectively. Throughout the paper we assume that for every restrictingfunction r the function x 7! r(jxj) is computable in polynomial time.Karp and Lipton [23] introduced the notion of advice functions in order tode�ne nonuniform complexity classes. For a class C of sets and a class F of functionsfrom �� to �� let C=F be the class of sets A such that there is a set B 2 C and afunction h 2 F such that for all x 2 ��x 2 A , hx; h(1jxj)i 2 B:Note that the advice function h depends only on the length of x. By canceling thisrestriction we obtain the class C==F of all sets A such that there is a set B 2 C anda function h 2 F such that for all x 2 ��x 2 A , hx; h(x)i 2 B:By de�nition, C=F is a subset of C==F for each class of sets C and each class offunctions F which ful�lls the condition that if h 2 F , then also x 7! h(1jxj) 2 F .Special advice function classes considered in the literature are poly = fh : �� !�� j there exists a polynomial p such that for all x, jh(x)j � p(jxj)g and log = fh :�� ! �� j jh(x)j = O(log(jxj))g.3. NPNP\SPARSE versus NPNPR . In this section we show that NPNP\SPARSE canbe characterized as the class NP=OptP[O(log n)], i.e., the class of sets that areaccepted by an NP machine with advice of a logarithmically length bounded OptP4



function. Further, it turns out that the related class NPNPR (see de�nition below)coincides with NP==OptP[O(log n)]. For the latter two classes we can show thatthey are also equal to P==OptP[O(log n)] which, by a result of Krentel [29], isidentical to PNP[O(logn)].Definition 3.1. [11] For any oracle Turing machine M and any stringx 2 �� let Q(M;A; x) be the set of all oracle queries that M may ask on input xusing oracle A, i.e., the set of all strings y 2 �� such that in some computation ofM on input x under oracle A the oracle is queried about y. Q(M;x) is the set of alloracle queries of M on input x using any oracle, i.e., Q(M;x) = SA��� Q(M;A; x).For any set A, NPR(A) is the class of sets L 2 NP(A) whose membership iswitnessed by a machine M such that the number of potential oracle queries in A ispolynomially bounded, i.e., there exists a polynomial p such that jQ(M;x) \ Aj �p(jxj) for all x.Our �rst theorem states that if a language L is accepted by an NP oraclemachineM using an NP oracle A in such a way that the number of potential oraclequeries that are in A is polynomially bounded, then L is in NP==OptP[O(log n)],i.e., membership to L can be tested by an NP machine which gets along with theinput the precomputed value of an OptP[O(log n)] function. In the special case thatA is sparse this containment can be strengthened to NP=OptP[O(log n)], i.e., forall inputs of the same length the advice function yields the same result. The proofis by a census argument similar to that used by Hemachandra [18] and Kadin [21].Theorem 3.2.i) NPNPR � NP==OptP[O(log n)],ii) NPNP\SPARSE � NP=OptP[O(log n)].Proof. Let L = L(M;A) for an NP machineM and an oracle A in NP, and letp be a polynomial that bounds the running time of M .To show i) let r be a polynomial such that jQ(M;x)\Aj � r(jxj) for all x. AnNP machine knowing the size of the set Q(M;x) \A can guess this set (note thatthe problem to decide for given strings x and y whether y is in Q(M;x) \ A is inNP). De�ne the function h(x) = jQ(M;x) \Ajand the setB = fhx; ki j 9X � Q(M;x) \ A : jXj = k and x 2 L(M;X)g:Then B 2 NP and h 2 OptP[O(log jxj), since h(x) is the maximum output of thefollowing algorithm.On input x guess k � r(jxj) and x1 < : : : < xk 2 ��p(jxj);if x1; : : : ; xk 2 Q(M;x) \A, then output k, else output 0.5



Now, it holds for all x 2 �� that x 2 L if and only if hx; h(x)i 2 B. Therefore, Lis in NP==OptP[O(log n)]:For ii) let A be sparse and r be a polynomial such that jA�p(n)j � r(n), forall n. De�ne the function h(x) = jA�p(jxj)jand the set B = fhx; ki j 9X � A�p(jxj) : jXj = k and x 2 L(M;X)g:By a similar argument as in the proof of i), x 2 L if and only if hx; h(1jxj)i 2 B.This shows that L is in NP=OptP[O(log n)].Combining Theorem 3.2 ii) with the result of Balc�azar and Sch�oning [5] thatNP=log \ coNP � NPNP\SPARSE (see also [3]), it follows that for every coNP set inNP=log correct advice can already be computed by an OptP function.Corollary 3.3. NP=log \ coNP = NP=OptP[O(log n)] \ coNP:To show the reverse containments of Theorem 3.2, we make use of the followinglemma. It states that every OptP function h can be computed by a deterministicpolynomial-time oracle machine by asking jh(x)j many queries to an NP oracle.Lemma 3.4. [29] OptP[r] � FPNP[r] for any restricting function r.Corollary 3.5.i) NPNPR = NP==OptP[O(log n)],ii) NPNP\SPARSE = NPNP\TALLY = NP=OptP[O(log n)].Proof. By Theorem 3.2, it only remains to show the inclusions from right toleft.To show i), let L be in NP==OptP[O(log n)] via an NP machine N and anoptimization function h. Then L can be accepted by an NP machine M thatcomputes deterministically by binary search the value of h according to Lemma 3.4asking O(log n) many queries to an NP oracle, and then simulatesN without askingfurther oracle queries. Since Q(M;x) is polynomially bounded, it follows that L isin NPNPR .If h is a function that depends only on the length of its argument, then h(x)can be computed by binary search using the tally NP set T = f1hn;ki j k � h(1n)g.This proves ii).Note that the above proof shows that every language in NP==OptP[O(log n)](and thus in NPNPR ) can in fact be accepted by an NP oracle machineM such thatQ(M;x) is polynomially bounded.In the next lemma, we show that an NP computation getting along with theinput the result h(x) of an OptP precomputation can be transformed into a P com-putation by precomputing one additional bit. Note that this bit actually dependson x even if h(x) only depends on the length of x.Lemma 3.6. NP==OptP[r] � P==OptP[r + 1], for any function r.6



Proof. Let L be in NP==OptP[r], witnessed by an NP set B and an OptP[r]function h = maxT for some NP metric machine T . De�ne the OptP[r+1] functionh0(x) = 8><>: h(x)1; if hx; h(x)i 2 B;h(x)0; otherwise.Then it holds for all x that hx; h(x)i 2 B , hx; h0(x)i 2 B0, where the setB0 = fhx; ki j k is oddg is in P. The case that h = minT can be proved analogously.Combining Corollary 3.5 i) and Lemma 3.6 we obtain a further characte-rization of the class NPNPR and its closure under complementation. Note thatP==OptP[O(log n)] = PNP[O(logn)] [29].Corollary 3.7. NPNPR = P==OptP[O(log n)].Corollary 3.8. NPNPR is closed under complementation.Remark 3.9. The results stated in Corollary 3.5 can be extended to the clas-ses of the polynomial-time hierarchy [37]. In order to do so, we de�ne restrictedrelativizations of the �-levels of the polynomial hierarchy. �Ck;R is the class of allsets L accepted by a k-alternating polynomial-time Turing machine [16] using anoracle A from C such that jQ(M;x)\Aj is polynomially bounded. Then, the resultsstated in Corollary 3.5 can be extended to��k\SPARSEk = �k=Opt�k�1[O(log n)];��kk;R = �k==Opt�k�1[O(log n)] = P�k [O(logn)];where Opt C is the class of optimization functions computable by an NP transdu-cer using some oracle in the class C. Since �k=Opt�k�1[O(log n)] is included inP�k[O(logn)], this sharpens the recent result in [13] that ��k\SPARSEk � P�k [O(logn)].Remark 3.10. The advice (even depending on the input) provided by anOptP[O(log n)] function does not increase the power of the probabilistic classPP: PP==OptP[O(log n)] = PP. This follows from the result by Toda [40] thatPPNPR = PP, since PP==OptP[O(log n)] coincides with the class PP==FPNP[O(logn)](see Lemma 3.4) that is clearly contained in PPNPR .Next, we consider uniform subclasses of P=log and P=poly. Whereas theproof of Corollary 3.5 ii) also yields the inclusion of P=OptP[O(log n)] inPNP\SPARSE[O(logn)], the census technique of Theorem 3.2 cannot be applied to obtainthe reverse containment. The next theorem is proved by constructing (long enoughinitial segments of) a sparse NP set by an OptP computation. The underlyingtechnique was used by Mahaney [33] to show that NPNP\SPARSE � PNP.Theorem 3.11. PNP\SPARSE � P=OptP:Proof. Let L = L(M;S), for a P machine M and a sparse NP set S. Let pand r be polynomials such that p bounds the running time of M and jS�nj � r(n).7



De�ne h(x) = hS�p(jxj)i:Then, h 2 OptP, since h(x) is the maximum output of the following algorithm.On input 1n guess k � r(p(n)) and x1 < : : : < xk 2 ��p(jxj);if x1; : : : ; xk 2 S, then output hx1; : : : ; xki, else output 0.Now, the computation of M using oracle S on input x can be simulated by a Pmachine answering oracle questions according to the set h(1jxj).Let FewOptP be the class of functions f 2 OptP computed by an NP trans-ducer that produces at most a polynomial number of di�erent outputs. Clearly,OptP[O(log n)] � FewOptP, and obviously, this is a proper inclusion.However, as shown by the next theorem, the classes NP=OptP[O(log n)] andNP==OptP[O(log n)] remain unchanged when the function class OptP[O(log n)] isreplaced by the larger class FewOptP.Theorem 3.12.i) NP==FewOptP = P==FewOptP = P==OptP[O(log n)],ii) NP=FewOptP = NP=OptP[O(log n)].Proof. Let L be a set in NP==FewOptP via A 2 NP and f 2 FewOptP. Let Tbe an NP metric machine for f , i.e., f = maxT (the proof for f = minT is similar),and the number of di�erent outputs of T is polynomially bounded. De�ne thefunction h(x) = joutT (x)jand the set B = fhx;mi j 9 z1 < : : : < zm 2 outM(x) : hx; zmi 2 Ag:It is easy to see that h 2 OptP[O(log n)] and B 2 NP. Now, x is in L if and only ifhx; h(x)i is in B, and therefore, L is in NP==OptP[O(log n)] = P==OptP[O(log n)].The latter equality follows from Corollaries 3.5, part i), and 3.7. The proof of ii)is analogous, we only have to replace outT (x) by outT (1jxj).The technique used in the previous proof cannot be applied to show thatthe classes P=OptP[O(log n)] and P=FewOptP are equal. However, the proof ofP=OptP[O(log n)] � PNP\SPARSE[O(logn)] (using binary search, see the proof of Co-rollary 3.5 ii)) can be re�ned to show the following theorem. It states that a setin P=FewOptP can be decided in polynomial time by querying a sparse NP oracle(polynomially often).Theorem 3.13. P=FewOptP � PNP\SPARSE.Proof. Let f be in FewOptP and let T be an NP transducer computing f .Using the sparse NP setS = fh1n;m; i; zi j 9 z1 < : : : < zm 2 outT (1n) 9 z0 : z z0 = zig8



as oracle, f(x) can be computed in polynomial time by determining �rst joutT (1n)jand then applying a pre�x search to �nd the optimum value in outT (1n).The known relationships of the language classes considered in this section aresummarized in the diagram of Figure 3.1.
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Fig. 3.1. Inclusion structure of some considered complexity classes; thick lines indicate thatthere are relativized separations (see Section 4).4. Relativized Separations. Since Baker, Gill, and Solovay [2] separated Pfrom NP relative to some oracle, relativizations have been an important subject incomplexity theory. In this section, we discuss which of the inclusions in Figure 3.1are strict, at least in some relativized world.Since there are nonrecursive sets in P=poly and in NP=poly, these two classesare clearly di�erent from all other (recursive) classes considered here. Whetherthere are any other strict inclusions in the diagram of Figure 3.1 is not known.For some of the inclusions, however, the question whether they are proper can belinked to central open problems in complexity theory.For example, by the result of Karp, Lipton, and Sipser (see [23]) that NP �P=poly implies the collapse of the polynomial hierarchy to its second level, it followsthat if PH 6= �2, then NP is not contained in any of the classes on the left column9



of Figure 3.1. Since this holds in all relativized worlds, and since there exists anoracle separating PH from �2 [24], it follows that relative to this oracle all theinclusions between the �rst and the second column are proper.Similarly, using the result of Kadin [21] that coNP � NPNP\SPARSE impliesPH = PNP[O(logn)], it follows that if PH 6= PNP[O(logn)], then NPNP\SPARSE 6=PNP[O(logn)]. Since, as it is easily seen, the inclusion coNP � NP=OptP impliesPH = PNP, we can state the following theorem.Theorem 4.1. PH 6= PNP ) NP=OptP 6= P==OptP.Furthermore, by the recent result of Toda [39] that PH � PPP, it follows thatPNP[O(logn)] 6= PP and PNP 6= PP==OptP unless PH = PNP.Beigel [7] constructed an oracle A such that PNPA � PPA 6= ;. SincePNP[O(logn)] � PP [9], oracle A also separates PNP[O(logn)] and PNP (for a directproof see [14]).Cai et al. [15] showed the existence of an oracle A such that relative to A theboolean hierarchy is in�nite, i.e., 8 k : NPA(k) 6= coNPA(k). In fact, Cai et al.construct the oracle A in such a way that, for all k, some tally test language Lk(A)is in coNPA(k)�NPA(k). Because it holds for every oracle set B thatNPB(2k � 1) [ coNPB(2k � 1) � P==OptPB[k] � NPB(2k)[43, 28, 8], it follows that L2k�1(A) 2 P==OptPA[k] \ TALLY � P=OptPA[k], i.e.,9A 8 k � 1 : P=OptPA[k]�NPA(2k � 1) 6= ;:Since P=OptP[k] is contained in the 2k-th level of the boolean hierarchy, this resultis optimal.Clearly, if the boolean hierarchy is proper, it does not have complete sets.Since the class P=OptP[O(log n)] has complete sets, it is not contained in BH inany relativized world where the boolean hierarchy is in�nite, i.e.,9A : P=OptPA[O(log n)]� BHA 6= ;:The main result in this section is a separation of the classes P=OptP[O(log n)]and PNP\SPARSE[O(logn)]. In fact, we show that for any �xed polynomial q there isa relativization such that NP contains sparse sets that are not in the nonuniformclass P=q (de�ned as P=fh j jh(x)j � q(jxj)g).Theorem 4.2. For every polynomial q there exists a set A such that(NPA \ SPARSE)� PA=q 6= ;:Proof. For an arbitrary set A we de�ne a sparse set L(A) 2 NPA as follows.For a given n and a suitable choosen function l(n), we partition the 2l(n) words10



of length l(n) into q(n) + 1 intervals (with respect to the lexicographic ordering)I l(n)1 ; : : : ; I l(n)q(n)+1 such thatjI l(n)k j � $ 2l(n)q(n) + 1% ; for k = 1; : : : ; q(n) + 1:For each interval containing a word in A, we put a word into L(A): let wn1 ; wn2 ; : : :be an enumeration of �n in lexicographic order and let l(n) = n+ q(n). De�ne theNPA set L(A) = fwnk j n � 1; 1 � k � q(n) + 1 and I l(n)k \ A 6= ;g:Clearly, there are at most q(n) + 1 words of length n in A, i.e., L(A) is sparse.Now we construct a set A in stages such that L(A) =2 P=q. Let M1;M2; : : : be anenumeration of all polynomial-time bounded Turing machines with running timesp1; p2; : : :, respectively.Stage 0. A := ;; n0 := minfn j 8m � n : q(m) < 2mg.Stage s � 1. Choose ns minimal such that ns > maxfpi(ns�1) j i < sg and2ns > 2 ps(ns) (q(ns) + 1)2.The algorithm in Figure 4.1 determines the words of length l(ns) that areincluded in A. This is done by diagonalizing against machineMs and all potentialadvice for Ms on an input of length ns.Let M be any P machine. We show that M , taking advice of any q-lengthbounded function, does not accept L(A). Let s be an index such that M = Ms.There are 2q(ns)+1� 1 potential words as advice for Ms on inputs of length ns (thatare stored in ADVICE). Each execution of the for-loop diagonalizes against at leasthalf of the possible advice for Ms. Since log(2q(ns)+1 � 1) � q(ns) + 1, ADVICEbecomes empty at the end of the algorithm. The construction further guaranteesthat for every advice a, jaj � q(ns), there exists a k � q(ns) + 1 such thathwnsk ; ai 2 L(Ms; A) , wnsk =2 L(A):Therefore, it su�ces to show that the algorithm can always �nd a y 2 I l(ns)k �QUERY. In every execution of the for-loop and for every advice no more thanps(ns) words are added to the set QUERY, i.e.,j QUERY j � (q(ns) + 1) 2q(ns)+1 ps(ns):Thus, we have for 1 � k � q + 1,jI l(ns)k � QUERY j � jI l(ns)k j � j QUERY j� $ 2ns+q(ns)q(ns) + 1%� (q(ns) + 1) 2q(ns)+1 ps(ns)11



ADVICE := ��q(ns);(� ADVICE contains all potential advice against that we have to diagonalize �)QUERY := ;;(� In QUERY we freeze the oracle queries of Ms during the construction �)for k := 1 to q(ns) + 1 doACC := fa 2 ADVICE jMAs (wnsk ; a) accepts g;REJ := ADVICE � ACC;if jACCj � jREJj then(� I l(ns)k \A remains empty, i.e., no word in ACC is advice for wnsk �)ADVICE := REJ;QUERY := QUERY [ Sa2ACCQ(Ms; A; hwnsk ; ai) ;else(� put a word in I l(ns)k \ A, i.e., no word in REJ is advice for wnsk �)ADVICE := ACC;QUERY := QUERY [ Sa2REJQ(Ms; A; hwnsk ; ai) ;choose a y 2 I l(ns)k �QUERY;A := A [ fygend (� if �)end (� for �). Fig. 4.1. Algorithm used in the proof of Theorem 4.2.� 2q(ns)+1 (2ns�1 � (q(ns) + 1)2 ps(ns))q(ns) + 1 � 1� 2q(ns)+1q(ns) + 1 � 1 by choice of ns> 0:Corollary 4.3. 9A : (NPA \ SPARSE)� PA=log 6= ;:Using a \Kolmogorov-argument", Corollary 4.3 was already shown by Hema-chandra [19]. An immediate consequence of Corollary 4.3 is the existence of anoracle separating P=OptP[O(log n)] and PNP\SPARSE[O(logn)].Corollary 4.4. 9A : PA=OptPA[O(log n)] 6= PNPA\SPARSE[O(logn)]:5. Bounded Advice versus the Boolean Hierarchy. The levels of theboolean hierarchy build as their union the boolean closure of NP, i.e. the smallestclass of sets that contains NP and is closed under union, intersection, and com-plementation. In this section, we give several characterizations of the odd levels12



of the boolean hierarchy. First, we show that NP machines that get as advice thevalue of the k-ary characteristic function �SATk of SAT, where �SATk is evaluated ona k-tuple that is computed from the input by an FP function, accept exactly thelanguages in the (2k + 1)-th level of the boolean hierarchy. The same is true ifthe advice consists only of the information of how many out of k words that areproduced from the given input by an FP function are in SAT.Cai et al. [15] give several characterizations of the boolean hierarchy, we takethe following.Definition 5.1. A set L is in the k-th level NP(k) of the boolean hierarchy,if there exist sets L1; : : : ; Lk 2 NP such thatL = 8><>: (L1 � L2) [ : : : [ (Lk�2 � Lk�1) [ Lk; if k is odd(L1 � L2) [ : : : [ (Lk�1 � Lk); if k is evenThe union Sk�1NP(k) of all the levels of the boolean hierarchy is denoted by BH.For a set A, �A denotes the characteristic function of A. �Ak is the k-arycharacteristic function of A, #Ak gives the number out of k words, that are in A,and �Ak is the parity of this number, i.e.,�Ak (x1; : : : ; xk) = �A(x1) : : : �A(xk);#Ak (x1; : : : ; xk) = kXi=1 �A(xi);�Ak (x1; : : : ; xk) = #Ak (x1; : : : ; xk) mod 2:The unbounded version of �Ak is �A! = Sk�1�Ak .Clearly, every set L 2 NP(k) is k-truth-table reducible to SAT, i.e., L 2P==�SATk � FP (here and in the following, the composition operator � takes pre-cedence over ==). Every set that is k-truth-table reducible to SAT is in NP(k + 1)([28], see also [8]), thusNP(k) � P==�SATk � FP � NP(k + 1):(5.1)Since P==�SATk � FP is closed under complementation, the classes in (5.1) are alldi�erent unless BH (and therefore PH [20]) collapses. It is interesting to note thata P machine needs only to know the parity of the number of k queries in SAT inorder to decide a set in P==�SATk � FP ([43], see also [8]),P==�SATk � FP = P==#SATk � FP = P==�SATk �FP:(5.2)We show in the next theorem that the �rst equality in (5.2) also holds for thenondeterministic counterparts of these classes which furthermore coincide with the(2k+1)-th level of the boolean hierarchy. Since, as it is easily seen, NP==�SATk �FP13



is contained in P==�SATk+2 � FP, we cannot replace P by NP, for k � 2, in the secondequality of (5.2), unless BH, and thus PH, collapse. It is an open question whetheralso the classes NP==�SATk �FP characterize some levels of the boolean hierarchy.We denote the bitwise ordering on strings of the same length by �, i.e.,a1 : : : ak � b1 : : : bk, if ai � bi, for i = 1; : : : ; k.Theorem 5.2. NP(2k+1) = NP==#SATk �FP = NP==�SATk �FP, for all k � 0.Proof. Let L be in NP(2k + 1). Then there exist sets L1; : : : ; L2k+1 2 NP suchthat L = (L1 � L2) [ : : : [ (L2k�1 � L2k) [ L2k+1. De�ne the functionf(x) = kXi=1 �L2i(x)and let A be the set de�ned ashx;mi 2 A , x 2 L2k+1 or there exist I � f2i j x 2 L2ig and j � ksuch that jIj = m; x 2 L2j�1; and 2j 62 I:Clearly, f 2 #SATk � FP and A 2 NP, and it holds that x 2 L if and only ifhx; f(x)i 2 A. To see this, observe that there is exactly one set I � f2i j x 2 L2igof cardinality f(x), namely I = f2i j x 2 L2ig. Therefore, L 2 NP==#SATk � FP:It is clear that NP==#SATk � FP � NP==�SATk � FP: It remains to show thatNP==�SATk � FP � NP(2k + 1). For this we adapt a proof technique used by Bussand Hay [14]. Let L be in NP==�SATk � FP, i.e., there exist a set A 2 NP and afunction f 2 FP such that x 2 L if and only if hx; �SATk (f(x))i 2 A. For m � 0,consider the NP setsBm = fx j #SATk (f(x)) � mg;Am = fx j 9 a = a1 : : : ak 2 �k : kXi=1 ai = m; a � �SATk (f(x)); and hx; ai 2 Ag:It is easy to see that Am � Bm and Bm+1 � Bm. Furthermore, Bm � Bm+1 =fx j #SATk (f(x)) = mg and Am � Bm+1 = fx 2 Bm � Bm+1 j hx; �SATk (f(x))i 2 Ag.The latter equality follows from the fact that for any x 2 Bm � Bm+1, there isonly one string a 2 �k containing m 1's and ful�lling a � �SATk (f(x)), namelya = �SATk (f(x)). Therefore, x 2 L if and only if x 2 Am � Bm+1, for some m � k.Since Bk+1 = ;, it follows that L = (A0 �B1) [ : : : [ (Ak�1 �Bk) [Ak.Hemachandra [18] (see also Buss and Hay [14]) has shown that the classesPNP[O(logn)] and P==�SAT! �FP coincide. By a slight modi�cation in the above proofwe get the following corollary yielding a further characterization of PNP[O(logn)].Corollary 5.3. P==�SAT! � FP = NP==�SAT! � FP.Beigel [8] shows that P==OptP[k] = P==�SAT2k�1 � FP. From Theorem 5.2 andthe following Theorem 5.4, it follows that this equation remains valid when P is14



replaced by NP. Theorem 5.4 restates an observation in [26] that #SAT2k�1 is completefor OptP[k].Theorem 5.4. [26] OptP[k] = #SAT2k�1 � FP [#SAT2k�1 � FP, for all k � 0:Corollary 5.5. NP(2k+1 � 1) = NP==OptP[k], for all k � 0.Ladner, Lynch, and Selman [30] transformed the recursion theoretic truth-tablereducibility into complexity theory. They also give a de�nition of a nondeterministictruth-table reduction in the following way: A is nondeterministically truth-tablereducible to B, if there exists an NP transducer G (the generator) and an NPmachine E (the evaluator) such that for every x,x 2 A , there exists a branch of G(x) yielding an outputy = hy1; : : : ; yki such that E(x; �B! (y1; : : : ; yk)) accepts.It is known that this de�nition is equivalent with the nondeterministic Turingreducibility [30] and therefore does not lead to a new reducibility notion. Wemodify the above de�nition by restricting the generator G to be a single-valuedNP transducer, i.e., the output must be the same on every accepting branch. LetNPSV be the set of functions computed by single-valued NP transducers [11].This reducibility �rst appeared in [11] (there denoted by NP.UNIF.ALL), andwas explicitely called nondeterministic truth-table reducibility by Book and Ko [10].Subsequently, Book and Tang [12] and Rich [35] introduced the following termino-logy.Definition 5.6. A set A is nondeterministically truth-table reducible to B(A �NPtt B), if A 2 NP==�B! � NPSV. A is nondeterministically k-truth-tablereducible to B (A �NPk-tt B), if A 2 NP==�Bk �NPSV. For a class C of sets let NPCttbe the class fA j 9B 2 C : A �NPtt Bg of all sets �NPtt -reducible to some set in C,and let NPCk-tt = fA j 9B 2 C : A �NPk-tt Bg.In [11], it is shown that there exist recursive sets A and B such that A �NPT Band A 6�NPtt B. This means that �NPtt is properly stronger than �NPT . The questionwhether �Ptt is properly stronger than �NPtt is equivalent to the P =?NP problem [11,35]. However, as we will see in Corollary 5.8, every setA that is nondeterministicallytruth-table reducible to some NP-complete set B is also deterministically truth-table reducible to B, i.e., A �NPtt B ) A �Ptt B:Thus, we have the surprising result that while the de�nition in [30] of a non-deterministic truth-table reduction was too weak, the de�nition of Rich seemsto be too strong to yield a new reduction class between fL j L �Ptt SATg andfL j L �NPT SATg. As a further consequence of Theorem 5.7, we get a characteri-zation of the odd levels of the boolean hierarchy in terms of the nondeterministick-truth-table reducibility notion.Theorem 5.7. 15



i) �SATk �NPSV = �SATk � FP for all k � 1,ii) �SAT! �NPSV � FPSATtt :Proof. To see i) let f be in NPSV and de�ne the NP setA = fhx;mi j 9 z1; : : : ; zk : f(x) = (z1; : : : ; zk) and zm 2 SATg:Then �SATk (f(x)) = �Ak (hx; 1i; : : : ; hx; ki) for all x, and thus, �SATk � f 2 �Ak � FP ��SATk � FP.For the proof of ii) de�ne the NP setB = fhx; k;m; bi j 9 z1; : : : ; zk : f(x) = (z1; : : : ; zk) and b � �SAT(zm)g;and observe that �SAT! (f(x)) can be read o� B0s answers to the parallel querieshx; k;m; bi, for k = 1; : : : ; p(jxj), m = 1; : : : ; k, and b = 0; 1, where p is a polynomialbounding the running time of the NP transducer that computes f .Corollary 5.8.i) NP(2k + 1) = NPNPk-tt, for all k � 1,ii) PNPtt = NPNPtt .Remark 5.9. Book and Tang [12] especially consider the O(log n) boundedversion �NPlogn-tt of the nondeterministic truth-table reduction obtained by logarith-mically bounding the number of queries produced by the NPSV generator. It fol-lows from (appropriately modi�ed versions of) Theorem 5.7, Corollary 5.3, andLemma 3.6 that NPNPlogn-tt = PNPlogn-tt = PNP[O(1)+loglogn]:This class is also considered by Wagner [42] (there denoted by PNPjj [O(log n)]), whoshows that it coincides with the class of languages that are full-truth-table reducible2to SAT. As a consequence, it follows that A �NPlogn-tt SAT if and only if A is full-truth-table reducible to SAT.Remark 5.10. Book and Tang [12] generalized the nondeterministic truth-table reducibility to a �k truth-table reducibility by giving the generator and theevaluator access to a �k�1 oracle: A is �k truth-table reducible to B (A ��ktt B),if A 2 �k==�B! � NPSV�k�1 . For a class C of sets let �Ck;tt be the class fA j 9B 2C : A ��ktt Bg. Then Corollary 5.8 ii) generalizes to��kk;tt = P�ktt = P�k [O(logn)];i.e., every set that is �k truth-table reducible to a set in �k is already (determini-stically) truth-table reducible to a set in �k.2 A set A is full-truth-table reducible [28, 14] to a set B, if there is a function g 2 FP such thatfor all x, g(x) is of the form ha0 : : : a2m�1; y1; : : : ; ymi, where ai 2 f0; 1g (0 � i � 2m � 1), andyi 2 �� (1 � i � m), and it holds that x 2 A , aj = 1, where j is the number whose binaryrepresentation is given by �B! (y1; : : : ; ym). 16



Thierauf [38] showed that allowing the generator in the nondeterministic truth-table reduction to produce polynomially many di�erent outputs (i.e., to computean NPPV function [11]) does not increase the class of sets reducible to SAT.Theorem 5.11. [38] Let L is a set, G an NPPV transducer, and E an NP setsuch that x 2 L , 9hy1; : : : ; yki 2 outG(x) : hx; �SAT! (y1; : : : ; yk)i 2 E;then L is in PNPtt .We end this section by proving that also the strong nondeterministic truth-tablereducibility, introduced by Long [31], when applied to SAT, is only as powerful as�Ptt. Like in the de�nition of Ladner, Lynch, and Selman [30], the generator ina strong nondeterministic truth-table reduction can produce exponentially manydi�erent outputs, but the evaluator either has to accept all the outputs or it hasto reject all of them.Definition 5.12. [31] A is strong nondeterministic truth-table reducible to B(A �SNtt B), if there is an NP transducer G and a P machine E such that for all x theset outG(x) is nonempty, and for all hy1; : : : ; yki in outG(x), E(x; �B! (y1; : : : ; yk)) =�A(x). For a class of sets C we denote by SNCtt the class fA j 9B 2 C : A �SNtt Bg.Clearly, �SNtt lies in strength between �Ptt and �NPT . Long [31] showed that �SNttis properly stronger than �NPT by constructing two sets A and B such that A 6�SNtt Band A �NPT B. The question whether �Ptt is properly stronger than �SNtt is closelyrelated to two major open questions in complexity theory [31]:P 6= NP \ coNP ) �Ptt 6=�SNtt ) P 6= NP:Theorem 5.13. SNNPtt = PNPtt .Proof. Let L be in SNNPtt via a generator G, an evaluator E, and a set A 2 NP.In order to decide membership of a given input x, it su�ces to �nd out whether thereis some output hy1; : : : ; yki of G(x) such that E accepts hx; �A! (y1; : : : ; yk)i. But thisbecomes an NP problem, provided that the maximumnumber #A! (y1; : : : ; yk) of yes-answers from A over all outputs hy1; : : : ; yki of G(x) is given along with the inputx. More precisely, de�ne the functionh(x) = maxf#A! (y1; : : : ; yk) j hy1; : : : ; yki 2 outG(x)gand let B be the set de�ned ashx;mi 2 B , 9 a = a1 : : : ak 2 �k 9 hy1; : : : ; yki 2 outG(x) :kXi=1 ai =m; a � �A! (y1; : : : ; yk) and E(x; a) = 1:Then h 2 OptP[O(log n)] and B 2 NP, and it holds for all x that x 2 L if and onlyif hx; h(x)i 2 B, i.e., L is in NP==OptP[O(log n)] = P==OptP[O(log n)].17
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