
The complexity of regex crosswords∗

Stephen Fenner†1, Daniel Padé‡1, and Thomas Thierauf§2

1University of South Carolina, Columbia, SC USA
2Aalen University, Aalen, Germany

August 13, 2019

Abstract

In a typical regex crossword puzzle, one is given two non-empty lists 〈R1, . . . , Rm〉 and
〈C1, . . . , Cn〉 of regular expressions (regexes) over some alphabet, and the challenge is to fill in
an m×n grid of characters such that the string formed by the ith row is in L(Ri) and the string
formed by the jth column is in L(Cj), for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We consider a restriction
of this puzzle where all the Ri are equal to one another and similarly the Cj . We consider a
2-player version of this puzzle, showing it to be PSPACE-complete. Using a reduction from
3SAT, we also give a new, simple proof of the known result that the existence problem of a
solution for the restricted (1-player) puzzle is NP-complete.

Keywords: Complexity; Regular expressions; Regex crossword; Picture language; NP-complete;
PSPACE-complete

1 Introduction

Regular expression crossword puzzles (regex crosswords, for short) share some traits in common
with traditional crossword puzzles and with sudoku. One is typically given two lists R1, . . . , Rm

and C1, . . . , Cn of regular expressions labeling the rows and columns, respectively, of an m×n grid
of blank squares. The object is to fill in each square with a letter so that each row, read left to
right as a string, matches (i.e., is in the language denoted by) the corresponding regular expression,
and similarly for each column, read top to bottom. The solution itself may have some additional
property, e.g., spelling out a phrase or sentence in row major order or providing a clue to another
puzzle.

Regex crosswords have enjoyed some recent popularity, having been discussed in several popular
media sources [3, 5], and thanks to a website where people can solve the puzzles online [1]. Some
variants of the basic puzzle have also been posed [2].

A natural complexity theoretic question to ask is: How hard is it to solve a regex crossword
in general? The folklore answer—easy to show and apparently found by several people indepen-
dently1—is that it is NP-hard, and the corresponding decision problem (“Does a solution exist?”)
is NP-complete.

∗Journal version of the conference paper [7]
†Email: fenner.sa@gmail.com
‡Email: djpade@gmail.com
§Email: thomas.thierauf@htw-aalen.de
1Glen Takahashi posted this question to Stack Exchange in 2012 [14], but it has been asked by others independently.

That post includes an anonymous proof (“FrankW”).

1

In this paper, we consider a number of variations on the basic regex crossword puzzle: (1) a
restriction of the puzzle where all the row regexes R1, . . . , Rm are equal and all the column regexes
C1, . . . , Cn are equal; (2) a 2-player game where players take turns attempting to fill in successive
rows and columns of the grid; (3) a further restriction of the puzzle where all row and column regexes
are equal (to each other); (4) restriction to regexes over a binary alphabet; (5) unbounded and semi-
bounded versions of the puzzle; (6) versions with string-valued entries in each cell. Variation (2)
can also be restricted to having equal row regexes and equal column regexes for the two players.
These variants have corresponding decision problems: Let RC be the solution existence problem
for variation (1), RCG′ the first-player-win problem for variation (2), and RCG the first-player-win
problem for the restricted version of (2) (see Sections 2.3 and 4 for precise definitions). One of our
main results is that RCG′ and RCG are both PSPACE-complete (see Section 4, below). We give
explicit polynomial reductions from TQBF to RCG′ and from RCG′ to RCG.

The NP-completeness of RC was shown in [6], but the polynomial reduction used there was
indirect and needlessly general for this particular hardness result. As a warm-up to our main result
on games, we give a simple, straightforward polynomial reduction from 3SAT to RC.

We also give general techniques for transforming a general regex crossword problem into an
equivalent, more restricted problem: (1) transforming a regex crossword problem over an arbitrary
alphabet to one over a binary alphabet; (2) transforming an (R,C)-crossword problem into an
(E,E)-crossword problem (i.e., one where the row and column regexes are all equal to each other.
We use these techniques to strengthen a variety of hardness results.

As with the Post Correspondence Problem in computability, our results have the pedagogical
benefit of showing the hardness of some decision problems in automata theory that are simply
stated and accessible to any undergraduate theory student. The proofs given here are similarly
accessible.

1.1 Connections to other work

Regex crossword techniques bear some similarity to results in cellular automata, to the Cook-Levin
theorem, and to results of Berger from the 1960s showing the undecidability of tiling the plane with
Wang tiles (the so-called “domino problem” [4], which was the first proof that there exist finite tile
sets that tile the whole plane but only aperiodically).

The particular problems we study here are perhaps chiefly inspired by results in the theory of
two-dimensional languages (picture languages) from formal language theory [9]. Given two regexes
R and C for the rows and columns, respectively, the unbounded (R,C)-crossword problem asks
whether a solution grid exists of any size. One can show that the recognizable picture languages
coincide exactly with the letter-to-letter projections of (R,C)-crossword solutions [9, Theorem 8.6]
(except that the empty picture may also be included in the language). Recognizable picture lan-
guages can be defined in terms of finite objects known as tiling systems [8] (cf. [9, Definition 7.2]),
and given a tiling system T , it is not hard to show that one can effectively find two regular expres-
sions R and C (over some alphabet) and a projection π that defines the same picture language as T
(see [9, Theorem 8.6]). The existence problem for recognizable picture languages (“Given a tiling
system, does it define a nonempty language?”) is known to be undecidable ([9, Theorem 9.1]),
and so, putting these results together, we get that the solution existence problem for unbounded
(R,C)-crosswords is undecidable as well. A much more direct reduction from the halting problem
to unbounded (R,C)-crosswords is given in Section 5, and it is shown in Section 6 that one could
even fix the column regex C once and for all, as well as restricting R and C to be over a binary
alphabet.2

2These latter results first appeared in [6].

2

The unbounded regex crossword problem naturally assumes one regex R for all rows and one
regex C for all columns, since the number of rows and columns is unspecified. This directly
motivates us to impose similar restrictions on the bounded regex crossword problems we study
here, where the dimensions of the grid are given as part of the input.

We give some basic concepts and definitions in Section 2. Section 3 gives our polynomial
reduction from 3SAT to RC. This reduction suggests the technique we use to show our main results
about 2-player crossword games in Section 4. Section 3.3 gives a simple proof of NP-completeness
when the row and column regexes are equal to each other, i.e., when there is a single regex for all rows
and columns. Section 6 describes the two techniques for transforming regex crossword problems
into more restricted equivalent ones and uses these techniques to obtain stronger hardness results.
Section 7 describes a number of complexity-theoretic corollaries of our main results. We give open
problems in Section 8.

2 Preliminaries

Our conventions regarding regular expressions are fairly standard, conforming to the conventions
in Sipser [12] or Hopcroft, Motwani, & Ullman [10] for the most part.

Given an alphabet Σ, regular expressions (regexes for short) over Σ are constructed in the
usual way from ∅ and single symbols from Σ (the atomic regexes) using the operators ∪, ‖, and ∗,
where ‖ or juxtaposition both indicate concatenation, and ∗ is the Kleene star operator (see, for
example, Sipser [12]). For syntactic grouping, the ∪ operator has lowest precedence, followed by
concatenation, followed by the ∗ operator (highest precedence). Parentheses are used freely to force
arbitrary grouping as usual. Given a regex R and a string w over Σ, we say that R matches w (or,
w matches R) to mean that w is in the language L(R) denoted by R (see the next paragraph for
exact rules). If there is a possibility of confusion, we sometimes distinguish symbols from Σ with
their corresponding atomic regexes by showing the latter in boldface; for example, if symbol a is in
Σ, then a is the atomic regex that matches the length-1 string “a” and nothing else. If there is no
possibility of confusion, then we identify a string with the regex that matches it and nothing else.

We now briefly review the meaning of a regex over an alphabet Σ, i.e., the strings that it
matches, via recursive syntactic rules. We mostly follow the conventions in [12].

• The regex ∅ matches no strings.

• For any a ∈ Σ, the regex a matches the string “a” (of length 1) and nothing else.

• Given regexes r and s, the regex r ∪ s matches exactly those strings that match r or s.

• Given regexes r and s, the regex rs (or r‖s) matches exactly those strings that are formed
by concatenating a string matching r followed by a string matching s.

• Given regex r, the regex r∗ matches exactly those strings that are concatenations of any finite
number (zero or more) strings, each of which matches r.

Note that r∗ always matches the empty string (of length 0), regardless of r. We let “ε” denote
both the empty string and the regex ∅∗, which matches the empty string and nothing else. Which
meaning is used will be clear from the context.

We will assume two common additional regex operators defined in terms of the primitive ones
above: for regexes r and s,

3

• r+ denotes rr∗,

• r? denotes r ∪ ε, and

• r ∩ s (intersection) denotes the regex (obtained from r and s in some standard effective way)
that matches those strings that are matched by both r and s simultaneously.3

We assume throughout the paper that all alphabets contain 0 and 1 at least. (Results are trivial
for unary alphabets.) For the NP-completeness result of Section 2.3, one can assume the alphabet
{0, 1}. For the PSPACE-completeness result of Section 4, it suffices that the alphabet be {0, 1, 2}.

2.1 3SAT

An instance of 3SAT is a Boolean formula ϕ over k variables x1, . . . , xk in conjunctive normal form:

ϕ := Ci ∧ · · · ∧ Cd

where each clause Ci is a disjunction of three literals (each a variable or its negation):

Ci := `i,1 ∨ `i,2 ∨ `i,3

The question is whether ϕ is true for some assignment of the variables (i.e., it is satisfied). This
is one of the canonical complete problems for NP. In Section 2.3 we show that the language RC —
the language of regex crosswords — is NP-complete by giving a polynomial reduction from 3SAT.

2.2 TQBF

An instance of TQBF is described by a closed Boolean formula ϕ, given in prenex normal form:

ϕ := ∃x1∀y1 · · · ∃xk∀yk ϕ̃(x1, y1, . . . , xk, yk) (1)

where ϕ̃ is a quantifier-free Boolean formula which can be assumed to be in conjunctive normal
form with c clauses and 2k variables, for some positive c and k. Here, the quantifiers alternate,
starting with ∃, with variables x1, . . . , xk being existentially quantified and y1, . . . , yk universally
quantified.

The sentence ϕ is naturally viewed as a two-player game, where the players alternate choosing
truth values for the variables in order, the first player wishing to make the formula ϕ̃ true and
second player wishing to make it false. The question to be answered is whether ϕ is true when the
quantified variables range over the Boolean values False and True.4 That is, whether the first
player has a winning strategy in the corresponding game.

As 3SAT is for NP, TQBF is the canonical complete problem for PSPACE. In Section 4, we
show that RCG — the language of regex crossword games (defined below) with a winning strategy
for the first player — is PSPACE-complete by reduction from TQBF.

3The resulting regex may have size exponential in that of r and s.
4More precisely, the question is whether the sentence ∃x1∀y1 · · · ∃xk∀yk[ϕ̃(x1, y1, . . . , xk, yk) = True] holds in the

two-element Boolean algebra ({False,True},∧,∨,¬).

4

2.3 (R,C)-crosswords

Given an alphabet Σ, an (R,C)-crossword over Σ (or just an (R,C)-crossword if Σ is assumed)
is a 4-tuple 〈0m, 0n, R, C〉 where m and n are positive integers (the number of rows and columns,
respectively) represented in unary, and R and C are regexes over Σ.

Definition 2.1. Given an alphabet Σ, a Σ-grid is a two-dimensional array of symbols from Σ. If
G is a Σ-grid with m rows and n columns, then we say that G is m× n.

A solution to an (R,C)-crossword 〈0m, 0n, R, C〉 is an m × n Σ-grid such that, interpreting
rows and columns as strings, each row, read left to right, matches R and each column, read top
to bottom, matches C. We call an (R,C)-crossword solvable if it has a solution, and we call it
uniquely solvable if it has exactly one solution.

3 An NP-Completeness Proof for (R,C)-Crossword Solvability

Definition 3.1. For alphabet Σ, the language RCΣ is the set of all solvable (R,C)-crosswords over
Σ. We drop the subscript if Σ is clear from the context.

Theorem 3.2 ([6]). RC{0,1} is NP-complete.

Theorem 3.2 was shown in [6] via an indirect, complicated reduction. In this section, we give a
much more straightforward polynomial reduction from 3SAT to RC{0,1}.

We assume the alphabet Σ := {0, 1} for this section, letting RC denote RC{0,1}. RC is in NP;
this easily follows from the fact that deciding whether a given string matches a given regex is
decidable in polynomial time (and the fact that the dimensions of the grid are given in unary). It
remains to show that RC is NP-hard. Theorem 3.2 is then an immediate corollary of the following
technical lemma, which we prove in subsections 3.1 and 3.2. Lemma 3.3 is stronger than needed
for Theorem 3.2 as it describes the number of solutions to the crossword.

Lemma 3.3. There exists a polynomial-time computable function f such that, given any Boolean
formula ϕ as defined in Section 2.1 with k ≥ 1 variables and d ≥ 2 clauses, f(ϕ) is an instance
〈0d+1, 0d+k, R, C〉 of RC such that, if s ≥ 0 is the number of satisfying assignments of ϕ, then f(ϕ)
has exactly d!s many solutions.

Given ϕ as in the lemma, we define the function f as follows: For 1 ≤ i ≤ d, we define ti to be
the regex

ti = 0i−110d−i = 0 · · ·0︸ ︷︷ ︸
i−1

1 0 · · ·0︸ ︷︷ ︸
d−i

. (2)

Then we define

S := 1d0∗ (3)

R :=

(
d⋃

i=1

tiRi

)
∪ S (4)

C := 1 (0∗10∗) ∪ 0(0∗ ∪ 1∗) (5)

where S is called the ‘spine,’ and for 1 ≤ i ≤ d, Ri is derived from the formula ϕ as follows:

Ri := (ai,1 · · · ai,k) ∪ (bi,1 · · · bi,k) ∪ (ci,1 · · · ci,k) (6)

5

where, for 1 ≤ j ≤ k,

ai,j =

1 if the first literal in the ith clause is xj
0 if the first literal in the ith clause is xj
(1 ∪ 0) otherwise

(7)

and bi,j , ci,j are set similarly according to the second and third literals in each clause. Finally, we
define

f(ϕ) := 〈0d+1, 0d+k, R, C〉 .
The function f is evidently polynomial-time computable.

Let s ≥ 0 be the number of satisfying assignments to ϕ.

3.1 f(ϕ) has at least d!s many solutions

Let 〈z1, . . . , zk〉 be any satisfying assignment to ϕ. This sets up a d+ 1 by d+ k crossword solution
of the following form:

c1 c2 c3 . . . cd cd+1 . . . cd+k

r0 1 1 1 . . . 1 0 . . . 0

r1 1 0 0 . . . 0 z1 . . . zk

r2 0 1 0 . . . 0 z1 . . . zk

...
...

...
...

. . .
...

z1 . . . zk

rd 0 0 0 . . . 1 z1 . . . zk

Figure 1: Solution

Here, the first row is the spine (matching S); the block on the left below the spine is akin to an
identity matrix; and the block on the right consists of columns where each column is either all 1’s or
all 0’s (save the first element, which is always 0), according to each zi. An overview representation
is shown below:

Spine

Calibration
Region

Clause
Verification

Where the spine is the string that matches S. The ‘clause verification region’ is determined by
the satisfying assignment to ϕ, i.e., if zj is true in the satsifying assignment, then column cd+j will
match the regex 01∗; otherwise it will match 00∗.

By construction, it is then clear that f(ϕ) is solvable. In other words, there is a way to fill in
the grid such that all rows match the regex R, and all columns match the regex C.

In fact, since the calibration region requires only one 1 per row and column, the solution given in
table 1 is not the only valid one. It is easy to see that once any solution is given, any permutation of
the (non-spine) rows gives another (distinct) valid solution. Thus we get d! many distinct solutions
for every satisfying assignment 〈z1, . . . , zk〉. To see then that f(ϕ) has at least d!s many solutions,
we only need to observe than any two solutions corresponding to different satisfying assignments
must also differ (somewhere in their last k columns).

6

3.2 f(ϕ) has at most d!s many solutions

To complete the proof of Lemma 3.3, we show that every solution of f(ϕ) = 〈0d+1, 0d+k, R, C〉 cor-
responds to a satisfying assignment to ϕ, and further, every satisfying assignment of ϕ corresponds
to at most d! many solutions to f(ϕ). We do this via a series of claims.

Suppose f(ϕ) has a solution with rows r0, . . . , rd and columns c1, . . . , cd+k.
Observe that since each rj matches R, it must either start with d many 1’s or else have exactly

one 1 among its first d symbols (recalling that we are assuming d ≥ 2).

Claim 3.4. The string r0 matches S.

Proof. Assume not. Then r0 must match tiRi for some 1 ≤ i ≤ d. Fix such an i. The picture
below shows the case where r0 matches t2R2, i.e., r0 = 010 · · · :

c1 c2 c3 c4 . cd . .

r0 0 1 0 0 . 0

...

From the definition of C, we see that ci must match 1(0∗10∗), that is, ci = 10j−110d−j for
some 1 ≤ j ≤ d. The picture below shows the case where i = 2 and j = 2, that is, where
ci = c2 = 10100 · · · 0:

c1 c2 c3 c4 . cd . .

r0 0 1 0 0 . 0

r1 0

r2 1

r3 0

...
...

For rj , we have two cases, both leading to contradiction:

rj matches S: This requires that all of the first d columns other than ci match 01∗, which means
rj′ starts with 1i−101d−i · · · for all j′ ≥ 1 such that j′ 6= j. These rows do not match R, and
there is at least one of them, since d ≥ 2.

rj matches tiRi, that is, rj = 0i−110d−i · · · : This requires that all of the first d columns other
than ci match 0∗, which means no rows other than rj and r0 will match R, since they all
start with 0d. Again, there is at least one such row because d ≥ 2.

This proves the claim.

By Claim 3.4, the first d columns must match 1(0∗10∗); that is, ignoring the spine, there is
exactly one 1 in each of the first d columns. We call such columns calibration columns.

Claim 3.5. No row other than r0 matches S.

7

Proof. Again assume this not the case. By the previous claim, r0 must match S. Suppose rj also
matches S for some j ≥ 1. Then C forces rj′ to start with d many 0’s for all 1 ≤ j′ 6= j, because
the calibration columns are only allowed a single 1 below the spine. Thus none of these rj′ matches
R, and there is at least one of them, since d ≥ 2.

Claim 3.6. For every i, 1 ≤ i ≤ d, there exists a row that matches tiRi.

Proof. By Claims 3.4 & 3.5, we have that r0 is the only row to match the spine S. Since R =(⋃d
i=1 tiRi

)
∪ S, it follows that each of the other rows matches tiRi for some i. For the purposes

of contradiction, assume that there is some tiRi not matched by any row. Then by the pigeonhole
principle, there must be two distinct rows rn and rm both matching t`R` for the same `. By the
definition of t`, the column c` will thus have at least two 1’s below the spine:

c1 . c`−1 c` c`+1 . cd cd+1 .

r0 1 . 1 1 1 . 1 .

...
...

rn 0 . 0 1 0 . 0 .

...
...

rm 0 . 0 1 0 . 0 .

...

But then column c` does not match C. This completes the proof.

Claim 3.7. ϕ is satisfiable.

Proof. Because of the spine in the first row, note that for 1 ≤ j ≤ k, cd+j matches either 01∗ or
00∗. Set

zj :=

{
1 if cd+j matches 01∗,
0 if cd+j matches 00∗.

We show that 〈z1, . . . , zk〉 is a satisfying truth assignment for ϕ. Consider the ith clause Ci of
ϕ. By Claim 3.6, some non-spine row matches tiRi. Let r be the suffix of that row obtained by
removing its first d symbols. Then r matches either ai,1 · · · ai,k, bi,1 · · · bi,k, or ci,1 · · · ci,k. Suppose
r matches ai,1 · · · ai,k (the other two cases are handled similarly). Let xj be the variable mentioned
by the first literal `i,1 of Ci. If `i,1 = xj , then ai,j = 1, whence r has a 1 as its jth symbol, whence
cd+j matches 01∗, whence zj = 1, which makes `i,1 true, satisfying Ci. Similarly, if `i,1 = xj , then
zj = 0, also satisfying Ci.

Since i was arbitrary, we have that ϕ is satisfied by 〈z1, . . . , zk〉.

To finish the proof of Lemma 3.3, we make one more claim. Let h be the map that takes a
solution to f(ϕ) and outputs the corresponding satisfying assignment to ϕ as defined in the proof
of Claim 3.7.

Claim 3.8. Each satisfying assignment of ϕ has at most d! many pre-images under the map h.

Proof. Given a := 〈z1, . . . , zk〉 satisfying ϕ, any pre-image of a under h has its last k columns equal
to 0zd1 , . . . , 0z

d
k , respectively, and the d× d subgrid consisting of its first d columns below the spine

must be a permutation matrix. There are only d! many such matrices, and each determines the
entire solution corresponding to a via h.

8

This concludes the proof of Lemma 3.3, from which Theorem 3.2 follows immediately.

Remark. Notice that the column regex C := 1 (0∗10∗) ∪ 0(0∗ ∪ 1∗) that we defined above does
not depend on the input formula ϕ at all. Thus we get the following modest improvement over
Theorem 3.2:

Definition 3.9. Given regex C over {0, 1}, define the language

RC(C) := {〈0m, 0n, R〉 | 〈0m, 0n, R, C〉 ∈ RC} .

Proposition 3.10. RC (1(0∗10∗) ∪ 0(0∗ ∪ 1∗)) is NP-complete.

�

3.3 (E,E)-crosswords

In this section, we give a simple proof of a companion result to Proposition 3.10: The binary regex
crossword problem remains NP-complete even if we insist that the grid is square and that the row
and column regexes equal each other. As with Theorem 3.2, Theorem 3.13 below was shown in [6]
via an indirect, complicated series of results. Here we give a much more direct argument.

Definition 3.11. For regexes R and S and n ≥ 0, we write R ≡n S to mean that R and S match
exactly the same strings of length n.

Definition 3.12. Define the language

R=C := {〈0`, E〉 | 〈0`, 0`, E,E〉 ∈ RC} .

A solution to an instance 〈0`, E〉 is the same as a solution to 〈0`, 0`, E,E〉.

Note that the underlying alphabet is that of RC, which is assumed to be {0, 1}.

Theorem 3.13. R=C is NP-complete.

Proof. Membership in NP is immediate. For NP-hardness, we reduce from 3SAT.
Given a 3-cnf Boolean formula ϕ with k ≥ 1 variables and d clauses as defined in Section 2.1

above (where we can assume d ≥ 2 without loss of generality), letting q := k + d, we construct a
3q× 3q (E,E)-crossword that is solvable if and only if ϕ is satisfiable. We define E as follows: first
we define regexes R and C, etc. exactly as in (2–7) of the proof of Theorem 3.2, except we modify
C slightly for technical convenience:

C := 1k (0∗10∗) ∪ 0k (0∗ ∪ 1∗) ≡q 1k

(
d⋃

i=1

ti

)
∪ 0k

(
0d ∪ 1d

)
. (8)

Remark. Since we will only consider strings of length q where C is concerned, it does not matter
which of these two regexes we take for C. The latter regex only matches strings of length q.
One advantage of the latter expression is that we get NP-hardness even when restricted to regexes
avoiding the ∗-operator completely. (R can also be modified in a similar way to avoid the ∗-operator,
and thus so can E. See (9–10), below.) �

9

The proof of Theorem 3.2 can be modified easily to show that ϕ is satisfiable if and only if
〈0q, 0q, R, C〉 is solvable; in any solution, the spine is simply be repeated in the first k rows and
appears nowhere else. We now define

E := 02qR ∪ C12q .

Constructing P := 〈03q, E〉 from ϕ clearly takes polynomial time. It remains to show that ϕ is
satisfiable if and only if P ∈ R=C, i.e., iff P is solvable.

For the forward implication, suppose ϕ has a satisfying assignment 〈z1, . . . , zk〉, where each zi
is in {0, 1}. Then, similarly to the proof of Theorem 3.2, there exists a q × q solution X to the
corresponding (R,C)-crossword, shown in Figure 2.

X :=

c1 c2 c3 · · · cd cd+1 · · · cd+k

r1 1 1 1 · · · 1 0 · · · 0
...

...
...

...
...

...
...

...
...

rk 1 1 1 · · · 1 0 · · · 0

rk+1 1 0 0 · · · 0 z1 · · · zk
rk+2 0 1 0 · · · 0 z1 · · · zk
rk+3 0 0 1 · · · 0 z1 · · · zk

...
...

...
...

. . .
...

... · · ·
...

rk+d 0 0 0 · · · 1 z1 · · · zk

Figure 2: Solution (modified)

Here, the rows r1, . . . , rk of X match the spine S, columns c1, . . . , cd match 1kt1, . . . ,1
ktd,

respectively, and column cd+i equals 0k(zi)
d for each 1 ≤ i ≤ k, enabling row rk+j to match tjRj

for 1 ≤ j ≤ d.
One can readily verify that the following 3q × 3q grid is then a solution to P :

0 0 X

0 1 1

XT 1 1

This grid is chopped into nine q × q subgrids. Those marked as 0 or 1 contain all 0’s or all 1’s,
respectively. The solution X of Figure 2 appears as the upper right subgrid, and its transpose XT

appears as the lower left. Note that 0q matches C, and hence 0q12q matches E, and so the middle
rows and columns are also legal. This shows the forward implication.

For the reverse implication, consider any solution G of P with rows r1, . . . , r3q and columns

10

c1, . . . , c3q, chopped into nine q × q subgrids:

G =

G11 G12 G13

G21 G22 G23

G31 G32 G33

We show that G13 must be a solution to 〈0q, 0q, R, C〉. Then, as in the proof of Theorem 3.2, ϕ
must be satisfiable.

First note that every column of G11, G12, and G13 must match C. This follows directly from
the structure of E: each column of G matches either: (1) 02qR, whence its prefix of length q equals
0q (which matches C); or (2) C12q, whence its prefix of length q matches C. Thus it suffices to
show that every row of G13 matches R.

Recall that

E = 02qR ∪ C12q = 02q
((⋃d

i=1 tiRi

)
∪ 1d0∗

)
∪
(
1k (0∗10∗) ∪ 0k (0∗ ∪ 1∗)

)
12q (9)

≡3q 02q
((⋃d

i=1 tiRi

)
∪ 1d0k

)
∪
(
1k
(⋃d

i=1 ti

)
∪ 0k

(
0d ∪ 1d

))
12q , (10)

where ti and Ri are defined by (2) and (6), respectively. From E we observe that G22 must be
either all 0’s or all 1’s, because the middle third of any string matching E is either 0q or 1q. We
consider each case in turn.

G22 is all 0’s. In this case, columns cq+1, . . . , c2q all must match 02qR. It follows that G12 is
all 0’s. This implies that rows r1, . . . , rq must all match 02qR (because they cannot match C12q),
making all the rows of G13 match R.

G22 is all 1’s. As in the previous case, it suffices in this case to show that G12 is all 0’s. Suppose
otherwise. Then some column p of G12 contains a 1. Noting that p matches C, there are just two
possibilities for p:

Case 1: p = 1k0m−110d−m for some 1 ≤ m ≤ d. Then r1, . . . , rk and rk+m must all match C12q

(because they do not start with 02q), and this implies that the first k rows and the (k+m)th

row of G13 are all 1q. Since each column of G13 matches C, the only way this can happen is
when each column of G13 equals p as well. Now consider another row r of G13 besides the
first k rows and the (k +m)th row. (Such a row exists because d ≥ 2.) We then have r = 0q,
but this is impossible, as no row or column of G can end with 0q. Contradiction.

Case 2: p = 0k1d. Similarly to Case 1, all rows rk+1, . . . , rq of G must match C12q. Hence,
rows (k+ 1) through q of G13 all equal 1q. Since there are at least two such rows (recall that
d ≥ 2), each column of G13 must equal 0k1d (since it matches C). This makes the first k rows
of G13 all equal 0q, which is again impossible. Contradiction.

This completes the proof.

11

Remark. We can give the number of solutions of P in terms of the number of satisfying assign-
ments to ϕ, as we did in Lemma 3.3 above. Here, it is slightly more complicated, however. Let
G be any solution to P , chopped up into q × q subgrids Gij as above. If G22 is all 1’s, then this
uniquely determines the rest of the grid except for G13 and G31: the former being a solution to
some (modified) solution to the corresponding RC instance; the latter being the transpose of some
solution. Thus if ϕ has s many satisfying assignments, there are d!s many ways of choosing G13

and the same number of ways of (independently) choosing G31, making (d!s)2 many choices in all.
Again, these all have G22 all 1’s.

There can be, however, some anomalous solutions where G22 is all 0’s. These only occur if ϕ
is satisfied by 〈0, 0, . . . , 0〉 (all variables false), and in this case, G13 and G31 must correspond to
this assignment, and the rest of the grid is determined by the choice of G13 and G31. This gives
(d!)2 many additional solutions when ϕ is satisfied by 〈0, 0, . . . , 0〉. Thus we get that the number t
of solutions to P is

t =

{
(d!)2s2 if 〈0, 0, . . . , 0〉 does not satisfy ϕ,
(d!)2(s2 + 1) otherwise.

�

4 (R,C)-games

For two given regexes R and C over an alphabet Σ, an (R,C)-game is a two-player combinatorial
game that can be thought of as follows: We start with a two-dimensional grid X with m rows and
n columns (m and n are positive integers). X is initially empty. Player 1, who we call Rose, fills
in the first row of X with symbols from Σ to form a string matching R. Player 2, who we call
Colin, responds by filling the remainder of the first column of X with symbols from Σ so that the
entire column matches C. Rose then fills the remainder of the second row so that it matches R,
then Colin the remainder of the second column to match C, etc. The first player unable to fill a
row (respectively, column) in this way loses, and the other player wins.5

We represent an (R,C)-game as a 4-tuple 〈0m, 0n, R, C〉, where m and n are positive integers
(the number of rows and columns of the grid, respectively), and R and C are the corresponding
regexes over Σ. Note that the numbers m and n are given in unary.

Definition 4.1. Given an alphabet Σ, the language RCGΣ is the set of all (R,C)-games where R
and C are regexes over Σ and where Rose has a winning strategy. We drop the subscript if Σ is
clear from the context.

4.1 Upper-bounding the complexity of RCG

It is straightforward to observe that RCG is in PSPACE.

Proposition 4.2. RCGΣ ∈ PSPACE for any alphabet Σ.

Proof sketch. This follows straightforwardly from the properties of (R,C)-games: Given an instance
of RCG of size N ,

• all game positions are representable by strings of polynomial length (in N),

5For the last move of the game, Rose or Colin may encounter a row or column, respectively, that is already
completely filled in. In this case, she or he wins if and only if the respective row or column matches its corresponding
regex.

12

• any play of the game lasts for at most polynomially many turns, and

• given any game position, whether a given next move is legal can be determined in polynomial
space (polynomial time, in fact).

For this it is crucial that the dimensions of the board be given in unary. If the dimensions were given
in binary, then we conjecture that the corresponding language would be complete for EXPSPACE.
Also note that the regex matching problem (“Given a regex E and string w, does w match E?”)
is in P.

4.2 Hardness of RCG

Here is the main result of this section:

Theorem 4.3. TQBF ≤p RCG{0,1,2}.

To prove Theorem 4.3, we first consider a variant of RCG, where each row and each column
may correspond to a different regex, that is, the input is a pair 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of lists
of regexes over a given alphabet Σ. Rose and Colin alternate turns as before, but on her ith turn,
Rose must fill the remainder of the ith row so that it matches Ri, and similarly, on his jth turn,
Colin must fill the remainder of the jth column so that it matches Cj . Call this variant RCG′Σ.

We show our main result in two steps: in Lemma 4.4 we show how to polynomially reduce
TQBF to RCG′{0,1}; then we give a polynomial reduction from RCG′{0,1} to RCG{0,1,2} (Lemma 4.5
below). Lemmas 4.4 and 4.5 immediately imply Theorem 4.3. In using RCG′, the goal is to first
consider this “simpler” game to verify that there is a correspondence between the formulæ in TQBF
and the possible games in RCG.

Lemma 4.4. TQBF ≤p RCG
′
{0,1}.

Proof. Throughout this proof, we drop the alphabet subscript, letting RCG′ denote RCG′{0,1}.
Given an instance ϕ of TQBF as in Equation (1) of Section 2.2:

ϕ := ∃x1∀y1 · · · ∃xk∀yk ϕ̃(x1, y1, . . . , xk, yk)

with c ≥ 1 clauses (numbered 1 through c from left to right) and 2k variables (with k ≥ 1), we
construct an equivalent instance of RCG′ with m := k + c rows and n := k + c − 1 columns. The
intersection of the first k rows and first k columns we will call the variable region. The players
choose truth values for the variables in this region. There are c rows below this region, one for each
clause of ϕ̃, which collectively we call the clause region. This is the region where Rose, if she can,
verifies that all the clauses of ϕ̃ are satisfied by the values for the variables chosen previously in the
variable region. The regexes for each player in RCG′ are defined as follows (with an explanation
afterward): for 1 ≤ i ≤ m, we let

Ri :=

{
(0 ∪ 1)∗ if 1 ≤ i ≤ k,
(0 ∪ 1)∗1(0 ∪ 1)∗0c−1 if k + 1 ≤ i ≤ m,

and for all 1 ≤ i ≤ n, we let

Ci :=

⋃

a∈{0,1}
(0 ∪ 1)i−1a(0 ∪ 1)k−i‖(Sa,0,i ∪ Sa,1,i) if 1 ≤ i ≤ k,

(0 ∪ 1)∗ if k + 1 ≤ i ≤ n,

13

where the regexes Sa,b,i for b ∈ {0,1} are defined as follows: First, for 1 ≤ j ≤ c, let

ui,j :=

0 if xi occurs negatively in clause j,
1 if xi occurs positively in clause j,
⊥ if xi does not occur in clause j.

for 1 ≤ i ≤ k, and similarly let

vi,j :=

0 if yi occurs negatively in clause j,
1 if yi occurs positively in clause j,
⊥ if yi does not occur in clause j.

for 1 ≤ i ≤ k. Now for 1 ≤ j ≤ c and a, b ∈ {0,1} define

da,b,i,j :=

{
1 if ui,j = a or vi,j = b,
0 otherwise.

(1 ≤ i ≤ k).

Finally, we let Sa,b,i := da,b,i,1‖ · · · ‖da,b,i,c for 1 ≤ i ≤ k. Note that each Sa,b,i then matches a unique
string of length c.

Example. Suppose ϕ = ∃x1∀y1∃x2∀y2[(x1 ∨ y2) ∧ (x1 ∨ y1 ∨ x2) ∧ (x2 ∨ y1 ∨ y2)]. Then k = 2,
c = 3, and

[ui,j] =

[
0 1 ⊥
⊥ 0 1

]
, [vi,j] =

[
⊥ 0 1
1 ⊥ 0

]
,

[d0,0,i,j] =

[
1 1 0
0 1 1

]
, [d0,1,i,j] =

[
1 0 1
1 1 0

]
, [d1,0,i,j] =

[
0 1 0
0 0 1

]
, [d1,1,i,j] =

[
0 1 1
1 0 1

]
,

[S0,0,i] =

[
110
011

]
, [S0,1,i] =

[
101
110

]
, [S1,0,i] =

[
010
001

]
, [S1,1,i] =

[
011
101

]
,

and thus

C1 = [0(0 ∪ 1)‖(110 ∪ 101)] ∪ [1(0 ∪ 1)‖(010 ∪ 011)] ,

C2 = [(0 ∪ 1)0‖(011 ∪ 110)] ∪ ((0 ∪ 1)1‖(001 ∪ 101)] .

�

The entries along the main diagonal of the variable region each correspond to Rose’s choice of
a the truth value (0 or 1) for x1 through xk in the original formula, as depicted in Figure 3. The
remainder of the rows (c of them) correspond to the clauses of ϕ.

x0 ? ? . ?

? x1 ? . . . ?

? ? x2 . . . ?

...
. . .

. . .
. . .

...

? ? ? ? xk

Figure 3: The layout of the variable region. The question marks represent either 0 or 1.

14

Here is how this RCG′ game reflects the original instance of TQBF viewed as a game. Fix i
such that 1 ≤ i ≤ k. When Rose plays the ith row, she is able to choose a truth value a ∈ {0, 1}
for xi by placing a in the corresponding square in Figure 3. (Rose can play any binary string in
the remainder of her row, because Ri = (0 ∪ 1)∗.) Then when Colin plays the remainder of the ith

column according to Ci, he can effectively choose a truth value for yi—either 0 or 1—by playing a
string whose last c symbols match either Sa,0,i or Sa,1,i, respectively (and these are the only two
choices for Colin, because he is constrained by Rose’s choice of a). His play lets Rose know for her
next turn the truth value he chose for yi.

6 Because of the Sa,b,i component of Ci, Colin is forced
to place a 1 in each of the last c positions corresponding to a clause that is satisfied by the truth
settings just chosen for xi and yi.

Also note that in order for Rose to complete the board, there must be a 1 in at least one of the
first k positions in every row of the clause region. That is, Rose can win just when the chosen truth
values of the variables satisfy all clauses of ϕ̃. Thus the two games are equivalent. Our construction
is clearly polynomial time, which finishes the proof.

4.2.1 Constraining the regexes to be row- and column-independent

Lemma 4.5. For any alphabet Σ such that {0, 1} ⊆ Σ and 2 /∈ Σ, RCG′Σ ≤p RCGΣ∪{2}.

The rest of this section is a proof of Lemma 4.5. From now on, we let RCG′ and RCG denote
RCG′Σ and RCGΣ∪{2}, respectively. To reduce from RCG′ to RCG we need to provide a method to
consolidate the families of regexes into one regex per player. Here, we present a generic construction
that can be applied to any RCG′ game — forcing each player to play their families of regexes in
index order.

Given an arbitrary instance G := 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉 of RCG′, we construct an equiv-
alent instance of RCG. Our construction requires the RCG alphabet to contain a third symbol “2”
that is not part of any string matching any of the Ri or Ci. We currently do not know how to
remove this requirement. We can assume that the grid for G is square, i.e., m = n: Suppose this is
not the case; for example, suppose m < n. Then we can pad the grid with n−m bottom rows by

• concatenating each Ci with 0n−m on the right, and

• defining Ri := 1∗ for m < i ≤ n,

yielding an evidently equivalent n× n game. If m > n, we do the same thing but swap the roles of
the rows and columns. The instance of RCG we construct from G will then be a (2n+ 1)× (2n+ 1)
game H := 〈02n+1, 02n+1, R, C〉. We may also assume without loss of generality that n ≥ 3.

The regexes R and C we construct for the respective players are given below, again with
explanations afterwards:

6Except in the case where Sa,0,i or Sa,1,i match the same string. But in this case, the value Colin chooses for yi
does not matter, since both values satisfy the exact same clauses.

15

R := 210∗ ∪ (11)

n−1⋃
i=1

0i−1130n−i−1

I

‖0i−110n−i

II

∪

(12)

00n−211
Ir

‖0n−11
II

∪ (13)

n⋃
i=1

0i10n−i

III

‖Ri (14)

(a) Rose’s regex. Regex (11) is the ‘spine regex’,
while regexes (12–13) define the ‘calibration’ re-
gion (I, II). Regex (14) continues calibration in
region III while also including the row regexes
from G (played in region IV).

C := 210∗ ∪ (15)

n−1⋃
i=1

0i−1130n−i−1

I

‖0i−110n−i

III

∪

(16)

00n−211
Ic

‖0n−11
III

∪ (17)

n⋃
i=1

0i10n−i

II

‖Ci ∪ (18)

(0 ∪ 1 ∪ 100 ∪ 00∗10)2∗ (19)

(b) Colin’s regex. Regex (15) is the ‘spine regex’,
regexes (16–17) are the calibration region (I and
III), regex (18) continues calibration in region II
while also including the column regexes from G
(played in region IV), and regex (19) is a ‘bomb’
used to punish Rose for cheating.

Figure 4: The regexes wrapping games in RCG. Regexes are bracketed with the regions they
describe, illustrated in Figure 5a.

Figure 5a illustrates how H ‘wraps’ around the game G: players first fill in the spine, which
consists of the first row and first column, then regions I, II, and III before simulating the game G
in the lower right square (region IV).

I

Ir

Ic

III IV

II

S
p

in
e

Spine

(a) Regions of the board

= 0

= 2

= 1

(b) An example of normal play

Figure 5: Regions I–IV to constrain the players. Each region is an n× n square.

4.2.2 Normal Play

By a round, we mean a pair of consecutive turns, starting with Rose. We index the rounds starting
with round 0. Normal play, i.e., play where neither player cheats (see below), is in three stages:

Spine: In round 0, both players play the ‘spine string,’ i.e., 2102n−1, the unique string of length
2n+ 1 matching 210∗.

16

Calibration: In round i, where 1 ≤ i ≤ n, Rose and Colin each play a ‘calibration string,’
i.e., either the string matching 0i−1130n−i−1‖0i−110n−i (if i < n) or the one matching
00n−211‖0n−11 (if i = n).

Simulation: Rose and Colin now simulate the given RCG′ game: In round (n+ i), for 1 ≤ i ≤ n,
Rose plays a string matching 0i10n−i‖Ri (if she can), and Colin plays a string matching
0i10n−i‖Ci (if he can).

Figure 5b illustrates the state of the grid after round n of normal play (here, n = 16). If either
player deviates from normal play, we say that the first player to do so is cheating. The next lemmas
show that Colin cannot cheat, and if Rose cheats, then Colin can force her to lose in a constant
number of rounds by dropping a bomb, i.e., playing a string matching (0 ∪ 1 ∪ 100 ∪ 00∗10)2∗ (cf.
(19) above), once or twice.

Note that, except for the spine string and bombs, the length-(n+ 1) prefix of any string played
by either player must match (0 ∪ 1)∗, and such a prefix has at least four characters.

Claim 4.6. In round 0, if Rose does not play the spine string, then Colin can win; otherwise, Colin
must also play the spine string.

Proof. If Rose does not play 210∗, she has two choices for her first character b: either 0 or 1.
Whichever b she chooses, Colin can drop a bomb matching (0 ∪ 1)2∗ (see Figure 6), which forces
Rose to play the spine string in any subsequent round.

0:

b c d ? b c d ?

2

2

2

1:

b c d ?

2 1 0 0

2

2

b 1 d ?

2 1 0 0

2 1

2 0

2:

b 1 d ?

2 1 0 0

2 1 0 0

2 0

b 1 d ?

2 1 0 0

2 1 0 0

2 0 ?

Figure 6: The first three rounds when Rose cheats with bcd · · · round 0, for some b, c, d ∈ {0, 1},
and Colin then drops a bomb. Note that Rose has no regex to match the prefix 20. We set c := 1 in
round 1 to show the worst case, where Colin must survive through round 2 (not required if c = 0).

We now have two cases for Colin’s move in round 1 (see Figure 6, middle left), depending on
Rose’s second character c ∈ {0, 1} played in round 0:

17

If c = 1: Colin plays 1110 · · · as shown in Figure 6 (cf. regex (16) where i = 1). After Rose plays
the spine string in round 2, Colin survives this round by playing any string starting with
prefix d00 where d ∈ {0, 1}, e.g., either the bomb 1002 · · · or the bomb 000102 · · · . Rose then
cannot play in round 3, as she has no legal option with prefix 20.

If c = 0: Colin drops the bomb 0102 · · · , preventing Rose from playing in round 2, as she has no
legal option with prefix 20.

Thus in either case, Rose quickly loses.
If Rose does play the spine string 2100 · · · in round 0, then Colin must play a string starting

with 2, his only option matching the spine regex 210∗. This proves the claim.

Claim 4.7. If Rose cheats in any round 1 through n, then Colin can win. That is, after normal
play through round (i− 1) for 1 ≤ i ≤ n, Rose prefers regex (12) to regex (14) in round i if i < n,
and she prefers regex (13) to regex (14) in round n.

Proof. In round 1, because of the spine, Rose must play a string with prefix 1, and so she must
play a string matching regex (12). Now suppose 2 ≤ i ≤ n, and consider the following portion of
the board at the start of round i when both players have been playing normally (we show the case
where i < n; the portion of the board at the start of round n looks similar):

? 1 0 0

1 1 1 0

0 1

0 0

Rose must play a string with prefix 0i−11. If i < n, then Rose’s choice is between regexes (12)
and (14), as these are the ones that can match a string with that prefix. (If i = n, then Rose’s
choice is between regexes (13) and (14).) Say Rose cheats by choosing regex (14), thus playing a
string matching 0i−110n−i+1‖Ri−1. Colin can then respond by dropping the bomb 0i−1102 · · · :

1 1 0 0

1 1 1 0

0 1 0 0

0 0

(a) Rose cheats; plays regex (14)

1 1 0 0

1 1 1 0

0 1 0 0

0 0 2

(b) Colin plays regex (19); Rose loses

Rose cannot then play any string with prefix 0i2, so she loses in round (i+ 1).

Claim 4.8. Colin cannot cheat in any round 0 through n.

Proof. Colin cannot cheat in round 0 by Claim 4.6, so we consider Colin’s move in round i for
1 ≤ i ≤ n. Assuming normal play beforehand, Colin is faced with the prefix 0i−111 in round i, and
thus must play a string matching regex (16) (if i < n) or (17) if i = n), i.e., play normally.

18

The preceding lemmas show that normal play is optimal for both players (even required for
Colin) through round n. Thus we can assume normal play through round n, filling regions II and
III of the grid with 1’s along their diagonals and 0’s elsewhere (as with the identity matrix).

Claim 4.9. Assume normal play through round n. For 1 ≤ i ≤ n, in round (n+ i), Rose must play
a string matching 0i10n−i‖Ri and Colin must play a string matching 0i10n−i‖Ci. That is, Rose
and Colin must play normally in rounds (n+ 1) through 2n.

Proof. In round (n + i), Rose and Colin are both faced with prefix 0i10n−i, and, except for the
bomb regex, the only regexes that could possibly match a string with this prefix are the respective
regexes given above for Rose and Colin. It remains to argue that Colin cannot drop a bomb in
round (n + i) for 1 ≤ i ≤ n: The only two bombs with prefixes of the form 0i10n−i are 0n−1102n

and 0n102n−1. Colin cannot drop either of these unless i ≥ n − 1, but by that time, Rose has
already filled in the first two rows of region IV with strings matching R1 and R2, respectively, and
neither of these strings can contain a 2.

In rounds (n+1) through 2n, the players are essentially playing the game G in region IV, so the
winner of H is the winner of G. This completes the proof of Lemma 4.5. Combining Lemmas 4.4
and 4.5 with Σ := {0, 1} proves Theorem 4.3.

5 (R,C)-crosswords and Turing Machines

In this section we show how an (R,C)-crossword solution can closely reflect an arbitrary Turing
machine computation. This was previously done to a large extent by Giammarresi & Restivo, who
essentially showed that the unbounded version of the regex crossword problem (“Given regexes R
and C, does there exist an (R,C)-crossword solution of any size?”) is undecidable [9].

Definition 5.1. For alphabet Σ, define the language

URCΣ := {〈R,C〉 | R and C are regexes over Σ and 〈0m, 0n, R, C〉 is solvable for some m,n > 0} .

The “U” in URCΣ stands for “unbounded.”

Theorem 5.2 (Giammarresi, Restivo [9]). There exists an alphabet Σ such that URCΣ is undecid-
able (m-equivalent to the Halting Problem).

Their result was given in the context of characterizing 2-dimensional languages by way of tiling
systems, which they used to constrain the computational trace of an arbitrary Turing machine.

In this section, we give a more direct connection between crosswords and computations and prove
a slightly stronger version of this result, namely, there is a fixed regex C such that the problem,
“given a regex R, does an (R,C)-crossword solution exist?” is undecidable. Using techniques
from Section 6, we obtain that it is undecidable whether an (E,E)-crossword solution exists. This
strengthens Theorem 5.2, which holds that given both regexes R and C, determining whether an
(R,C)-crossword solution exists is undecidable.

Definition 5.3. Given alphabet Σ and regex C over Σ, define the language

URCΣ(C) := {R | R is a regex over Σ and 〈R,C〉 ∈ URCΣ} .

Theorem 5.4. There exists an alphabet Σ and regex C over Σ such that URCΣ(C) is undecidable
(m-equivalent to the Halting Problem).

19

The next definition is for purely technical reasons. It is used mainly in Section 6. Removing
these restrictions does not affect our complexity results.

Definition 5.5. We say that a regex is positive iff it is not matched by the empty string. A pair
(R,C) of regexes is plural iff both R and C are positive and every (R,C)-crossword solution has at
least two rows and at least two columns.

The rest of this section is a proof of Theorem 5.4 but with the main technical argument relegated
to an appendix.

We reduce from the Halting Problem. Our computational model—a slight modification of that
found in many textbooks, e.g., [12]—is that of a deterministic Turing machine with a unique halting
state (distinct from the start state) and a single one-way infinite tape whose initial contents starts
with blank symbols in the two left-most cells, followed by an input string w of nonblank symbols,
followed on the right with blank tape. In each step, the tape head must move either left or right by
one cell. The grid to be filled in encodes the tableau of a halting computation: each row encodes the
configuration of the machine at a single time step, and each column encodes the history of a single
tape cell throughout the computation. Thus each symbol in the crossword solution represents the
contents of a tape cell at a certain time in the computation, possibly with some extra information
about the state of the machine and the position of the head. The expression R ensures that the
whole configuration of the Turing machine is legitimate at each time step, and C ensures that the
contents of each tape cell is correct over time. We view the tableau with the initial configuration
on the top row and time moving downward.

Remark. One might think that, in order to handle transitions correctly, a grid symbol should
represent a “window” in the tableau, spanning perhaps two or three adjacent tape cells at two
adjacent time steps, and that these windows should overlap consistently. It is possible to do this,
but it turns out to be unnecessary; we use a trick whereby the machine’s transition information is
passed in two directions—first horizontally (checked by R), then vertically (checked by C). (This
idea is somewhat analogous to the characterization of recognizable picture languages via domino
systems and hv-local languages [11].) �

Both results of this section use the following lemma, which we prove in Appendix A using the
formal Turing machine model in detail. It says essentially that halting Turing machine computations
correspond one-to-one with crossword solutions whose dimensions are roughly the time and space
requirements of the computation (up to an additive constant). Lemma 5.6 is stronger than what
is needed for Theorem 5.4. The extra strength will be used in Section 7.

Lemma 5.6. Let M be a Turing machine (as described above). There exists an alphabet Σ and a
regex C := C(M) over Σ (Σ and C both depending on M), and for any input string w there exists
a regex R := R(M,w) over Σ (depending on M and w) such that (R,C) is plural, and M halts on
input w if and only if an (R,C)-crossword solution exists, and if this is the case, then

• the (R,C)-crossword solution is unique, and

• there is a constant c, independent of M and w, such that the unique solution is a grid with
between t+ 2|w| and t+ 2|w|+ c rows and between max(s, |w|) and max(s, |w|) + c columns,
where t (respectively s) is the number of steps M takes (respectively, the number of cells M
ever scans) on input w.

Furthermore, R is computable from M and w in polynomial time, and C is computable from M .

20

Proof. See Appendix A.

Lemma 5.6 yields the following result, which immediately implies Theorem 5.4 as a corollary:

Theorem 5.7. Given alphabet Σ and positive regex C over Σ, let WΣ(C) be the following decision
problem:

WΣ(C) := “Given a regex R over Σ such that (R,C) is plural, does an (R,C)-crossword
solution exist?”

There exists an alphabet Σ and a positive regex C over Σ such that WΣ(C) is m-equivalent to the
Halting Problem (and is thus undecidable).

Proof. We apply Lemma 5.6 letting M be a universal Turing machine (or any Turing machine
recognizing the Halting Problem). Let Σ and C be as constructed in the proof. We get a computable
function g such that, for any string w, g(w) is a regex R over Σ such that (R,C) is plural, and
for all w, M halts on w if and only if an (R,C)-crossword solution exists. Thus g m-reduces the
Halting problem to WΣ(C). Conversely, WΣ(C) is clearly c.e. (for all C uniformly, in fact), and
thus m-reduces to the Halting Problem.

Corollary 5.8 (Giammarresi, Restivo [9]). Given regexes R and C, it is undecidable (m-equivalent
to the Halting Problem) whether an (R,C)-crossword solution exists.

Proof. Just note that decision problem W of Theorem 5.7 is c.e. uniformly in C.

6 Techniques for Restricting Regex Crossword Problems

In this section, we show, given two regexes R and C, how to find a regex E such that an (R,C)-
crossword solution exists of a certain size if and only if an (E,E)-crossword solution exists of a
roughly similar size. We gave a special case of such a reduction in the proof of Theorem 3.13 in
Section 3.3. In Section 6.1 we give a different, general construction that works for any regexes over
any alphabet. We also show how to convert a regex crossword over an arbitrary alphabet into an
equivalent regex crossword over the binary alphabet {0, 1} (see Section 6.3). Finally, in Section 6.4
we show that insisting on a square solution (with the same number of rows as columns) does not
alter our hardness results.

6.1 Making the row and column expressions equal

(R,C)-crossword problems retain their hardness even if we insist that R = C. This was the case
with Theorem 3.13, for example. Here, we give a generic construction that can be applied more
generally. We get this from the following lemma:

Lemma 6.1. There exists a polynomial-time computable function b such that, for any alphabet Σ
and any regexes R and C over Σ such that (R,C) is plural, E := b(Σ, R, C) is a positive regex (over
a slightly bigger alphabet Σ′, which can be computed from Σ alone) such that an (E,E)-crossword
solution exists if and only if an (R,C)-crossword solution exists. Furthermore, there is a one-to-one
map ρ mapping Σ-grids of size m×n (where m,n ≥ 2) to Σ′-grids of size (m+1)×(n+1) that takes
(R,C)-crossword solutions to (E,E)-crossword solutions, and for every (E,E)-crossword solution
Y , there exists an (R,C)-crossword solution X such that ρ(X) is either Y or the matrix transpose
of Y .

21

Proof. Let Σ, R, and C be given as in the lemma. We want to effectively find an E so that a unique
(E,E)-crossword solution corresponds to any given (R,C)-crossword solution and vice versa. A
first attempt at constructing E would be to set E := R ∪ C. This may not work, because an
(R,C)-crossword solution may not exist, but there is an (E,E)-crossword solution where each row
and column might match R, but the columns do not match C, say. There are perhaps several ways
to correct this problem, and here is a fairly simple fix:

1. Introduce three new symbols not in Σ: ♠ (the “bottom edge marker”); ♥ (the “left edge
marker”); and ♦ (the “corner marker”).

2. Then modify R and C slightly to R′ and C ′, respectively, so that any (R′ ∪ C ′, R′ ∪ C ′)-
crossword solution or its matrix transpose has its first column matching ♥∗♦, its last row
matching ♦♠∗, and the rest of the array being an (R,C)-crossword solution:

♥
... (R,C)-crossword
... solution
♥
♦ ♠ · · · · · · ♠

Informally, the ♥ and ♠ markers prevent rows from being confused with columns, and the ♦ marker
prevents ♥ and ♠ from being confused with each other. Here are the formal definitions:

Σ′ := Σ ∪ {♠,♥,♦} ,
R′ := ♥R ∪ ♦♠♠♠∗ ,
C ′ := C♠ ∪♥♥♥∗♦ ,
E := R′ ∪ C ′ .

Clearly, E = b(Σ, R, C) is positive and computable in polynomial time. To see that this construction
works, first observe that an m × n (R,C)-crossword solution X (with m,n ≥ 2 because (R,C) is
plural) becomes an (m + 1) × (n + 1) (E,E)-crossword solution ρ(X) by prepending the column
♥m then appending the row ♦♠n. This defines the map ρ, which is clearly one-to-one and maps
(R,C)-crossword solutions to (E,E)-crossword solutions with one more row and column. It follows
that an (E,E)-crossword solution exists if an (R,C)-crossword solution exists.

Conversely, let Y be any (E,E)-crossword solution—say, m × n—with rows r1, . . . , rm and
columns c1, . . . , cn, all matching E. We show first that m,n ≥ 3. Suppose not. We must have
m,n ≥ 2, because both R and C are positive. We may assume that m = 2; otherwise, we apply the
same argument to the transpose of Y , which is still an (E,E)-crossword solution. Then each column
of Y has length 2 and thus must match either ♥R or C♠. We claim that c2 cannot start with ♥:
Suppose otherwise. Then since r1 has ♥ as its second symbol, it must match ♥♥♥∗♦, whence cn
starts with ♦; but then |cn| ≥ 3, contradicting our assumption that m = 2 and establishing the
claim. Therefore, it must be that c2 matches C♠ (c2 = a♠ for some a ∈ Σ matching C). Then r2

has ♠ as its second symbol, and so it either matches ♦♠♠♠∗ or equals b♠ for some b ∈ Σ matching
C. The former case would make c1 have ♦ as its second symbol, which is impossible. In the latter
case, we must have c1 = ♥b, which matches ♥R. The resulting grid would then look like this:

♥ a · · ·
b ♠ · · ·

22

But then b matches both R and C, making a 1 × 1 (R,C)-crossword solution, which contradicts
the fact that (R,C) is plural.

Having established that m,n ≥ 3, we next show that removing the first column and last row
from either Y or its transpose (depending on where the ♦ is) results in an (R,C)-crossword solution
X, from which it will be clear that ρ(X) is either Y or its transpose, respectively.

Consider r2, which has length ≥ 3 and matches either R′ or C ′.

Case 1: r2 matches R′. Then r2 must begin with ♥: otherwise, it begins with ♦, but then c1

has ♦ as its second symbol, which is impossible. Then we have r2 = ♥r for some string r
matching R, and since c1 has ♥ as its second symbol, we have c1 = ♥m−1♦, whence it follows
that rm = ♦♠n−1. Now consider the columns c2, . . . , cn. These all end with ♠, and so they
must all match C♠ (they cannot match ♦♠♠♠∗ because they all contain symbols in Σ from
r2). So now we know that all symbols in Y other than the first column and last row are in Σ,
that is, for each 1 ≤ i ≤ m−1, all symbols in ri are in Σ except the first, which is ♥ (because
of c1). The only way this can happen is if each ri matches ♥R. This establishes that Y minus
the first column and last row is an (R,C)-crossword solution (whose image under ρ is Y).

Case 2: r2 matches C ′. By transposing Y , we can assume instead that c2 matches C ′, which will
be less confusing conceptually. The argument here is similar to Case 1. The string c2 cannot
end with ♦, as that would also be the second symbol of rm, which is impossible. So we have
that c2 = c♠ for some string c matching C, making ♠ the second symbol of rm, which is not
its last symbol, because |rm| ≥ 3. It follows that rm = ♦♠n−1, whence c1 = ♥m−1♦. Now
then, r1, . . . , rm−1 all start with ♥ and contain at least one symbol from Σ (because of c2),
and so they all match ♥R. So again, all symbols in Y except the first column and last row
are from Σ, and since c2, . . . , cn all end in ♠, they much all match C♠. So again we have
that deleting the first column and last row results in an (R,C)-crossword solution.

We have shown that removing the first column and last row from either Y (in Case 1) or its transpose
(in Case 2) results in an (R,C)-crossword solution X such that ρ(X) is either Y or its transpose,
respectively. In particular, if an (E,E)-crossword solution exists, then an (R,C)-crossword solution
exists.

Theorem 6.2. For any alphabet Σ, let UR=CΣ be the following decision problem:

UR=CΣ := “Given a positive regex E over Σ, does an (E,E)-crossword solution (of any
size) exist?”

There exists an alphabet Σ such that UR=CΣ is undecidable (in fact, m-equivalent to the Halting
Problem).

Proof. UR=CΣ is clearly c.e. for any Σ, and hence m-reduces to the Halting Problem. Conversely,
let Σ and C be as in Theorem 5.7, let b be the function of Lemma 6.1. Define the function h by

h(R) := b(Σ, R, C)

for every regex R over Σ such that (R,C) is plural. Then h is computable in polynomial time,
and, for all R such that (R,C) is plural, E := h(R) is a positive regex, and an (E,E)-crossword
solution exists if and only if an (R,C)-crossword exists. Thus h m-reduces WΣ(C) of Theorem 5.7
to UR=CΣ′ , where Σ′ is the alphabet computed from Σ in Lemma 6.1. Since WΣ(C) is m-equivalent
to the Halting Problem by Theorem 5.7, we are done.

23

6.2 A decidable crossword solution existence problem

In contrast with the previous results, we have the following theorem, which shows that the crossword
solution existence problem becomes decidable if we bound one of the grid dimensions but not the
other. In the definition below, SB stands for “semi-bounded.”

Definition 6.3. For any alphabet Σ, define SBRCΣ to be the language of all tuples 〈R1, . . . , Rm, C〉
where R1, . . . , Rm, C are regexes over Σ and there exists an n ≥ 1 and an m×n Σ-grid all of whose
columns match C and whose ith row matches Ri for all 1 ≤ i ≤ m. (Note that m is specified
implicitly by the input.)

Theorem 6.4. SBRCΣ is decidable for every alphabet Σ. In fact, SBRCΣ ∈ PSPACE.

Proof Sketch. First, we convert each Ri into an equivalent ε-NFA Ni (see [10]). These automata
have sizes polynomial in the sizes of the regexes. Then we nondeterministically guess a crossword
one column at a time, starting with the first, and for each guessed column, we simulate one step of
each of the Ni on its corresponding symbol (this can be done in polynomial time by keeping track
of a subset of the state set of each Ni). We accept if ever all the Ni accept simultaneously. We
can also stop after 2n guesses, where n is the total number of states of all the Ni combined. This
nondeterministic algorithm uses polynomial space, and hence can be converted into a deterministic
polynomial-space algorithm by Savitch’s theorem.

6.3 Regexes over the binary alphabet

The alphabets used in Theorems 5.7 and 6.2 are fixed, but they are likely quite large, having to
encode all the states of a (modified) universal Turing machine M̂ . In this section, we show how to
map (in polynomial time) regexes over an arbitrary alphabet to regexes over the binary alphabet
in a way that preserves crossword solutions. Thus the size-unbounded solution existence problem
remains undecidable even when restricted to a binary alphabet.

The next theorem strengthens Theorem 5.7.

Theorem 6.5. There exists a regex G over {0, 1} such that W{0,1}(G) is m-equivalent to the Halting
Problem.

Theorem 6.5 is a quick corollary of the following technical lemma:

Lemma 6.6. There is a function f such that, for any k ≥ 2 and positive regex R over alphabet
Σ := {0, . . . , k − 1}, f(k,R) is a positive regex over the alphabet {0, 1} such that the following
holds: There exists a one-to-one map ψk between Σ-grids and {0, 1}-grids (that maps m× n grids
to (3k(m+ 1) + 1)× (3k(n+ 1) + 1) grids) such that, for any positive regexes T and U over Σ,

1. for any (T,U)-crossword solution X, ψk(X) is an (f(k, T), f(k, U))-crossword solution, and

2. for every (f(k, T), f(k, U))-crossword solution Y , there is a (T,U)-crossword solution X such
that ψk(X) = Y .

Furthermore, f is computable in time polynomial in k + |R|.

Proof. Fix k and a positive regex R over Σ := {0, . . . , k − 1}. The regex F := f(k,R) over {0, 1},
defined below, will be formed from several components. Let ` := 3k, noting that ` ≥ 6. Any string
w matching F will satisfy |w| ≡ 1 (mod `). For 0 ≤ i < `− 1 and any string x of length `, define
RotLi(x) to be the cyclic shift of x by i places to the left. That is, if x = x0 · · ·x`−1, then

RotLi(x) := xi · · ·x`−1x0 · · ·xi−1 .

24

Now define s0 := 0`−211, and for 0 < i < ` define si := RotLi(s0). We will use the si to encode
symbols from Σ.

Let h : Σ∗ → {0, 1}∗ be the string homomorphism determined by

h(j) := s3j ,

for all 0 ≤ j < k. We extend h to apply to regexes over Σ in the usual way (see [10] for example).
Given a positive regex R over Σ, the subexpressions making up F := f(k,R) come in four

types—alignment, calibration, encoding, and duplication—defined as follows:

Alignment: Define
A := 1`(0`)+ .

Calibration: Define

C0 := 0001`−3(s0)+ ,

C1 := 01`−1(s1)+ ,

C2 := 01`−1(s2)+ ,

and for 3 ≤ i < `− 1, define
Ci := 1`(si)

+ .

Now define

C :=
`−1⋃
i=0

Ci .

Encoding: Define
E(R) := s0(h(R)) ,

that is, s0 concatenated with the regex h(R). Note that we make the dependence on R
explicit. We use E as shorthand for E(Σ+) and note that L(E(R)) ⊆ L(E), because R is
positive.

Duplication: Define

D0 :=
⋃

1≤c<k

s3c ,

and for j ∈ {1, 2}, define

Dj :=
⋃

0≤c<k

s3c+j .

Define
D := D0(D0)+ ∪D1(D1)+ ∪D2(D2)+ .

Finally, define
F := 1(A ∪ C) ∪ 0(D ∪ E(R)) .

This completes the description of F = f(k,R). It is evident that f is computable in the specified
time bounds. Notice that all subexpressions of F except E(R) depend only on k and not on R.

Next we show how to convert any Σ-crossword solution X into a unique {0, 1}-crossword solution
Y = ψk(X) such that, for any positive regexes T and U over Σ, X is a (T,U)-crossword solution
if and only if Y is an (F,G)-crossword solution, where F := f(k, T) and G := f(k, U). It will

25

S0 S1 S2 S3 S4

= 1

= 0

Figure 8: The 15×15 squares S0, . . . , S4 used to encode the individual letters 0, . . . , 4, respectively.
A white cell denotes 0, and a black cell denotes 1. The columns of each successive square are
cyclically shifted three spaces to the left from the previous square; likewise from S4 to S0.

3 0 4

2 1 0
=⇒

Figure 9: The encoding ψ5(X) of a sample 2× 3 Σ-grid X, where Σ = {0, 1, 2, 3, 4}. The slightly
thicker lines give the boundaries between the 15× 15 squares. The homomorphic image of the grid
itself is in the six squares in the lower right.

help first to see an example of how this is done. Suppose Σ = {0, 1, 2, 3, 4}. Then each cell of a
crossword solution over Σ is encoded by a 15× 15 square in the crossword solution over {0, 1}, as
shown in Figure 8. Generally, for 0 ≤ c < k we define Sc be the `×` square whose ith row (starting
with i = 0) is s(3c+i) mod `. These squares are pairwise distinct, and we use Sc to encode the letter
c. Notice that the Sc are symmetric (with respect to matrix transpose), and so the ith column of
Sc is also s(3c+i) mod `. In Figure 9, we show the encoding ψk(X) of a sample 2× 3 Σ-grid X. The
top row and left column form the alignment region, and these two strings will both match 1A. The
rest of the grid is made up of (`× `)-size squares Qt,u for t, u ≥ 0, with Q0,0 being the top leftmost
square, Q0,1 immediately to its right, Q1,0 immediately below it, etc. Squares of the form Q0,u and
Qt,0 form the calibration region, and, except for Q0,0, all these squares are equal to S0. The rows
and columns making up this region all match 1C. The rest of the grid (squares Qt,u for t, u ≥ 1)
forms the encoding region, each square encoding a single corresponding entry in the Σ-grid. Rows
and columns that intersect this region all match 0(D ∪ E).

Now the detailed description. Let X be any Σ-grid with m rows and n columns, where m,n ≥ 1.
For 1 ≤ t ≤ m and 1 ≤ u ≤ n, let xt,u be the symbol in row t and column u of X. Then we define

26

a {0, 1}-grid Y = ψk(X) as follows: Y has dimensions ((m + 1)` + 1) × ((n + 1)` + 1), where
` = 3k as above. It will be convenient to index the rows of Y as (−1), . . . , (m + 1)` − 1 and the
columns as (−1), . . . , (n + 1)` − 1. With this indexing, the alignment region comprises row (−1)
and column (−1), and each square Qt,u (for 0 ≤ t ≤ m and 0 ≤ u ≤ n) is the intersection of
rows t`, . . . , (t+ 1)`− 1 with columns u`, . . . , (u+ 1)`− 1. We will define Y row by row, with rows
r−1, . . . , r(m+1)`−1, then discuss the columns. (It will help to refer back to Figure 9.)

• Set r−1 := 1`+10n`. Then r−1 matches 1A.

• Set

r0 := 10001`−3(s0)n ,

r1 := 101`−1(s1)n ,

r2 := 101`−1(s2)n .

Then r0, r1, and r2 match 1C0, 1C1, and 1C2, respectively.

• For 3 ≤ i < `, set ri := 1`+1(si)
n. Then ri matches 1Ci.

• For 1 ≤ t ≤ m, let x := xt,1 · · ·xt,n. For 0 ≤ i < `, set

rt`+i := 0sis(3xt,1+i) mod ` · · · s(3xt,n+i) mod ` .

Note that for 1 ≤ u ≤ n, block u of rt`+i equals RotLi(h(xt,u)). Also notice that if all the
rows of X match some positive regex T over Σ, then all the rt` match 0E(T). The rest of the
rows rt`+i match 0D; in particular, rt`+i matches 0Di mod 3.

This completes the definition of the map ψk.
We have established that if the rows of X all match some positive regex T , then each row of

Y matches F = 1(A ∪ C) ∪ 0(D ∪ E(T)), and from the arrangement of the rows, we can see by
symmetry that if the columns of X all match some positive regex U over Σ, then each column of
Y matches 1(A ∪ C) ∪ 0(D ∪ E(U)) in a similar manner:

• c−1 = 1`+10m`, matching 1A.

• c0 = 10001`−3(s0)m, c1 = 101`−1(s1)m, and c2 = 101`−1(s2)m, matching 1C0, 1C1, and 1C2,
respectively.

• For 3 ≤ i < `, ci = 1`+1(si)
m, matching 1Ci.

• For 1 ≤ u ≤ n, letting x := x1,u · · ·xm,u, and for 0 ≤ i < `, we have

cu`+i := 0sis(3x1,u+i) mod ` · · · s(3xm,u+i) mod ` .

That is, for 1 ≤ t ≤ m, block t of cu`+i equals Since x matches U , we have that cu` matches
0E(U), and the rest of the cu`+i match 0D.

This establishes that, if X is a (T,U)-crossword solution, then Y = ψk(X) is an (F,G)-crossword
solution (of the correct size), where F := f(k, T) and G = f(k, U). It is also clear that, since Y
has the original grid X completely encoded within it, ψk is a one-to-one map.

It remains to show that for any (F,G)-crossword solution Y , there is a (T,U)-crossword solution
X such that ψk(X) = Y , where T , U , F , and G are as above. We establish this through a series

27

of claims. Each claim is proved using “sudoku-like” arguments. Let Y be any (F,G)-crossword
solution. First observe that any string w matching A ∪ C ∪D ∪ E has length v` for some v ≥ 2,
and so we can chop w into substrings of length ` that we call blocks (at least two), starting with
block 0 through block v − 1. This forces Y , minus its top row and left column, to be divided into
(`× `)-size squares Qt,u as described earlier, the rows and columns of each Qt,u being blocks in the
rows and columns of Y that intersect Qt,u. Y has squares Qt,u for each 0 ≤ t ≤ m and 0 ≤ u ≤ n
for some m,n ≥ 1. As before, we index the rows and columns of Y as −1, . . . , (m + 1)` − 1 and
−1, . . . , (n+ 1)`− 1, respectively.

We extend the block concept to strings of length v` + 1, e.g., the rows and columns of an
(F,G)-crossword solution, by ignoring the first symbol in the string, that is, block 0 starts with the
second symbol of the string.

Claim 6.7. Each square Qt,0 and Q0,u of Y , for 1 ≤ t ≤ m and 1 ≤ u ≤ n, has exactly two 1’s in
each of its rows and each of its columns, the rest of the entries being 0.

Proof of Claim 6.7. Let w be any string matching A∪C∪D∪E. Then each block of w, other than
block 0, has at most two 1’s; in particular, it is either 0` (if w matches A), or it is of the form si for
some i (if w matches C ∪D ∪E). Moreover, block 0 of w has at least two 1’s. Thus for 1 ≤ u ≤ n,
square Q0,u has each of its rows containing at most two 1’s and each of its columns containing at
least two 1’s. The only way this can happen is if each row and column of Q0,u contains exactly
two 1’s. A similar argument shows that each row and column of Qt,0 contains exactly two 1’s, for
i ≤ t ≤ m.

Claim 6.8. No row of Y other than the topmost, and no column of Y other than the leftmost,
matches 1A.

Proof of Claim 6.8. Consider any row except the topmost. This row is either 0r or 1r for some
string r matching A ∪ C ∪D ∪ E, and it intersects either Q0,1 or else Qt,0 for some t ≥ 1. In the
former case, block 1 of r (i.e., the block of r intersecting Q0,1) has a 1, and so r cannot match
A; in the latter case, block 0 of r has a 0, and so again, r cannot match A. (Both cases follow
from Claim 6.7.) Thus the row in question cannot match 1A. The same argument applies to the
columns except the leftmost; none of them can match 1A.

Claim 6.9. The topmost row and leftmost column of Y each match 1A.

Proof of Claim 6.9. Observe that any string w matching C must have at least three 1’s in its block 0.
Now consider any row of Y that intersects square Q1,0. This row is of the form 0r or 1r, for some
r matching A ∪ C ∪ D ∪ E. By Claim 6.8, this row does not match 1A, and so it must match
1C ∪ 0(D ∪E). However, r cannot match C because (by Claim 6.7) r has only two 1’s in block 0.
Thus the row must match 0(D ∪E)—in particular, it starts with 0. That means that the leftmost
column (column (−1)) has all 0’s in its block 1, and so it cannot match 1C ∪ 0(D ∪ E), and thus
it must match 1A. A similar, transposed argument shows that the topmost row must also match
1A.

Claim 6.10. Rows 0, . . . , ` − 1 and columns 0, . . . , ` − 1 of Y each match 1C, and the rows and
columns of Y starting with index ` each match 0(D ∪ E).

Proof of Claim 6.10. By the previous claim, the topmost row and leftmost column of Y each match
1A = 1`+1(0`)+. Thus rows 0, . . . , `− 1 each start with 1, and the rows starting with index ` each
start with 0. By Claim 6.8, none of these rows match 1A, so rows 0 through `− 1 all must match
1C and the rest must match 0(D ∪ E). A similar argument holds for the columns.

28

Notice that each row and column of Q0,0 matches (000∪011∪111)1`−3. For 0 ≤ i < (m+1)`,
let ri denote the row of Y with index i, and for 0 ≤ j < (n + 1)` let cj denote the column of Y
with index j. Rows r0, . . . , r`−1 and columns c0, . . . , c`−1 all match 1C by Claim 6.10, and the rest
match 0(D ∪ E).

Claim 6.11. For all 0 ≤ i < `, ri and ci both match 1Ci.

Proof of Claim 6.11. First we show that r0 and c0 both match 1C0. Suppose that r0 does not
match 1C0 (the argument for c0 is similar). Then (since r0 matches 1C) r0 matches 1Ci for some
i ≥ 1, and so has a prefix matching 1(0 ∪ 1)1`−1, which makes c1, . . . , c`−1 all have 11 as a prefix.
This in turn implies that each of these columns must match 1Cj for some j ≥ 3. Now notice that
block 1 of any string x matching Cj is sj , and so if 3 ≤ j < `, then x must have 0 as the next
to last symbol in its block 1. From these facts it follows that the next to last row of Q1,0 (i.e.,
block 0 of r2`−2) matches (0∪ 1)0`−1. But this is impossible, because this block must have two 1’s
by Claim 6.7.

Next we show that r1 and c1 match 1C1 and r2 and c2 match 1C2. By what we just showed, r1

r2 both have prefix 10 (because c0 matches 1C0), and so they each match 1(C0 ∪C1 ∪C2). Neither
of them can match 1C0, however: Consider the 2× 2 square S forming the intersection of rows 1, 2
with columns 1, 2. If either r1 or r2 matches 1C0, then S contains a 0, and hence at least one of
the columns c1 or c2 must also match 1C0, which implies that S contains all 0’s, which means that
both r1 and r2 match 1C0. But this would make c2`−1 have prefix 0111 putting three 1’s in the
last column of Q0,1 and contradicting Claim 6.7. (By a similar argument, neither c1 nor c2 can
match 1C0.) Thus we have r1 and r2 both matching 1(C1 ∪ C2). Now r2 cannot match 1C1, for
if it does, then c2`−2 has prefix either 0101 or 0111, neither of which is possible because block 0
of c2`−2 must be sj for some j. Thus r2 matches 1C2. We have one more case to eliminate, i.e.,
showing that r1 cannot match 1C2. Suppose r1 matches 1C2. Then column c2`−2 has prefix 0100,
and the only way this can happen is if c2`−2 has prefix 0s`−1. But that means that row r`−1 has
a 1 as the next to last symbol of its block 1. Since r`−1 matches 1C, this can only happen if r`−1

matches 1(C0 ∪C1), whence it has 10 as a prefix. This puts a 0 as the last symbol of block 0 of c0,
but this is impossible, because c0 matches 1C0 and hence has 10001`−3 as a prefix. Thus r1 cannot
match 1C2, and so it matches 1C1. A symmetric argument holds for c1 and c2.

Finally, we show that ri matches 1Ci for 3 ≤ i < `. This is by induction on i, starting with
i = 3, with the inductive hypothesis that rj matches 1Cj for all 0 ≤ j < i. We have then that
c2`−i−1 has prefix 0i1 and c2`−i has prefix 0i−111. Since both of these columns match 0(D ∪ E)
and hence must each start with 0sj for some j’s, we can only have that c2`−i−1 has prefix 0i11 and
c2`−i has prefix 0i−1110. Then block 1 of ri must be si, and it follows that ri matches 1Ci.

Claim 6.12. Qt,0 = Q0,u = S0 for all 1 ≤ t ≤ m and 1 ≤ u ≤ n.

Proof of Claim 6.12. This follows immediately from Claim 6.11.

Claim 6.13. For each 1 ≤ t ≤ m and each 1 ≤ u ≤ n, rt` matches 0E(T) and cu` matches 0E(U).

Proof of Claim 6.13. By assumption, all rows of Y match F = 1(A ∪ C) ∪ 0(D ∪ E(T)), and all
columns of Y match G = 1(A∪C)∪0(D∪E(U)). By Claim 6.12, each row rt` and each column cu`
has prefix 0s0, and thus none can match 1(A ∪ C) ∪ 0D. Thus each such row must match 0E(T),
and each such column matches 0E(U).

Claim 6.14. For all t, u with 1 ≤ t ≤ m and 1 ≤ u ≤ n, there exists a unique xt,u ∈ Σ such that
Qt,u = Sxt,u.

29

Proof of Claim 6.14. For simplicity, we will assume t = u = 1; the same argument works for any
t, u. By Claim 6.10, rows r`, . . . , r2`−1 and columns c`, . . . , c2`−1 all match 0(D∪E). By Claim 6.12,
the ith row of Q1,0 (i.e., block 0 of r`+i) is si, for 0 ≤ i < `. We have r` matching 0E by Claim 6.13.
For 0 ≤ j < `, let bj be block 1 of r`+j (i.e., the jth row of Q1,1), and let b′j be block 1 of c`+j

(i.e., the jth column of Q1,1). Row r` matching 0E makes b0 = s3x for some unique 0 ≤ x < k.
For 1 ≤ i < `, row r`+i, having si as its block 0, cannot match 0E. Thus r`+i matches 0D, and
in fact, it must match 0Di mod 3, owing to its block 0, and this makes bi = s(3v+i) mod ` for some
0 ≤ v < k. The same goes for the columns of Q1,1. Furthermore, notice that D and E ensure that
the columns b′j and b′(j−1) mod ` are distinct for any 0 ≤ j < `, because j and j − 1 have different
remainders modulo 3.

We show by induction on 1 ≤ i < ` that bi = s(3x+i) mod `, and this will imply that Q1,1 = Sx,
finishing the proof of the claim. Now assume (inductive hypothesis) that bi−1 = s(3x+i−1) mod ` (we
have established this for i = 1). We have bi = s3v+i for some 0 ≤ v < k, and so it suffices to show
that v = x. Suppose v 6= x. Then there is no position where the strings bi and bi−1 share a 1 in
common. The two 1’s in bi−1 occur in columns b′z1 and b′z2 of Q1,1, where z1 := (−3x − i) mod `
and z2 := (z1−1) mod ` = (−3x− i−1) mod `, and by assumption, these 1’s are then immediately
followed by 0’s in their respective columns. Since b′z1 = sj1 and b′z2 = sj2 for some 0 ≤ j1, j2 < `,
and they share the substring 10 in the same position in each, it must be that j1 = j2. But
this contradicts what we said above about columns being distinct. Therefore, v = x, and we are
done.

Claim 6.15. For all 1 ≤ t ≤ m and 1 ≤ u ≤ n, let xt,u ∈ Σ be the unique symbol such that
Qt,u = Sxt,u (cf. Claim 6.14). Then the m× n array X whose (t, u)th entry is xt,u forms a (T,U)-
crossword solution.

Proof of Claim 6.15. For 1 ≤ t ≤ m, let dt := xt,1 · · ·xt,n, and for 1 ≤ u ≤ n, let eu := x1,u · · ·xm,u.
We show that the dt all match T and the eu all match U . We have

rt` = 0s0s3xt,1 · · · s3xt,n = 0s0(h(dt)) ,

and because of the symmetry of the squares Qt,u, we also have

cu` = 0s0s3x1,u · · · s3xm,u = 0s0(h(eu)) ,

for all 1 ≤ t ≤ m and 1 ≤ u ≤ n. By Claim 6.13, rt` matches 0E(T) = 0s0(h(T)) and cu` matches
0E(U) = 0s0(h(U)). Then because h is clearly a one-to-one map, it must be that dt matches T and
eu matches u.

Finally, if X is as defined in Claim 6.15, then is clear by our definition of ψk above that
Y = ψk(X). This ends the proof of Lemma 6.6.

Proof of Theorem 6.5. Let G := f(k,C), where C is as in Theorem 5.7, and k is the size of the
alphabet used in that proof. W{0,1}(G) is clearly c.e. For the other direction, we m-reduce from
the problem WΣ(C) of Theorem 5.7 via the map f(k, ·). Given any positive regex R over a size-k
alphabet, which we can assume is {0, . . . , k − 1}, we set F := f(k,R). Then an (F,G)-crossword
solution exists if and only if an (R,C)-crossword solution exists, by Lemma 6.6.

The next theorem is another corollary of Lemma 6.6. It strengthens Theorem 6.2. The problem
UR=CΣ was defined and shown undecidable for any alphabet Σ in Theorem 6.2.

Theorem 6.16. UR=C{0,1} is m-equivalent to the Halting Problem.

30

Proof. This works as in the proof of Theorem 6.5. UR=C{0,1} is evidently c.e. Conversely, we
m-reduce from UR=CΣ of Theorem 6.2. Given a positive regex E, we can effectively determine the
size k of E’s alphabet. Then adjusting the alphabet to {0, . . . , k − 1}, we let E′ := f(k,E), where
f is the function of Lemma 6.6. Then E′ is positive, and an (E′, E′)-crossword solution exists if
and only if an (E,E)-crossword solution exists.

6.4 Making crosswords square

An m× n Σ-grid is square iff m = n. In this section, we explain briefly why the complexities of all
our problems are unaffected by restricting all crossword solutions to be square.

First, in the proof of Lemma 5.6 in Appendix A, the R and C we construct are such that
if an m × n (R,C)-crossword solution exists, then m ≥ n. This is because each row records a
configuration of the machine M , and each column records a tape cell that is scanned at least once,
and M can only scan at most as many different tape cells as there are configurations. Thus to
allow a square (R,C)-crossword solution, we only need to pad with (blank) cells that are never
scanned. Letting C ′ := C ∪ [B]+, we get that an (R,C)-crossword solution exists if and only if an
(R,C ′)-crossword solution exists, if and only if a square (R,C ′)-crossword solution exists.

Next, the map ρ of Lemma 6.1 clearly preserves squareness: every m × n (R,C)-crossword
solution (for m,n ≥ 2) maps to an (m + 1) × (n + 1) (E,E)-crossword solution and vice versa.
Finally, the maps ψk of Lemma 6.6 also preserve squareness. An m× n (T,U)-crossword solution
maps under ψk to a (3k(m+ 1) + 1)× (3k(n+ 1) + 1) (F,G)-crossword solution and vice versa.

7 Further Results

7.1 Controlling the number of solutions

Using the apparatus of Section 5, we can obtain a reduction from 3SAT to RC that gives a one-to-one
correspondence between satisfying assignments to a Boolean formula and solutions to the corre-
sponding crossword. The following lemma tightens Lemma 3.3. Its proof is given in Appendix B.

Lemma 7.1. There exist a polynomial p, a polynomial-time computable function r, and a positive
regular expression C ′ over Σ such that, for any Boolean formula ϕ,

1. R′ := r(ϕ) is a positive regular expression over {0, 1},

2. (R′, C ′) is plural,

3. every (R′, C ′)-crossword is q × q, where q := q(|ϕ|), and

4. the number of (R′, C ′)-crosswords is equal to the number of satisfying truth assignments to ϕ.

Since the reductions of Lemma 3.3 and 7.1 control not just the existence but the number of
crossword solutions, we can get more information out of them. We list a few other results here that
follow easily from Lemma 3.3 or Lemma 7.1 or both.

• Counting the number of (R,C)-crossword solutions of given dimensions (given in unary)
is polynomially equivalent to counting the number of satisfying assignments to a Boolean
formula, and hence is complete for the class #P [15]. More precisely, let #RC be the function
that takes an (R,C)-crossword as input and returns the number of solutions. Lemmas 3.3
and 7.1 imply #RC is hard for #P. Since #RC ∈ #P, we have that #RC is complete for #P.

31

• As with sudoku puzzles, someone who wants to solve a regex crossword puzzle (found online or
in a newspaper, say) should reasonably expect that a solution exists and is unique. Does the
promise of a unique solution make solving the puzzle any easier in the worst case? The answer
is no, at least with respect to randomized polynomial reductions. Consider the following
search problem:

Input: Regular expressions R and C, and integers m,n ≥ 1 in unary.
Promise: A unique m× n (R,C)-crossword solution exists.
Ouput: The m× n (R,C)-crossword solution.

Lemma 7.1 and its proof says that this problem is polynomially equivalent to finding the
unique satisfying assignment to a Boolean formula with the promise that it is uniquely sat-
isfiable. The latter problem is known to be NP-hard with respect to randomized polynomial
reductions [16].

• Shifting perspective from the last item, a regex crossword puzzle maker may want a test to
determine, given regular expressions R and C and m,n ≥ 1 in unary, whether or not a unique
solution exists. Lemma 7.1 says that this is polynomially equivalent to USAT, the language
of all uniquely satisfiable Boolean formulas. USAT is known to be NP-hard (it is in the class
Dp, the first level of the difference hierarchy over NP).

Finally, the techniques of Section 5 can be modified easily to show that if the dimensions of the
crossword are both given in binary instead of unary, then the (R,C)-crossword solution existence
problem is complete for NEXP (nondeterministic exponential time) under polynomial reductions.
If one of the dimensions is given in unary and the other in binary, then the problem becomes
PSPACE-complete. (PSPACE-hardness follows from Lemma 5.6; membership in PSPACE follows
by modifying slightly the proof of Theorem 6.4.)

7.2 String-based puzzles

In a standard regex crossword puzzle, each cell of the grid contains a single letter from the alphabet.
A variant puzzle allows each cell to contain an arbitrary string of characters. Then, the concate-
nation of the strings along each row must match the corresponding row regex, and similarly for
the columns. One of course can consider the various alterations on this puzzle we have described
previously: bounded versus unbounded, limits on the alphabet size, equality of regexes, and puzzle
versus two-player game. In this section we give upper and lower bounds on the complexity of an
unrestricted (but still bounded) version of the puzzle.

Definition 7.2. Let Σ be an alphabet. A string-based regex crossword over Σ is pair

P := 〈〈R1, . . . , Rm〉, 〈C1, . . . , Cn〉〉

for some m,n ≥ 1 and regexes R1, . . . , Rm and C1, . . . , Cn over Σ. A solution to P is a map
s : [m]× [n]→ Σ∗ such that, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,

• s(i, 1)‖ · · · ‖s(i, n) matches Ri, and

• s(1, j)‖ · · · ‖s(m, j) matches Cj .

We define StrRCΣ to be the language of all solvable string-based regex crosswords over Σ.

Proposition 7.3. StrRCΣ ∈ PSPACE for any alphabet Σ.

32

Proof sketch. Given regexes R1, . . . , Rm and C1, . . . , Cn, we first convert them to equivalent ε-NFAs
R̃1, . . . , R̃m and C̃1, . . . , C̃n, respectively. We then nondeterministically guess strings for each cell in
the following (row-major) order: w11, w12, . . . , w1n, w21, w22, . . . , w2n, . . . , wm1, . . . , wmn, where wij

is the contents of the cell at row i column j. While guessing strings, we simulate the NFAs using
the standard set-of-states method. We do this in the following way: On string wij , we simulate R̃i

and C̃j . If i = 1, we simulate C̃j from the start; if j = 1, we simulate R̃i from the start. If i > 1,
we continue to simulate C̃j from where we left off after guessing wi−1,j , and if j > 1, we simulate
R̃i starting from where we left off after guessing wi,j−1. In any case, we always save the simulation
results for future use. After guessing win (respectively, wmj) we check whether R̃i (respectively,
C̃j) accepts. If either reject, then we reject; if no NFAs have rejected after guessing wmn, then we
accept.

This approach decides membership in StrRCΣ, and it can be done in nondeterministic polynomial
space, because we only need to keep track of the sets of states of the various NFAs. Further, the
string wij need be no longer than 2ri+cj , where ri and cj are the sizes of the state sets of R̃i and C̃j ,
respectively, and thus we can stop guessing wij and move on to the next string after at most this
many steps. This length bound suffices to allow any combination of state sets of the two automata.

The proposition then follows by Savitch’s theorem.

8 Open Problems

The most immediate question arising from our work is whether RCG is PSPACE-hard restricted to
a binary alphabet. Our proof shows only that it is PSPACE-hard for a ternary alphabet. Doing
without the third symbol “2” in the alphabet currently seems like a daunting task, despite the fact
that under normal play, that symbol appears only once in the upper left-hand corner.

Another question is whether we still get PSPACE-hardness if we restict the regexes R and C
to be equal to each other. If one can show PSPACE-hardness for RCG′ restricted so that Ri = Ci

for all i, then it may be easy to get R = C for the constructed instance of RCG, since these two
latter regexes are close to being equal anyway.

Theorem 5.7 gives undecidability for a particular fixed expression C. One may ask more gen-
erally: For which C is the corresponding problem undecidable? How hard is it to determine, given
a C, whether the corresponding problem is decidable? We conjecture that this latter question is
m-complete for Σ3, the third Σ-level of the arithmetic hierarchy (see, e.g., [13]). Similar questions
can be asked about Proposition 3.10. For example: For which C is the question (i) NP-hard; (ii)
in P?

8.1 Variants of two-player regex crossword games

One can imagine a variety of two-player games involving regex crosswords besides the ones consid-
ered in this paper, and some of these may actually be fun to play. Recall the RCG′ game described
in Section 4.2:

A blank m × n grid is given to start, along with regexes R1, . . . , Rm and C1, . . . , Cn.
Player 1 (Rose) fills in the first row to match R1, then Player 2 (Colin) fills in the rest
of the first column so that it matches C1, then Rose fills in the rest of row 2 so that it
matches R2, then Colin column 2, etc.

For example:

1. Same as the RCG′ game above, but each player can choose an incomplete row (respectively
column) to fill in on each turn.

33

2. Same as the RCG′ game, but both players alternately fill in rows in order, and a move is legal
iff each column can be completed to match its corresponding Cj (this may or may not be
easy to determine).

3. Same as in the last item, but a player can choose a row to fill in on their turn.

In all these games, the last player able to make a legal move wins. We conjecture that for all these
games, determining whether Rose has a winning strategy is PSPACE-hard, even if all the Ri are
equal and all the Cj are equal and independent of the input, or if all the Ri and Cj are equal to
each other. (It is straightforward to prove that all these problems are in PSPACE.)

One might also consider some unbounded versions of these games:

1. Positive regexes R and C are given, but the size of the grid is not. Rose first chooses
an arbitrary string r1 matching R for the first row of the grid (thus fixing the number of
columns). Colin then chooses an arbitrary string c1 matching C for the first column of the
grid (except the first symbol of c1 must equal that of r1), thus fixing the number of rows.
Players then proceed as in the games mentioned previously.

2. Same as the last item, but on their first move, each player chooses a string r (respectively c)
and says which row (respectively column) this string is to fill.

The first two moves in each of these games is unbounded, but thereafter, the grid dimensions are
fixed, and so determining the winner under optimal play is decidable, given the first two moves.
The problem of determining if Rose wins without knowing the first two moves is then in the class
Σ2, the second Σ-level of the arithmetic hierarchy (i.e., it is c.e. relative to the Halting Problem).
We conjecture that it is m-complete for this class.

Acknowledgments

We would like to thank Joshua Cooper for finding for us a particularly challenging and fun three-
way regex crossword puzzle in [5]. We also thank Klaus-Jörn Lange, who pointed out the connection
between our work and the theory of two-dimensional picture languages, and George McNulty, who
gave helpful suggestions for improving the proof and presentation of our main result regarding
(R,C)-games. We are also grateful for a number of students in the first author’s Theory of Com-
putation class who (independently) suggested the variation of the regex crossword puzzle given
in Definition 7.2. The first author also thanks Jason O’Kane for first suggesting to him the NP-
completeness question for regex crosswords as an exercise. Much of this work was done at the
Dagstuhl seminar 14391, “Algebra in Computational Complexity.” Some of this work was also
done while the first author visited the third author at the University of Ulm (Germany), and
the first author would like to thank the Dagstuhl organizers and the University of Ulm for their
hospitality.

References

[1] Https://regexcrossword.com

[2] MIT Mystery Hunt, http://www.mit.edu/ puzzle

[3] (February 2013), slashdot discussion, http://games.slashdot.org/story/13/02/13/2346253/can-
you-do-the-regular-expression-crossword

34

[4] Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the Ameri-
can Mathematical Society, American Mathematical Society, Providence, Rhode Island (1966),
mR0216954

[5] Black, L.: Can you do the regular expression crossword? I Programmer (Febru-
ary 2013), http://www.i-programmer.info/news/144-graphics-and-games/5450-can-you-do-
the-regular-expression-crossword.html

[6] Fenner, S.: The complexity of some regex crossword problems (2014)

[7] Fenner, S., Padé, D.: Complexity of regex crosswords. In: Mart́ın-Vide, C., Okhotin, A.,
Shapira, D. (eds.) Language and Automata Theory and Applications. pp. 215–230. Springer
International Publishing, Cham (2019)

[8] Giammarresi, D., Restivo, A.: Recognizable picture languages. International Journal of Pattern
Recognition and Artificial Intelligence pp. 31–46 (1992)

[9] Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Salomaa, A., Rosenberg, G.
(eds.) Handbook of Formal Languages, vol. 3, chap. 96, pp. 215–267. Springer-Verlag (1997)

[10] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Pearson, 3rd edn. (2007)

[11] Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theoretical
Computer Science 178(1-2), 275–283 (1997), note

[12] Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 3rd edn. (2013)

[13] Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic,
Springer-Verlag, Berlin (1987)

[14] Takahashi, G.: Are regex crosswords NP-hard? CS Stack Exchange question 30143, answered
by FrankW (2014)

[15] Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201
(1979)

[16] Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47,
85–93 (1986)

A Proof of Lemma 5.6

In this appendix, we prove Lemma 5.6 from Section 5:

Lemma A.1. Let M be a Turing machine (as described above). There exists an alphabet Σ and a
regex C := C(M) over Σ (Σ and C both depending on M), and for any input string w there exists
a regex R := R(M,w) over Σ (depending on M and w) such that (R,C) is plural, and M halts on
input w if and only if an (R,C)-crossword solution exists, and if this is the case, then

• the (R,C)-crossword solution is unique, and

35

http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard.
http://cs.stackexchange.com/questions/30143/are-regex-crosswords-np-hard.

• there is a constant c, independent of M and w, such that the unique solution is a grid with
between t+ 2|w| and t+ 2|w|+ c rows and between max(s, |w|) and max(s, |w|) + c columns,
where t (respectively s) is the number of steps M takes (respectively, the number of cells M
ever scans) on input w.

Furthermore, R is computable from M and w in polynomial time, and C is computable from M .

Recall that our computational model is that of a deterministic Turing machine with a unique
halting state (distinct from the start state) and a single one-way infinite tape whose initial contents
starts with blank symbols in the two left-most cells, followed by an input string w of nonblank
symbols, followed on the right with blank tape. In each step, the tape head must move either left
or right by one cell. We view a computational tableau with the initial configuration on the top row
and time moving downward.

Proof of Lemma 5.6. Let M := (Q,Γ, δ, q0, qhalt, B), where

• Q is the (finite) state set,

• q0 ∈ Q is the start state,

• qhalt ∈ Q is the halting state, different from q0 (M halts just when this state is entered),

• Γ is the tape alphabet,

• B ∈ Γ is the blank symbol, and

• δ : (Q \ {qhalt})× Γ→ Q× Γ× {L,R} is the transition function. The left and right head
directions are indicated by L and R, respectively.

Given some input string w ∈ (Γ \ {B})∗, we construct the two regexes R and C over an
alphabet Σ (defined below). The expression C only depends on M and not on w. For technical
convenience and without loss of generality, we will modify the state set Q and transition function
δ of M if necessary to obtain a Turing machine M̂ with the following three properties: M̂ ’s first
computational step is governed by the transition δ(q0, B) = (q1, B, L) for some state q1 6= q0 (that is,

Bq0Bw 7→ q1BBw); M̂ then scans across the entire input w and back (going through configuration
BBwq2B and ending at Bq3Bw for some states q2 and q3), at which point it simulates M step for

step; M̂ never re-enters state q0 after its first step, nor attempts to move left when scanning the
leftmost cell of the tape (it might write a special symbol in the leftmost cell to keep itself from

doing this). Clearly, M̂ can be constructed from M in polynomial time, and on any input, M̂ ’s
halting versus non-halting behavior is the same as M ’s and its time and space usage are roughly
the same as M ’s.7 We do not refer to the original M again in the rest of the proof, so we will
re-use Q and δ to denote respectively the state set and transition function of M̂ without risking of
ambiguity.

To avoid confusion, we will call the elements of the alphabet Σ markers, reserving the word
symbol to refer to elements of Γ. The markers in Σ are of the following three disjoint types:

Unscanned tape cell markers: For all a ∈ Γ, the marker [a] is in Σ. Each of these markers
is used to depict a cell of the tape containing the symbol a and which is scanned neither

7M̂ scans the entire input w twice before simulating M , hence the appearance of t+ 2|w| in the expression for the
number of rows of the crossword solution.

36

currently nor in the next time step. We let U := {[a] : a ∈ Γ} denote the set of all unscanned
tape cell markers.8

Scanned tape cell markers: For all a ∈ Γ and all q ∈ Q, the marker [a, q] is in Σ. Each of these

depicts a cell of the tape containing a that is currently being scanned, and M̂ ’s current state
is also included in the marker.

State transmission markers: For all a ∈ Γ and all q ∈ Q\{q0}, the marker [a, ↓q] is in Σ. These
markers depict tape cells that are currently unscanned but will be scanned in the next time
step (and so they always appear horizontally adjacent to scanned tape markers for nonhalting

states). M̂ ’s state in the next time step is also included in the marker.

To summarize: At each time step of M̂ ’s computation, the tape cell scanned by the head is recorded
in the crossword solution by the corresponding scanned tape cell marker, which includes M̂ ’s current
state. All the unscanned cells of M̂ ’s tape are recorded in the solution by their corresponding
unscanned tape cell markers with one exception: the unscanned tape cell that will become scanned
in the next time step will be recorded by a state transmission marker, which includes M̂ ’s state in
the next time step.

Here are two typical examples. Suppose M̂ ’s current state is q and it is scanning a b on the
tape, with a to the left and c to the right. The corresponding configuration is traditionally denoted
· · · aqbc · · · . If δ(q, b) = (r, x,R), then the part of the crossword solution corresponding to the
transition aqbc 7→ axrc looks like this:

· · · · · · · · · · · · · · ·
· · · [a] [b, q] [c, ↓r] · · ·
· · · [a] [x] [c, r] · · ·
· · · · · · · · · · · · · · ·

If instead, δ(q, b) = (s, y, L), then we get this for the transition aqbc 7→ sayc:

· · · · · · · · · · · · · · ·
· · · [a, ↓s] [b, q] [c] · · ·
· · · [a, s] [y] [c] · · ·
· · · · · · · · · · · · · · ·

The one exception to this rule is a halting configuration, say · · · aqhaltbc · · · , which is represented
in the crossword solution thus:

· · · · · · · · · · · · · · ·
· · · [a] [b, qhalt] [c] · · ·

We will guarantee that there can be no rows of the solution below this one.

The regex R

R ensures that all the rows of the crossword solution look like they should. First we define a regex
giving the initial configuration of M̂ on input w: Let w = w1w2 · · ·wn, where n ≥ 0 and each wi is
in Γ \ {B}. Define

Iw := [B, ↓q1][B, q0][w1][w2] · · · [wn][B]+ . (20)

8From now on, we will identify a finite set of strings with the regex that matches exactly the strings in the set.
For example, we use U as a regex in the sequel.

37

This is the only component of our construction that depends on the string w. Since in its first step
M̂ ’s head moves left and its state becomes q1, this is the correct description of the first row. Since
there are no cells further to the left, we can take [B, ↓q1] to start Iw. Next, we define strings of
markers indicating configurations beyond the initial one. Set

TL := {[b, ↓r][a, q] : a, b ∈ Γ ∧ q ∈ Q \ {q0, qhalt} ∧ (∃c ∈ Γ)δ(q, a) = (r, c, L)} ,
TR := {[a, q][b, ↓r] : a, b ∈ Γ ∧ q ∈ Q \ {q0, qhalt} ∧ (∃c ∈ Γ)δ(q, a) = (r, c,R)} ,
T := TL ∪ TR ∪ {[a, qhalt] : a ∈ Γ} ,

describing portions of the tape in the vicinity of the scanned cell, undergoing transitions. Then
finally we define the row regex

R := Iw ∪ U∗TU∗ ,

where we recall that U matches any single unscanned tape cell marker. Note that R requires each
row to include exactly one scanned tape cell marker. If the corresponding state is nonhalting, then
it is adjacent to some state transmission marker (and this is the only place the latter marker can
appear in the row). If the corresponding state is halting, then there is no state transmission marker
on the row.

Clearly, R is positive and computable in polynomial time given w and a description of M̂ .

The regex C

C ensures that all the columns of the crossword look like they should. We define

C := S ∩W

as the intersection of two subexpressions: S ensures that each tape cell stays constant (“static”)—

except just after it is scanned by M̂ ’s head—and that when a cell becomes scanned, the new state
information is faithfully copied from the previous time step (via the state transmission marker in
the previous row); W (for “written”) ensures that the correct symbol is written into a scanned cell
on the next time step.

For S we define

D :=
⋃

a∈Γ, q∈Q\{q0}

[a]∗[a, ↓q][a, q] ,

E :=
⋃

a∈Γ, q∈Q\{q0}

[a]+[a, ↓q][a, q] ,

F :=
⋃
a∈Γ

[a]∗ ,

S := (E ∪ [B, q0] ∪ [B, ↓q1][B, q1])D∗F .

A string matching E ∪ [B, q0] ∪ [B, ↓q1][B, q1] gives the contents of a tape cell starting at the
beginning up through the first time it is scanned. Thereafter, each string matching D represents
a time interval ending with the cell being scanned again. F is matched by the cell’s contents after
the last time it is scanned. Note that S is positive, and hence C is positive.

38

For W we define (with explanation afterwards)

X := {[a, q][b] : a ∈ Γ ∧ q ∈ Q \ {qhalt} ∧ (∃r ∈ Q)(∃d ∈ {L,R})[δ(a, q) = (r, b, d)]} ,
Y := {[a, q][b, ↓s] : a ∈ Γ ∧ q ∈ Q \ {qhalt} ∧ s ∈ Q \ {q0} ∧ (∃r ∈ Q)(∃d ∈ {L,R})[δ(a, q) = (r, b, d)]} ,
H := {[a, qhalt] : a ∈ Γ} ,
Z := Σ \ {[a, q] : a ∈ Γ ∧ q ∈ Q} ,
W := Z∗(XZ∗ ∪ Y)∗H? .

X and Y both match a tape cell’s contents in two adjacent time steps, starting when the cell is
being scanned. The difference is that X must be used for the case where the tape head moves
away but does not immediately return to the cell in the next step; Y is used for the case where the
head moves away then immediately reverses direction back to the cell (hence the state transmission
marker). Z matches any marker except a scanned tape cell marker. Thus, XZ∗ ∪ Y depicts an
interval of time starting when a cell is scanned up until, but not including, the next time it is
scanned (or else through the end of the computation). H is used only if the cell is scanned when

M̂ halts.
We have that W matches all strings in which any occurrence of a non-halting scanned tape

cell marker is immediately followed by either an unscanned tape cell marker—or state transmission
marker—giving the cell’s correct contents after the corresponding transition of M̂ .

Notice that C is computable from M̂ alone and does not depend on the input string w at all.
Note that we are not asserting that C is computable in polynomial time. Our description of C
includes the intersection operator ∩, which is not part of the formal syntax of regexes. As we
mentioned, one can effectively compute an equivalent regex without the ∩ operator, but it may be
exponentially larger.

Correctness

One direction of the lemma is now fairly clear from the previous discussion: If M̂ halts starting with
w on its tape, then an (R,C)-crossword solution exists. Such a solution reflects the computational

trace of M̂ on input w.
For the other direction, suppose X is an (R,C)-crossword solution. Let r1, . . . , rm ∈ Σ∗ and

c1, . . . , cn ∈ Σ∗ be the rows and columns of X, respectively, for some m,n ≥ 1. S ensures that
r1 matches (U ∪ [B, q0] ∪ [B, ↓q1])∗, and since R forces r1 to contain a scanned tape cell marker
somewhere, that marker must be [B, q0]. It follows that r1 does not match U∗TU∗, and so it

matches Iw, providing the right starting configuration for M̂ (and ensuring that n ≥ 2). We also
have m ≥ 2, ensured by S because r1 contains [B, ↓q1]. Thus (R,C) is plural. Subsequent rows

must then conform to M̂ ’s computation, as was described previously.
We claim that the last row rm must contain a marker of the form [a, qhalt] for some a ∈ Γ,

indicating that M̂ halts. This is because R ensures that rm contains some scanned tape cell
marker, and supposing this marker is of the form [a, q] for some q 6= qhalt, there must be a state
transmission marker on either side of it in rm, whence S ensures that this latter marker is followed
by a scanned tape cell marker in its column, which means rm could not have been the last row.

Finally, as we showed that any solution corresponds to the (unique) halting computation of M̂
on input w, we establish uniqueness of the solution by observing that the dimensions of the solution
are uniquely determined by this computation: R makes sure that each row contains exactly one
scanned tape cell marker, and S makes sure that every column contains at least one scanned tape
cell marker, and so the columns of the solution exactly correspond to the tape cells that are scanned

39

at least once by M̂ (which, by construction, include the entire input string w). Furthermore, any
row containing a marker of the form [a, qhalt] (for some a ∈ Γ) must be the last row—this is enforced

by W . It follows from all this that the dimensions of the solution are uniquely determined by M̂ ’s
computation and are as given in the lemma: those dimensions reflect the time and space usage of
M̂ up to an additive constant.

B Proof of Lemma 7.1

Proof. We modify slightly the proof of Lemma 5.6 applied to a Turing machine M such that, on
any input w of length n:

1. M ’s tape alphabet contains (at least) the nonblank symbols 0 and 1 and blank symbol B,

2. M ’s computation satisfies the technical conditions given at the start of that proof with respect
to w,

3. if w encodes some Boolean formula ϕ with variables x0, . . . , xk−1 for some k ≤ n, then for
any a ∈ {0, 1}k, with wBa initially on its tape, M scans wBa in its entirety and halts if and
only if a is a satisfying truth assignment for ϕ, and

4. if M halts, then it halts after exactly p(n)− 1 many steps (thus including p(n) many config-
urations), for some appropriately chosen polynomial p with integer coefficients, independent
of w, such that p(n) ≥ 2n+ 3 for all n ≥ 0.

Such a machine M and polynomial p clearly exist. Under these assumptions, we can change the
definition of Iw in Equation 20 to accommodate the presence of a on the tape:

Iw := [B, ↓q1][B, q0][w1] · · · [wn][B]([0] ∪ [1])k[B]p(n)−n−k−3 ,

provided w = w1 · · ·wn encodes a Boolean formula with k ≤ n variables. Note that Iw is only
matched by strings of length p(n). The rest of the definition of R remains the same. We also
modify C just as we did in Section 6.4: C ′′ := C ∪ [B]+, where C is as in the proof Lemma 5.6.
Under these modifications, both R and C ′′ remain positive. Now setting p := p(n), we observe that
for any w encoding a Boolean formula ϕ with k ≤ n variables,

ϕ is satisfiable ⇐⇒ M halts on wBa for some a ∈ {0, 1}k

⇐⇒ an (R,C ′′)-crossword exists,

and if such is the case, then owing to the determinism and running time of M , the (R,C ′′)-crossword
is unique, is of size p× p, and both w and a are easily recoverable from it, which implies that the
number of (R,C ′′)-crosswords is equal to the number of satisfying assignments to ϕ. Also by
Lemma 5.6, given ϕ we can compute R, C, and 0p all in polynomial time.

Finally, we apply the function f of Lemma 6.6 to both R and C ′′. Let Σ be the alphabet of
R and C ′′ (cf. Lemma 5.6). By renaming if necessary, we may assume that Σ = {0, . . . , `− 1} for
some `. Then we set

q := 3`(p+ 1) + 1 ,

R′ := f(`, R) ,

C ′ := f(`, C ′′) ,

r(ϕ) := R′ .

40

Any (R′, C ′)-crossword thus has exactly q = 3`(p + 1) + 1 rows and columns. The expressions R′

and C ′ are both positive by Lemma 6.6, and so (R′, C ′) is plural, because q ≥ 2. Finally, since
f is polynomial-time computable (with constant `), so is r, and since f preserves the number of
crosswords, the number of q× q (R′, C ′)-crosswords equals the number of p× p (R,C ′′)-crosswords,
which equals the number of assignments satisfying ϕ.

41

	Introduction
	Connections to other work

	Preliminaries
	3SAT
	TQBF
	(R,C)-crosswords

	An NPNPNPNP-Completeness Proof for (R,C)-Crossword Solvability
	f() has at least d!s many solutions
	f() has at most d!s many solutions
	(E,E)-crosswords

	(R,C)-games
	Upper-bounding the complexity of RCG
	Hardness of RCG
	Constraining the regexes to be row- and column-independent
	Normal Play

	(R,C)-crosswords and Turing Machines
	Techniques for Restricting Regex Crossword Problems
	Making the row and column expressions equal
	A decidable crossword solution existence problem
	Regexes over the binary alphabet
	Making crosswords square

	Further Results
	Controlling the number of solutions
	String-based puzzles

	Open Problems
	Variants of two-player regex crossword games

	Proof of Lemma 5.6
	Proof of Lemma 7.1

