
On the Minimal Polynomial of a Matrix ?Thanh Minh Hoang and Thomas ThieraufAbt. Theoretishe InformatikUniversit�at Ulm89069 Ulm, Germanyfhoang,thieraufg�informatik.uni-ulm.deAbstrat. We investigate the omplexity of the degree and the onstantterm of the minimal polynomial of a matrix. We show that the degree ofthe minimal polynomial behaves as the matrix rank.We ompare the onstant term of the minimal polynomial with the on-stant term of the harateristi polynomial. The latter is known to beomputable in the logspae ounting lass GapL. We show that thisholds also for the minimal polynomial if and only if the logspae exatounting lass C=L is losed under omplement. The latter ondition isone of the main open problems in this area.As an appliation of our tehniques we show that the problem to deidewhether a matrix is diagonalizable is omplete for AC0(C=L), theAC0-losure of C=L.1 IntrodutionA rule of thumb says that Linear Algebra is in NC2. However, if we look morelosely, we see that this is a very rough statement. In partiular, we are not ableto show that the various problems in Linear Algebra are equivalent under, say,logspae many-one redutions.It seems to be more appropriate to express the omplexity of problems in Lin-ear Algebra in terms of logspae ounting lasses . The initial step in this diretionwas done by Damm [Dam91℄, Toda [Tod91℄, Vinay [Vin91℄, and Valiant [Val92℄.They showed that the determinant of an integer matrix haraterizes the om-plexity lass GapL (see [MV97℄ for more details on the history). Toda [Tod91℄showed more problems to be omplete for GapL, inluding matrix powering,and the inverse of a matrix. There are also graph theoreti problems related toounting the number s-t-paths in a graph.The veri�ation ofGapL funtions is aptured by the lassC=L. An exampleof a omplete problem is to deide whether an integer matrix A is singular, i.e.,whether det(A) = 0. More general, the deision problem, whether the rank of Ais less than some given number k, is omplete for C=L. The problem whether therank of A equals k an be expressed as the onjuntion of problems in C=L andin oC=L, a lass that we denote by C=L^ oC=L. The problem to determinethe rank of a matrix is aptured by the AC0-losure of C=L, whih we denote? This work was supported by the Deutshe Forshungsgemeinshaft



by AC0(C=L). Finally, the problem to deide whether two matries have thesame rank is omplete for AC0(C=L). The results on the rank were shown byAllender, Beals, and Ogihara [ABO99℄.The omplexity of the minimal polynomial has been studied be-fore [HT02℄(see also [HT00,HT01℄). In this paper, we show that there is a strongrelationship between the degree of the minimal polynomial of a matrix and thematrix rank problem. Namely, the problems to deide whether the degree of theminimal polynomial is less than k or equal k, for some given k, are ompletefor C=L and C=L^ oC=L, respetively. To deide whether the degrees of theminimal polynomials of two matries are equal is omplete for AC0(C=L).We also investigate the omplexity of the onstant term of the minimal poly-nomial. The onstant term of the harateristi polynomial is GapL-omplete.By analogy, we ask whether the onstant term of the minimal polynomial an beomputed in GapL, too. We show that this question is strongly onneted withanother open problem: the onstant term of the minimal polynomial an be om-puted in GapL if and only if C=L is losed under omplement . This onnetionis a onsequene of a hardness result: to deide whether the onstant terms ofthe minimal polynomials of two matries are equal is omplete for AC0(C=L).Whether C=L is losed under omplement is one of the big open ques-tions in this area. Reall that many related lasses have this property:NL [Imm88,Sze88℄, SL [NTS95℄, PL (trivially), and nonuniform UL [RA00℄.Thus our results on the onstant term of the minimal polynomial might o�ersome new points to attak this problem.A �nal observation is about the diagonalizability of matries. In [HT01℄ it isshown that this deision is hard for AC0(C=L). We show that this lass alsois an upper bound for this problem. It follows that diagonalizability is ompletefor AC0(C=L). We extend the result to simultaneous diagonalizability whereone has to deide whether all of k given matries are diagonalizable by the samediagonalizing matrix.2 PreliminariesWe assume familiarity with some basi notions of omplexity theory and lin-ear algebra. We refer the readers to the papers [ABO99,AO96℄ for more de-tails and properties of the onsidered omplexity lasses, and to the text-books [Gan77,HJ91,HJ85℄ for more bakground in linear algebra.Complexity Classes. For a nondeterministi Turing mahine M , we denote thenumber of aepting and rejeting omputation paths on input x by aM (x)and by rejM (x), respetively. The di�erene of these two quantities is gapM , i.e.,for all x : gapM (x) = aM (x)� rejM (x). The funtion lass GapL is de�ned asthe lass of all funtions gapM (x) suh that M is a nondeterministi logspaebounded Turing mahine. GapL has many losure properties: for example it islosed under addition, subtration, and multipliation (see [AO96℄). In [AAM99℄(Corollary 3.3) it is shown that GapL is losed under omposition in a very



strong sense: if eah entry of an n� n matrix A is GapL-omputable, then thedeterminant of A is still omputable in GapL.A set S is in C=L, if there exists a funtion f 2 GapL suh that for all xwe have x 2 S () f(x) = 0. Sine it is open whether C=L is losed underomplement, it makes sense to onsider the Boolean losure of C=L, i.e., thelass of sets that an be expressed as a Boolean ombination of sets in C=L.For our purposes, it suÆes to onsider the following two lasses: a) oC=L isthe lass of omplement sets L where L 2 C=L, b) C=L ^ oC=L [ABO99℄ isde�ned as the lass of intersetions of sets in C=L with sets in oC=L, i.e.,L 2 C=L ^ oC=L() 9L1 2 C=L; L2 2 oC=L : L = L1 \ L2:For sets S1 and S2, we say that S1 isAC0-reduible to S2, if there is a logspaeuniform iruit family of polynomial size and onstant depth that omputes S1with unbounded fan-in AND- and OR-gates, NOT-gates, and orale gates for S2.In partiular, we onsider the lassesAC0(C=L) andAC0(GapL): the sets thatareAC0-reduible to a set in C=L, respetively a funtion inGapL. The knownrelationships among these lasses are as follows:C=L � C=L ^ oC=L � AC0(C=L) � AC0(GapL) � TC1 � NC2:Furthermore, we say that S1 is (logspae many-one) reduible to S2, if thereis a funtion f 2 L (deterministi logspae) suh that for all x we havex 2 S1 () f(x) 2 S2. In an analogous way one an de�ne AC0- or NC1-many-one redutions. Unless otherwise stated, all redutions in this paper are logspaemany-one.Linear Algebra. Let A 2 F n�n be a matrix over the �eld F . The harateristipolynomial of A is the polynomial �A(x) = det(xI � A). A nonzero polyno-mial p(x) over F is alled an annihilating polynomial for A if p(A) = 0. TheCayley-Hamilton Theorem states that �A(x) is an annihilating polynomial for A.The harateristi polynomial is a moni polynomial : its highest oeÆient isone. The minimal polynomial of A, denoted by �A(x), is the unique moni an-nihilating polynomial for A with minimal degree. Note that if A is an integermatrix, then all oeÆients of �A(x) and of �A(x) are also integer. Let's denotethe degree of a polynomial p by deg(p). Then we have 1 � deg(�A(x)) = m � n.Two matries A;B 2 F n�n are alled similar if there is a nonsingular matrixP 2 F n�n suh that A = PBP�1. Furthermore, A is alled diagonalizable if A issimilar to a diagonal matrix. The matries A1; : : : ; Ak are alled simultaneouslydiagonalizable if there is a nonsingular matrix P suh that PA1P�1; : : : ; PAkP�1are diagonal.Problems. Unless otherwise stated the domain for the algebrai problems arethe integers. By Determinant we denote the problem to ompute the deter-minant of a given n � n matrix A. In PowerElement there is additionallygiven an integer m and have to ompute (Am)1;n, the element of Am at posi-tion (1; n). Both PowerElement and Determinant are omplete for GapL[Ber84,Dam91,Tod91,Val92,Vin91℄.



Various deision problems are based on GapL-funtions. The veri�ationof a GapL-funtion is aptured by the lass C=L. A GapL-omplete funtionyields a C=L-omplete veri�ation problem. For example, to verify whether thedeterminant is zero, i.e., testing singularity, is omplete for C=L. Similarly, toverify whether Am at position (1; n) is zero, is omplete for C=L. The latterproblem we denote by PowerElement=.With respet to the minimal polynomial,MinPolynomial is the problem toompute the i-th oeÆient di of �A(x) for given A and i. MinPolynomial isomputable in AC0(GapL) and is hard for GapL [HT01,HT02℄. With respetto the degree of the minimal polynomial, DegMinPol is the set of all triple(A; k; b), where b is the k-th bit of deg(�A(x)).There is a bunh of deision problems related to MinPolynomial andDegMinPol: Given two matries A and B, and k � 1,{ EqMinPolynomial is to deide whether �A(x) = �B(x),{ EqCTMinPol is to deide whether the minimal polynomials of A and Bhave the same onstant term,{ EqDegMinPol is to deide whether the minimal polynomials of A and Bhave the same degree,{ DegMinPol= is to deide whether deg(�A(x)) = k,{ DegMinPol� is to deide whether deg(�A(x)) � k.Finally, the set of all diagonalizable matries is denoted byDiagonalizable.The set of all simultaneously diagonalizable matries is denoted bySimDiagonalizable.3 The Minimal PolynomialIn this setion we investigate the omplexity of the degree and the onstant termof the minimal polynomial of a matrix. The upper bounds on the omplexityof these problems follow easily from the predeessor paper [HT01,HT02℄. Themain ontributions here are the lower bounds for these problems. In partiular,we want to point out that the degree of the minimal polynomial has essentiallythe same omplexity as the matrix rank.3.1 Upper BoundsIn [HT01℄ it is shown that the minimal polynomial of a matrixA an be omputedin AC0(GapL). The algorithm was based on the following observation. De�neai = ve(Ai), where ve(Ai) is the vetor of length n2 that is obtained byputting the olumns of Ai below eah other, for i = 0; 1; 2; : : : ; n. Then theminimal polynomial �A(x) with degree m is haraterized by the following twoproperties:(i) �A(A) = 0. Equivalently we an say that a0;a1; : : : ;am are linearly depen-dent, and



(ii) for every moni polynomial p(x) with degree m � 1, we have p(A) 6= 0.Equivalently we an say that a0;a1; : : : ;am�1 are linearly independent.Note that am; : : : ;an linearly depend on a0;a1; : : : ;am�1 in this ase. De�nethe n2 � j matries Cj and the symmetri j � j matries Dj asCj = (a0 a1 � � � aj�1); Dj = CTj Cj ; for j = 1; : : : ; n:Then Cm; : : : ; Cn and Dm; : : : ; Dn all have the same rank m, whih is preiselythe degree of �A(x). Hene we have deg(�A(x)) = rank(Dn).Let �Dn(x) = xn + n�1xn�1 + � � � + 1x + 0. Sine Dn is symmetri, wehave rank(Dn) = n� l, where l is the smallest index suh that l 6= 0. BeauseGapL is losed under omposition [AAM99℄, eah of the oeÆients n�1; : : : ; 0is omputable in GapL. Therefore, in C=L we an test whether one or severalof the i's are zero (note that C=L is losed under onjuntion). In partiular,we get a method to verify the degree of the minimal polynomial.Proposition 3.1. 1. DegMinPol� is in C=L.2. DegMinPol= is in C=L ^ oC=L,3. DegMinPol, EqDegMinPol are in AC0(C=L),Part 1 and 2 of the proposition follow diretly from the disussion above. Theproblems in part 3 an be solved with some extra AC0-iruitry.Next, we onsider the oeÆients of �A(x) = xm+dm�1xm�1+ � � �+d0. Thevetor (d0; d1; : : : ; dm�1)T is the unique solution of the system of linear equationsCmx = �am. Hene we get(d0; d1; : : : ; dm�1)T = �D�1m CTmam: (1)Notie that Dm nonsingular for m = deg(�A(x)), and eah element of D�1m anbe omputed in GapL [AAM99℄.Let B be another matrix and we want to know whether A and B have thesame minimal polynomial, or, whether their minimal polynomials have the sameonstant term. We an express the oeÆients of �B(x) analogously as for A inequation (1). It follows that we an ompare the oeÆients in AC0(C=L).Proposition 3.2. EqMinPolynomial and EqCTMinPol are inAC0(C=L).3.2 Lower BoundsAllender, Beals, and Ogihara [ABO99℄ showed that the deision problem FeasibleSystems of Linear Equations , FSLE for short, is omplete for AC0(C=L). Morepreisely, an input for FSLE are an m� n matrix A and a vetor b of length mover the integers. One has to deide whether the system of linear equationsAx = b has a rational solution. We use FSLE as referene problem to show thehardness results.



Theorem 3.3. EqDegMinPol, EqMinPolynomial, and EqCTMinPolare hard for AC0(C=L).Proof . Let A and b be an input for FSLE. De�ne the symmetri matrix B =� 0 AAT 0� and vetor  = (bT ;0)T of length m+ n. We prove that(A; b) 2 FSLE () (B; ) 2 FSLE (2)() C = � B 00 � � � 0 0� is similar to D = � B 0 � � � 0 0� (3)() D 2 Diagonalizable (4)() �C(x) = �D(x) (5)() deg(�C(x)) = deg(�D(x)) (6)() t(�C�(x)) = t(�D�(x)); (7)where t(�M (x)) denotes the onstant term of �M (x), and C� = C + �I andD� = D + �I for an appropriate positive integer � to be hosen later.Equivalenes (2), (3), and (4) were shown in [HT01℄. For ompleteness, weinlude a proof.Equivalene (2). Note that the system ATx = 0 is always feasible.Equivalene (3). Let x0 be a solution of the system Bx = . De�ne the nonsin-gular matrix T = �I x00 �1�. It is easy to hek that CT = TD, therefore C issimilar to D. Conversely, if the above system is not feasible, then C and D havedi�erent ranks and an therefore not be similar.Equivalene (4). Observe that matrix C is symmetri. Therefore, C is alwaysdiagonalizable, i.e., C is similar to a diagonal matrix, say C 0. Now, if C is similarto D, then D is similar to C 0 as well, beause the similarity relation is transitive.Hene D is diagonalizable as well. Conversely, if D is diagonalizable, then D hasonly elementary divisors of the form (x � i) where i is any of its eigenvalues.Sine C is diagonalizable, its elementary divisors are also linear. Note further-more that C and D have the same harateristi polynomial. Therefore, theymust have the same system of elementary divisors, i.e., they are similar.Equivalene (5). If C is similar to D, then it is learly that �C(x) = �D(x). Con-versely, if �C(x) = �D(x), then �D(x) ontains only linear irreduible fators,beause �C(x) has this property (sine C is symmetri matrix). Therefore D isdiagonalizable.Equivalene (6). Reall that deg(�C(x)) is exatly the number of all distinteigenvalues of C. Sine C and D have the same harateristi polynomial, theyhave the same eigenvalues, and therefore deg(�C(x)) � deg(�D(x)). These de-grees are equal i� every root of �D(x) has multipliity 1. The latter holds i� Dis diagonalizable.



Equivalene (7). Observe that equivalenes (2) to (6) still hold when we replaeC� and D� for C and D, respetively, for any �. For an appropriate hoieof � we show: if the onstant terms of �C�(x) and �D�(x) are equal, then thesepolynomials are equal.Fix any �. Let �1; : : : ; �k be the distint eigenvalues of C. Then the distinteigenvalues of C� are �1 + �; : : : ; �k + �. Sine C� is symmetri and sine C�and D� have the same eigenvalues, we an write�C�(x) = kYi=1(x� (�i + �)) and �D�(x) = kYi=1(x� (�i + �))ti ;where ti � 1 for i = 1; 2; : : : ; k. In order to prove that �C�(x) = �D�(x), wehave to show that all ti = 1, for an appropriate �.Note that the onstant terms of these polynomials are the produt of theeigenvalues (in the ase of D�, with multipliities ti eah). Hene it suÆes tohoose � suh that all eigenvalues of C� are greater than 1. This is done asfollows. By �(C) we denote the spetral radius of C, i.e. �(C) = max1�i�k j�ij.The maximum olumn sum matrix norm of C = (i;j) is de�ned asjjCjj = max1�j�2n+1 2n+1Xi=1 ji;j j:It is well known that �(C) � jjCjj. Therefore, if we hoose (in logspae)� = jjCjj+ 2, then we have �i + � > 1, for i = 1; 2; : : : ; k. �Corollary 3.4. EqDegMinPol, EqMinPolynomial, and EqCTMinPolare omplete for AC0(C=L).Reall that the onstant term of the harateristi polynomial an be om-puted in GapL. Now assume for a moment, that the onstant term of the min-imal polynomial is in GapL as well. It follows that EqCTMinPol is in C=L,beause this is asking whether the di�erene of two onstant terms (a GapL-funtion) is zero. By Corollary 3.4, it follows that AC0(C=L) = C=L. Thisargument is a proof of the following orollary:Corollary 3.5. If the onstant term of the minimal polynomial of a matrix isomputable in GapL, then C=L is losed under omplement.Theorem 3.6. 1. DegMinPol� is hard for C=L, and2. DegMinPol= is hard for C=L ^ oC=L.Proof . 1) To show the �rst laim, we redue PowerElement= toDegMinPol�. Let A be a n � n matrix and m � 1 be an input forPowerElement=. One has to deide whether (Am)1;n = 0. In [HT02℄ (seealso [HT01℄) it is shown how to onstrut a matrix B in logspae suh that�B(x) = x2m+2 � axm+1; where a = (Am)1;n:



Let C be the ompanion matrix of the polynomial x2m+2, that is, a (2m+ 2)�(2m + 2) matrix, where all the elements on the �rst sub-diagonal are 1 and allthe other elements are 0. Then we have �C(x) = �C(x) = x2m+2.De�ne D = �B 00 C�. It is known that the minimal polynomial of D is theleast ommon multiple (for short: lm) of the polynomials �B(x) and �C(x).Therefore we have �D(x) = lmfxm+1(xm+1 � a); x2m+2g= (x2m+2; if a = 0;x2m+2(xm+1 � a); if a 6= 0:It follows that (Am)1;n = 0() deg(�D(x)) = 2m+ 2.2) To show the seond laim, we redue an arbitrary language L 2 C=L ^oC=L to DegMinPol=. Namely, we ompute (in logspae) matries A1 andA2 of order n1 and n2, respetively, and integers 1 � m; l � n suh that for all ww 2 L() (Am1 )1;n1 = 0 and (Al2)1;n2 6= 0:We show in Lemma 3.7 below that we may assume w.l.o.g. that m > l. Leta1 = (Am1 )1;n1 and a2 = (Al2)1;n2 . As explained in the �rst part of the proof, wean ompute matries B1 and B2 suh that�B1(x) = x2m+2 � a1xm+1;�B2(x) = x2l+2 � a2xl+1:By C we denote again the ompanion matrix of x2m+2. For the diagonal blokmatrix D = �B1 B2 C � ; we get (for m > l)�D(x) = lmf�B1(x); �B2(x); �C(x)g= lmfxm+1(xm+1 � a1); xl+1(xl+1 � a2); x2m+2g=8>>><>>>:2m+ l + 3; for a1 = 0; a2 6= 0;3m+ 3; for a1 6= 0; a2 = 0;2m+ 2; for a1 = 0; a2 = 0;3m+ 3 + r; for a1 6= 0; a2 6= 0; where r > 0:In summary, we havew 2 L() a1 = 0 and a2 6= 0() deg(�D(x)) = 2m+ l+ 3: �The following lemma ompletes the proof of Theorem 3.6Lemma 3.7. Let A be an n � n matrix and m � 1. For any k � 1 there is amatrix eA of order p = n(mk + 1) suh that (Am)1;n = ( eAkm)1;p.Proof . De�ne the following (mk + 1)� (mk + 1) blok matrix eA
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1CCCCCCCCCCCCCCCCCCCA
Eah blok of eA is a matrix oforder n. All bloks are zero exeptfor the ones on the �rst blok super-diagonal. Here we start with A followedby (k� 1)-times I . This pattern oursm-times in total.An elementary alulation showsthat eAmk has Am as its upper rightblok at position (1;mk+1). All otherbloks are 0. This proves the lemma.�4 DiagonalizabilityIn [HT00℄ it is shown that the deision whether two matries are similar isomplete for AC0(C=L). It is well known that Diagonalizable is hard forAC0(C=L) (see Theorem 3.3) and is ontained in AC0(GapL) [HT01℄. In thissetion we show that Diagonalizable and SimDiagonalizable are ompletefor AC0(C=L).Theorem 4.1. Diagonalizable is omplete for AC0(C=L).Proof . It remains to prove that Diagonalizable is in AC0(C=L). Givenmatrix A. In Setion 3.1 we shown how to onstrut a matrix Cn suh thatdeg(�A(x)) = rank(Cn).Matrix A is diagonalizable i� its minimal polynomial ontains only linearirreduible fators. This is the ase i� deg(�A(x)) equals the number of distinteigenvalues of A. The latter number an be determined as the rank of the Hankelmatrix HA assoiated with A (see Chapter XV. in [Gan77℄). Therefore, we haveA is diagonalizable () deg(�A(x)) = # of distint eigenvalues of A() rank(Cn) = rank(HA): (8)Sine eah element of Cn and HA an be omputed in GapL, equation (8) anbe heked in AC0(C=L). �We onsider the problem SimDiagonalizable. Given matries A1; : : : ; Ak oforder n and k � 1. We have to test whether there is a nonsingular matrix S suhthat SAiS�1 are diagonal, for all 1 � i � k. If all matries Ai are diagonalizablethen they are simultaneously diagonalizable i� they are pairwise ommutable,i.e. Ai Aj = Aj Ai for all i; j. The latter test an be done in NC1. Therefore themain part is to test whether Ai 2 Diagonalizable, for all i. By Theorem 4.1we get the following:Corollary 4.2. SimDiagonalizable is omplete for AC0(C=L).
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