
The Complexity of the Minimal Polynomial ?Thanh Minh Hoang and Thomas ThieraufAbt. Theoretishe InformatikUniversit�at Ulm89069 Ulm, Germanyfhoang,thieraufg�informatik.uni-ulm.deAbstrat. We investigate the omputational omplexity of the minimalpolynomial of an integer matrix.We show that the omputation of the minimal polynomial is inAC0(GapL), the AC0-losure of the logspae ounting lass GapL,whih is ontained in NC2. Our main result is that the problem is hardfor GapL (under AC0 many-one redutions). The result extends to theveri�ation of all invariant fators of an integer matrix.Furthermore, we onsider the omplexity to hek whether an integermatrix is diagonalizable. We show that this problem lies in AC0(GapL)and is hard for AC0(C=L) (under AC0 many-one redutions).1 IntrodutionThe motivation for our work is twofold: 1) we want to understand the ompu-tational omplexity of some lassial problems in linear algebra, 2) by loatingsuh problems in small spae omplexity lasses we want to larify the inlusionrelationship of suh lasses.The minimal polynomial of a matrix plays an important role in the theory ofmatries. Algorithms to ompute the minimal polynomial of a matrix have beenstudied for a long time. The best known deterministi algorithm to ompute theminimal polynomial of an n�nmatrix makes O(n3) �eld operations [Sto98℄. TheSmith normal form of a polynomial matrix an be omputed by a randomizedNC2-iruit, i.e., in RNC2. Therefore the rational anonial form of a matrixand the minimal polynomial of a matrix an be omputed in RNC2 as well(see [KS87,vzGG99℄ for details). In the ase of integer matries there are evenNC2-algorithms [Vil97℄.We take a di�erent approah to ompute the minimal polynomial of an integermatrix: we show that the problem an be redued to matrix powering and solvingsystems of linear equations. Therefore it is in the lass AC0(GapL), a sublassof NC2. Our main result is with respet to the hardness of the problem: weshow that the omputation of the determinant of a matrix an be redued tothe omputation of the minimal polynomial of a matrix. Therefore the problemis hard for GapL.? This work was supported by the Deutshe Forshungsgemeinshaft



The minimal polynomial is the �rst polynomial of the system of all invariantfators of a matrix. This system ompletely determines the struture of thematrix. Its omputation is known to be in NC2 [Vil97℄ for integer matries. Weextend our results and tehniques to the veri�ation of all the invariant fatorsof a given integer matrix: it is in AC0(C=L) and hard for C=L.Using the results about the minimal polynomial, we an lassify some morelassial problems in linear algebra: a matrix is diagonalizable if it is similarto a diagonal matrix. Testing similarity of two matries is known to be inAC0(C=L) [HT00℄. We show that the problem to deide whether a given integermatrix is diagonalizable is in AC0(GapL) and hard for AC0(C=L).To obtain the latter result, we have to solve a problem that is interesting inits own: deide, whether all eigenvalues of a given integer matrix are pairwisedi�erent. This an be done in AC0(C=L).2 PreliminariesFor a nondeterministi logspae bounded Turing mahine M , we denotethe number of aepting paths on input x by aM (x), and by rejM (x)the number of rejeting paths. The di�erene of these two numbers isgapM (x) = aM (x)� rejM (x).For the ounting lasses, we have #L, the lass of funtions aM (x) forsome nondeterministi logspae bounded Turing mahine M , and GapL basedanalogously on funtions gapM . Based on ounting, we onsider the languagelass C=L: a set A is in C=L, if there exists a f 2 GapL suh that for all x:x 2 A() f(x) = 0:For sets A and B, A is AC0-reduible to B, if there is a logspae uniformiruit family of polynomial size and onstant depth that omputes A with un-bounded fan-in and-, or-gates and orale gates for B. In partiular, we onsiderthe lasses AC0(C=L) and AC0(GapL) of sets that are AC0-reduible to a setin C=L, respetively a funtion in GapL.A is AC0 many-one reduible to B, in symbols: A �AC0m B, if there is afuntion f 2 AC0 suh that for all x we have x 2 A() f(x) 2 B. All redutionsin this paper are AC0 many-one redutions.Let A 2 Fn�n be a matrix over the �eld F. A nonzero polynomial p(x)over F is alled an annihilating polynomial of A if p(A) = 0. The Cayley-Hamilton Theorem states that the harateristi polynomial �A(x) of A is anannihilating polynomial. The harateristi polynomial is a moni polynomial :its highest oeÆient is one. The minimal polynomial of A, denoted �A(x), isthe unique moni annihilating polynomial of A with minimal degree.Let polynomial dk(x) be the greatest ommon divisor of all sub-determinantsof (xI �A) of order k. For example dn(x) = �A(x). We see that dk divides dk+1for eah index 0 � k � n. De�ne d0(x) � 1. The invariant fators of (xI � A)(or A, for short) are de�ned as the following (moni) polynomials:i1(x) = dn(x)dn�1(x) ; i2(x) = dn�1(x)dn�2(x) ; : : : ; in(x) = d1(x)d0(x) :



The harateristi polynomial of A is the produt of all the invariant fators:�A(x) = i1(x) � � � in(x). The n � n polynomial matrix that has the invariantfators of A as its diagonal entries (starting with in(x)) and zero elsewhere isthe Smith normal form of xI �A, denoted by diagfin(x); : : : ; i1(x)g.We deompose the invariant fators into irreduible divisors over the givennumber �eld F: i1(x) = [e1(x)℄1 [e2(x)℄2 � � � [es(x)℄s ;i2(x) = [e1(x)℄d1 [e2(x)℄d2 � � � [es(x)℄ds ;... ...in(x) = [e1(x)℄l1 [e2(x)℄l2 � � � [es(x)℄ls ;(0 � lk � : : : � dk � k; k = 1; 2; : : : ; s):The irreduible divisors e1(x); e2(x); : : : ; es(x) are distint (with highest oef-�ient 1) and our in i1(x); i2(x); : : : ; in(x). All powers [e1(x)℄1 ; : : : ; [es(x)℄ls ,whih are di�erent from 1, are alled the elementary divisors of A in FNote that the oeÆients of the harateristi polynomial and the invariantfators of an integer matrix are all integers. Furthermore, the set of eigenvaluesof A is the same as the set of all roots of �A(x) whih, in turn, is the set of allroots of �A(x).Next, we de�ne some natural problems in linear algebra we are looking at.If nothing else is said, our domain for the algebrai problems are the integers.1. PowerElementInput: an n� n-matrix A and i, j, and m, (1 � i; j;m � n).Output: (Am)i;j , the (i; j)-th element of Am.2. DeterminantInput: an n� n-matrix A.Output: det(A), the determinant of A.3. CharPolynomialInput: an n� n-matrix A.Output: (0; 1; : : : ; n�1), the oeÆients of the harateristi polynomial�A(x) = xn + n�1xn�1 + � � �+ 0 of the matrix A.4. MinPolynomialInput: an n� n-matrix A.Output: (0; 1; : : : ; m�1), the oeÆients of the minimal polynomial�A(x) = xm + m�1xm�1 + � � �+ 1x+ 0 of the matrix A.5. InvSystemInput: an n� n-matrix A.Output: the system of invariant fators of the matrix A.The �rst three problems are omplete for GapL [ABO99,HT00,ST98℄.MinPolynomial and InvSystem are in RNC2 [KS87℄, and in NC2 forinteger matries [Vil97℄.For eah of them, we de�ne the orresponding veri�ation problem asthe graph of the orresponding funtion: for a �xed funtion f(x), de�ne



v-f as the set all pairs (x; y) suh that f(x) = y. This yields the veri�-ation problems v-PowerElement, v-Determinant, v-CharPolynomial,v-MinPolynomial and v-InvSystem. The �rst three problems are known tobe omplete for C=L [HT00℄. We note that a speial ase of v-Determinant isSingularity where one has to deide whether the determinant of a matrix iszero. Singularity is omplete for C=L as well.Related problems are omputing the rank of a matrix, Rank, or deidingwhether a system of linear equations is feasible, FSLE for short. FSLE is many-one omplete for AC0(C=L) [ABO99℄.Similarity is another many-one omplete problem for AC0(C=L) [HT00℄.Two square matries A and B are similar , if there exists a nonsingular matrix Psuh that A = P�1BP . It is well known that A and B are similar i� they havethe same invariant fators or, what is the same, the same elementary divisors (seefor example [Gan77℄). Another haraterization of similarity is based on tensorproduts. This was used by Byrnes and Gauger [BG77℄ to get the AC0(C=L)upper bound on Similarity.3 The Minimal PolynomialIn this setion we show that MinPolynomial is in AC0(GapL) and is hardfor GapL.3.1 Upper BoundWe mentioned in the previous setion that the minimal polynomial of an integermatrix an be omputed in NC2 [Vil97℄. We take a di�erent approah and showthat MinPolynomial is in AC0(GapL), a sublass of NC2.Let m(x) = xm + m�1xm�1 + � � � + 0 be a moni polynomial. Then m(x)is the minimal polynomial of A i� 1) m is an annihilating polynomial of A, i.e.,m(A) = Am+m�1Am�1+ � � �+0I = 0, and 2) for every moni polynomial p(x)of degree smaller than m(x), we have p(A) 6= 0.De�ne vetors ai = ve(Ai) for i = 0; 1; 2; : : : ; n, where ve(Ai) is the vetor oflength n2 obtained by putting the olumns of Ai below eah other. The equationm(A) = 0 an be rewritten asam + m�1am�1 + : : :+ 0a0 = 0: (1)In other words, the vetors am; : : : ;a0 are linearly dependent. Consequently, forsome polynomial p with degree k < m, the inequation p(A) 6= 0 means that thevetors ak; : : : ;a0 are linearly independent.In summary, the oeÆients of �A(x) are the solution (m�1; : : : ; 0) of thesystem (1), for the smallest m where this system has a solution. Hene we havethe following algorithm to ompute �A(x):MinPolynomial(A)1 ompute vetors ai = ve(Ai) for i = 0; : : : ; n



2 determine m suh that a0;a1; : : : ;am�1 are linearly independent anda0;a1; : : : ;am are linearly dependent3 solve the linear system am + m�1am�1 + � � �+ 0a0 = 04 return (1; m�1; : : : ; 0), the oeÆients of �A(x).Step 1 and 3 in the above algorithm an be omputed inGapL (see [ABO99℄).In Step 2, heking linear independene of given vetors is in oC=L and lineardependene is in C=L [ABO99℄. Hene we end up in the AC0-losure of GapL,namely AC0(GapL). Reall that AC0(GapL) �NC2. We onlude:Theorem 3.1. MinPolynomial is in AC0(GapL).3.2 Lower BoundOur main result is to show the hardness of the omputation of the minimalpolynomial of a matrix. Namely, we show that it is hard for GapL.A problem known to be omplete for GapL is PowerElement where onehas to ompute the entry (i; j) of Am, for a n� n integer matrix A. W.l.o.g. wean fous on entry (1; n) of A, i.e. (Am)1;n.In order to redue PowerElement to MinPolynomial, we onstrut amatrix C suh that the value (Am)1;n ours as one of the oeÆients of theminimal polynomial of C.The redution build on the tehniques from Toda [Tod91℄, Valiant [Val92℄,and Hoang and Thierauf [HT00℄ to redue matrix powering to the determinant,and the latter to the harateristi polynomial. We give the proof of this resulthere beause we need the matries onstruted there. We follow the presentationfrom [ABO99℄ and [HT00℄.Theorem 3.2. [HT00℄ PowerElement �AC0m CharPolynomial.Proof . Let A be an n�n matrix and 1 � m � n. W.l.o.g. we �x i = 1 and j = nin the de�nition of PowerElement. In AC0 we onstrut a matrix C suh thatall the oeÆients of its harateristi polynomial an be easily omputed fromthe value (Am)1;n.Interpret A as representing a direted bipartite graph on 2n nodes and eedges. That is, the nodes are arranged in two olumns of n nodes eah. In botholumns, nodes are numbered from 1 to n. If entry ak;l of A is not zero, thenthere is an edge labeled ak;l from node k in the �rst olumn to node l in theseond olumn. The number of non-zero entries in A is exatly e. Now, take mopies of this graph, put them in a sequene and identify eah seond olumn ofnodes with the �rst olumn of the next graph in the sequene. Call the resultinggraph G0.Graph G0 has m + 1 olumns of nodes. The weight of a path in G0 is theprodut of all labels on the edges of the path. The ruial observation now isthat the entry at position (1; n) in Am is the sum of the weights of all pathsin G0 from node 1 in the �rst olumn to node n in the last olumn. Call thesetwo nodes s and t, respetively.



Graph G0 is further modi�ed: for eah edge (k; l) with label ak;l, introdue anew node u and replae the edge by two edges, (k; u) with label 1 and (u; l) withlabel ak;l. Now all paths from s to t have even length, but still the same weight.Add an edge labeled 1 from t to s. Call the resulting graph G. Let C be theadjaeny matrix of G. Graph G has N = m(n+ e) + n nodes and therefore Cis a N �N matrix.From ombinatorial matrix theory we know that the oeÆient i in �C(x)equals the sum of the disjoint weighted yles that over N � i nodes in G, withappropriate sign (see [BR91℄ or [CDS80℄ for more details). In the graph G, alledges go from a layer to the next layer. The only exeption is the edge (t; s).So any yle in G must use preisely this edge (t; s), and then trae out a pathfrom s to t. Therefore eah yle in G have exatly the length 2m+ 1, and theweighted sum of all these yles is preisely (Am)1;n with the sign �1. HeneN�(2m+1) = �(Am)1;n and all other oeÆients must be zero. That is,�C(x) = xN � axN�(2m+1);is the harateristi polynomial of C, where a = (Am)1;n. �Theorem 3.3. PowerElement �AC0m MinPolynomial.Proof . We onsider the N�N matrix C from the previous proof in more detail.Exept for the edge from t to s, graph G is ayli. Thus we an put thenodes of G in suh an order, that adjaeny matrix C is upper triangular forthe �rst N � 1 rows with zeros along the main diagonal. The last row of C hasa one in the �rst position (representing edge (t; s)), and the rest is zero.We also onsider the upper triangle in C. Eah olumn of graph G0 was splitin our onstrution into two olumns and we got a new node on every edge. The�rst part we desribe by the n� e matrix F :F = 0BB� 1 � � � 1 0 � � � 0 � � � 0 � � � 00 � � � 0 1 � � � 1 � � � 0 � � � 0... ... . . . ...0 � � � 0 0 � � � 0 � � � 1 � � � 11CCAThe number of ones in the k-th row of F is the number of edges leaving node kin the �rst olumn of G0.From eah of the newly introdued nodes there is one edge going out. Henethis seond part we an desribe by the e� n-matrix S, whih has preisely onenon-zero entry in eah row. The value of the non-zero entry is the weight of theorresponding edge in G0. With the onstrution of graph G it is not hard to seethat FS = A. Now we an write C as a blok matrix as follows:C = 0BBBBBBB� F S . . . F SL
1CCCCCCCA



There is m-times matrix F , alternating with m-times matrix S. L is the n � nmatrix with a one at position (n; 1) and zero elsewhere. Hene C is a (2m+1)�(2m+ 1) blok matrix. The empty plaes in C are all zero matrix.Let a denote the element (Am)1;n. We laim that the minimal polynomialof C is �C(x) = x4m+2 � ax2m+1:First, we observe that dN�1(x) = xl for some l, beause the minor of orderN �1 of the matrix xI�C at the position (1; 1) is xN�1. Therefore the minimalpolynomial must have the form�C(x) = �C(x)=dN�1(x) = xN�l � axN�(2m+1)�l:De�ne polynomials pk(x) = x(2m+1)+k � axk for 0 � k � N � (2m + 1).To prove our laim, we have to show that p2m+1(C) = 0 and pk(C) 6= 0 fork < 2m+ 1. To do so, we expliitly onstrut all the powers of C. The generalform of Ci for i � 2m is as follows:i i+ 1# #Ci = 0BBBBBBBB� � . . . �+ .. . +
1CCCCCCCCA  1... 2m+ 1� i 2m+ 2� i... 2m+ 1 :The entry (Ci)j;i+j for 1 � j � 2m� i+ 1 and i � 2m lies on the sub-diagonal(� � � � �) and has the following form:(Ci)j;i+j = (S(j�1) mod 2(FS) i�12 F j mod 2; for odd i;(FS)j mod 2S(j�1) mod 2(FS) i�22 F (j�1) mod 2; otherwise.The entry (Ci)2m+1�i+k;k for 1 � k � i and i � 2m lies on the sub-diagonal(+ � � �+) and has the following form:(Ci)2m+1�i+k;k = S(i+k) mod 2(FS)b i�k2 L(FS)b k�12 F (j�1) mod 2:From this we get in partiularC2m+1 = diagfAmL; SAm�1LF; Am�1LA; : : : ; LAmg;C4m+2 = diagfAmLAmL; SAm�1LAmLF; Am�1LAmLA; : : : ; LAmLAmgSine LAmL = aL, we have p2m+1(C) = C4m+2 � aC2m+1 = 0. It remains toprove that pk(C) = C2m+1+k � aCk 6= 0 for all k � 2m. Note that it suÆes toprove this for k = 2m, beause pk(C) = 0 for some k implies pk+1(C) = 0.For tehnial reasons we assume that the input matrix A is a nonsingularupper triangular matrix. The following lemma says that we an w.l.o.g. makethis assumption.



Lemma 3.4. Suppose A is an n� n matrix. Then there is a nonsingular uppertriangular p� p matrix B suh that (Bm)1;p = (Am)1;n.Proof . We de�ne B as an (m + 1) � (m + 1) blok matrix in whih all theelements of the prinipal diagonal are n � n identity matries, all the elementsof the �rst super-diagonal are matries A and all the the other elements arezero-matries. For p = (m+ 1)n we have (Bm)1;p = (Am)1;n as laimed. �We ompute C4m+1 as the produt C2m+1C2m. Now we have p2m(C) = 0 i�C4m+1 = aC2m i� AmLAm = aAm. However, the latter equation annot hold:by Lemma 3.4 we an assume that A is nonsingular. Therefore rank(AmLAm) =rank(L) = 1, whereas rank(aAm) 6= 1. We onlude that p2m(C) 6= 0.In summary, we have �C(x) = x4m+2�ax2m+1, where a = (Am)1;n. Sine theonstrution of graph G an be done in AC0, we have PowerElement �AC0mMinPolynomial as laimed. �3.3 The Invariant FatorsThe system of all invariant fators of a matrix an be omputed in NC2 [Vil97℄.Sine the minimal polynomial is one of the invariant fators, it follows fromTheorem 3.3 that these are hard for GapL as well.In the veri�ation versions of the above problems we have given A and oeÆ-ients of one, respetively several polynomials and have to deide whether theseoeÆients represent in fat the minimal polynomial, respetively the invariantfators of A.Note that in the ase of the invariant fators we get potentially more infor-mation with the input than in the ase of the minimal polynomial. Therefore, itould be that the invariant fators are easier to verify than the minimal polyno-mial. Interestingly we loate in fat the veri�ation of the invariant fators in aseemingly smaller omplexity lass.To verify the minimal polynomial we an simplify the above algorithm forMinPolynomial as follows:v-MinPolynomial(A; m�1; : : : ; 0)1 ompute vetors ai = ve(Ai) for i = 0; : : : ;m2 if am + m�1am�1 + � � �+ 0a0 = 0 anda0;a1; : : : ;am�1 are linearly independent3 then aept else rejet.Hene we get the same upper bound as for MinPolynomial, namelyAC0(GapL). Sine MinPolynomial is hard for GapL, v-MinPolynomialmust be hard for C=L. We summarize:Corollary 3.5. v-MinPolynomial is in AC0(GapL) and hard for C=L.Next we show that the veri�ation of the invariant fators is hard for C=L aswell. However, as an upper bound we get the seemingly smaller lassAC0(C=L).Theorem 3.6. v-InvSystem is in AC0(C=L) and hard for C=L.



Proof . Inlusion. Let S = fi1(x); : : : ; in(x)g be the system of n given monipolynomials and let A be an n�n matrix. We onstrut the ompanion matriesthat orrespond to the non-onstant polynomials in S. Let B denote the diagonalblok matrix of all these ompanion matries. Reall that S is the system ofinvariant fators of A i� A is similar to B. Testing similarity an be done inAC0(C=L) [HT00℄, therefore v-InvSystem is in AC0(C=L) too.Hardness. We ontinue with the setting from the proof of Theorem 3.3, inpartiular with matrix C. Our goal is to determine the system of all invariantfators of C. We have already shown that i1(x) = �C(x) = x4m+2 � ax2m+1,where (Am)1;n = a. Next, we ompute the invariant fators i2(x); : : : ; iN(x).It follows from the proof of Theorem 3.3 that dN�1(x) = xN�(4m+2). SinedN�1(x) = i2(x) � � � iN(x), eah of the invariant fators must have the form xlfor some number l. Note that all non-onstant invariant fators of the form xlare already elementary divisors.De�ne gl to be the number of ourrenes of the elementary divisor xl.Clearly, if we have all numbers gl, we an dedue the invariant fators. Num-bers gl an be determined from the ranks of matries Cj (see [Gan77℄). Morepreisely, let rj denote the rank of Cj . The following formula relates the ranksto numbers gj : gj = rj�1 + rj+1 � 2rj ; (2)for j = 1; : : : ; t, where r0 = N and t is the smallest index suh that rt�1 > rt =rt+1. We an atually ompute all the ranks rj from the expressions we alreadyhave for matries Cj .Let us onsider the bloks of Cj . By Lemma 3.4 we may assume that A isnonsingular, that is rank(F ) = rank(S) = rank(A) = n. Therefore rank(Ak) =rank(AkF ) = rank(AkS) = n for any k. Hene bloks in Cj of the form (FS)k,(FS)kF , (SF )k, or (SF )kS all have rank n (reall that FS = A). In all otherbloks ours matrix L. Reall that matrix L is all-zero exept for the entry at thelower left orner, whih is 1. Therefore, for any matrixM , we have rank(ML) = 1i� the n-th olumn of M is a non-zero olumn. Analogously, rank(LM) = 1 i�the �rst row of M is a non-zero row. We onlude that all bloks that ontainmatrix L have rank 1.Sine the non-zero bloks of Cj are in pairwise di�erent lines and olumns,we an simply add up their ranks to obtain the rank of Cj . That way we getrj = � (2m+ 1� j)n+ j; for j = 1; : : : ; 2m;2m+ 1; for 2m+ 1 � j:The ranks don't hange any more from j = 2m+1 on. Hene t = 2m+1. Pluggedinto the formula (2) we getgj = 8<:N � n(2m+ 1); for j = 1;0; for j = 2; : : : ; 2m;n� 1; for j = 2m� 1: (3)



From equations (3) we an dedue the invariant fators:ik(x) = 8<:x2m+1; for k = 2; : : : ; n;x; for k = n+ 1; : : : ; N � 2nm;1; for k = N � 2nm+ 1; : : : ; N: (4)In summary, (Am)1;n = a i� i1(x) = x4m+2 + ax2m+1, and i2(x); : : : ; iN (x) areas in (4). This ompletes the proof of Theorem 3.6. �With the proof for the hardness result of v-InvSystem we remark thatomputing the system of invariant fators is hard for GapL.4 DiagonalizationIf a matrix A is similar to a diagonal matrix then we say for short that A isdiagonalizable. That is, the Jordan normal form of A is a diagonal matrix, alledJ , where all the entries on the diagonal of J are the eigenvalues of A. We askfor the omplexity to hek whether a given matrix is diagonalizable.An obvious way is to ompute the Jordan normal form of A and then deidewhether it is in diagonal form. However, in general, the eigenvalues of an integermatrix are in the omplex �eld. That is, we run into the problem of dealing withreal-arithmeti.We use another haraterization: matrix A is diagonalizable i� the minimalpolynomial of A an be fatored into pairwise di�erent linear fators.Theorem 4.1. Diagonalizable is in AC0(GapL) and hard for AC0(C=L).Proof . To deide whether a matrix A is diagonalizable we use the followingalgorithm:Diagonalizable(A)1 ompute the minimal polynomial m(x) of A2 onstrut from m(x) the ompanion matrix B3 if B has pairwise di�erent eigenvalues4 then aept else rejet.We have already seen that step 1 is in AC0(GapL). We argue below (seeCorollary 4.3) that the ondition in Step 3 an be deided in AC0(C=L). There-fore Diagonalizable 2 AC0(GapL).For the hardness result provide a redution from FSLE, the set of feasiblelinear equations . That is FSLE is the set of pairs (A; b) suh that the linearsystem Ax = b has a solution x 2 Qn, where A is m� n integer matrix and b ainteger vetor of length m. FSLE is omplete for AC0(C=L) [ABO99℄.De�ne the symmetri matrix B = � 0 AAT 0 � and vetor  = (bT ;0)T oflength m+ n. The redution goes as follows:(A; b) 2 FSLE () (B; ) 2 FSLE (5)



() C = �B 00 � � �0� is similar to D = �B 0 � � �0� (6)() D 2 Diagonalizable: (7)Equivalene (5) holds, sine the system AT y = 0 is always feasible.To show equivalene (6), let x0 be a solution of the system Bx = . De�nethe nonsingular matrix T = � I x00 �1�. It is easy to hek that CT = TD,therefore C is similar to D. Conversely, if the above system is not feasible, thenC and D have di�erent ranks and an therefore not be similar.To show equivalene (7), observe that matrix C is symmetri. Therefore Cis always diagonalizable, i.e., similar to a diagonal matrix, say C 0. Now, if C issimilar to D, then D is similar to C 0 as well, beause the similarity relation istransitive. Hene D is diagonalizable as well.Conversely, if D is diagonalizable then all of its elementary divisors are linearof the form (���i) where �i is any of its eigenvalues. Sine C is diagonalizable,its elementary divisors are linear too. Note furthermore that C and D have thesame harateristi polynomial. Therefore they must have the same system ofelementary divisors. This implies that they are similar. �To omplete the proof of Theorem 4.1, we show how to test whether alleigenvalues of a given matrix are pairwise di�erent.Lemma 4.2. All eigenvalues of the matrix A are pairwise di�erent i� the matrixB = A
 I � I 
A has 0 as an eigenvalue of multipliity n (here, 
 denotes thetensor produt (see [Gra81℄)).Proof . Just note that if �1; : : : ; �n are the eigenvalues of the n � n matrix A,then (�i � �j), for all 1 � i; j � n, are the eigenvalues of matrix B. �Corollary 4.3. Whether all eigenvalues of a matrix A are pairwise di�erentan be deided in AC0(C=L).Proof . Let B = A 
 I � I 
 A. The matrix B has 0 as an eigenvalue ofmultipliity n i� �B(x) = xn2 + n2�1xn2�1 + � � � + nxn suh that n 6= 0.Reall that the oeÆients of the harateristi polynomial an be omputed inGapL. Therefore the test whether 0 = 1 = � � � = n�1 = 0 and n 6= 0 is inAC0(C=L). �Open ProblemsThe oeÆients of the harateristi polynomial of a matrix an be omputedin GapL. We do not know whether the minimal polynomial of a matrix an beomputed in GapL as well. In other words, we want to lose the gap betweenthe upper bound (Theorem 3.1) and the lower bound (Theorem 3.3) we have forthe minimal polynomial.
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