
ON CLOSURE PROPERTIES OF GapPThomas Thierauf, Seinosuke Todaand Osamu WatanabeAbstract. We study the closure properties of the function classes GapPand GapP+. We characterize the property of GapP+ being closed underdecrement and of GapP being closed under maximum, minimum, me-dian, or division by seemingly implausible collapses among complexityclasses; thereby giving evidence that these function classes don't havethese closure properties.We show a similar result concerning operations we call bit cancellationand bit insertion: Given a function f 2 GapP and a polynomial-timecomputable function �. Then we ask whether the function f�(x) thatis obtained from f(x) by canceling the �(x) th bit in the binary repre-sentation of f(x), or whether the function f+(x) that is obtained fromf(x) by inserting a bit at position �(x) in the binary representation off(x), is also in GapP. We give necessary conditions and a su�cient con-ditions for GapP being closed under bit cancellation and bit insertion,respectively.Key words. Counting classes, Closure Properties, Division, Bit Can-cellation, Bit Insertion.Subject classi�cations. 68Q151. IntroductionIn a fundamental paper, Valiant (1979) introduced the class #P of functionsthat count the number of solutions of sets in NP. Besides the algorithmicalinterest of determining, for example, the number of Hamiltonean cycles ina graph, the structural properties of #P have become an important subjectin computational complexity theory. For example, there exists a notion of



2 Thierauf, Toda & Watanabereducibility between #P functions and the above example is known to be #Pcomplete. A hierarchy of complexity classes, the Counting Hierarchy (Wagner1986b), is based on #P functions and strong connections with the PolynomialHierarchy (Stockmeyer 1977) were shown by Toda (1991).#P has a lot of closure properties; for example, the sum or product of two#P functions is again a #P function (see, e.g., Fenner et al. 1991 for moreclosure properties). When asking for subtraction, we have to take care of thefact that counting functions are non-negative. For any n; d > 0, let us de�nethe decrement of n by d as n	 d = maxf0; n� dg. Although this is a quitesimple operation, surprisingly, it is not known whether #P is closed underdecrement. The same situation we have for (integer-) division.If one does not succeed in proving some property for some class, after awhile, one might try to prove the contrary, namely that the class does nothave this property. However, this can turn out to be a hard problem aswell! Indeed, Ogiwara and Hemachandra (1993) characterized the propertyof #P being closed under decrement or division by a collapse of the Coun-ting Hierarchy (CH = UP), thereby connecting an important open problemin computational complexity theory with some arithmetical problems con-cerning counting function classes. (See also Gupta 1991 for related results.)Results of this type can be read in two directions. On the one hand, sincethe relationship of complexity classes, like in this case, is an open questionfor a long time now, this explaines pretty much why it is hard to solve theabove questions concerning the closure properties of #P. Furthermore, sincemost people conjecture that the Counting Hierarchy does not collapse to UP,this gives some evidence that #P is not closed under decrement or division.On the other hand, transforming some open problem into another one in anontrivial way usually gives some better understanding of those problems,and, in the best case, might even give some hint on how to solve them.Much less is known, when we weaken the question and ask for the closure of#P under decrement for a �xed function d, say d = 1; that is, \Does f 2 #Pimply that f 	 1 2 #P?" Tor�an (see Ogiwara and Hemachandra 1991) founda partial answer to this; he showed that if #P is closed under decrement byone, then NP is contained in a very small counting class (SPP), which is ageneralization of the class UP (unambiguous polynomial time). But it is notknown whether this collapse characterizes this property of #P, i.e., whetherNP � SPP implies that #P is closed under decrement by one.The situation is similar for division: If #P is closed under division by two,then some counting classes collapse (�P = SPP) (Ogiwara and Hemachandra1991). However, it is not known whether the converse implication holds, that



On Closure Properties of GapP 3is, whether this collapse characterizes the property of #P being closed underdivision by two.Ogiwara and Hemachandra (1993) also looked for the closure of #P underthe maximum, minimum, and median operator, and got the following partialresult. If #P is closed under maximum, minimum, or median, then the Coun-ting Hierarchy collapses (CH = SPP). Again, it is not known whether thiscollapse in turn implies the closure of #P under any of the above operations.In this paper, we study the above questions for the classes GapP andGapP+, where GapP is the class de�ned as the closure of #P under sub-traction, and GapP+ is the class of functions in GapP that are non-negative.We are able to completely characterize the property of GapP or GapP+ ofbeing closed under any of the above operations in terms of a seemingly im-plausible collapse of counting classes. More precisely, regarding the aboveexamples, we show in Section 3 and 4 that� GapP+ is closed under decrement by one if and only if CH = SPP,� GapP is closed under maximum or median if and only if CH = SPP,� GapP is closed under division by two if and only if �P = SPP.We should note that the last result concerning division was already shownby Gupta (1992). But in fact, we show more general results in those sectionsand especially, we will improve the result of Gupta.In Section 5, as one generalization of division and multiplication, we con-sider operations which we call bit cancellation and bit insertion. Let in-teger n � 0 in binary notation have the form n = alal�1 : : : a1a0. Thenbn=2c = alal�1 : : : a1, i.e., dividing n by two cancels the low order bit in thebinary representation of n. More generally, let 0 � k � l, we cancel thek th bit in the binary representation of n, and get n� = al : : : ak+1ak�1 : : : a0.On the other hand, multiplying n by two appends one 0 to the binary re-presentation of n. More generally, we insert one 0 at position k, and getn+ = al : : : ak 0 ak�1 : : : a0. We will extend these de�nitions also to negativeintegers. We say that GapP is closed under k th bit cancellation, if for anyGapP function f , the function f� that is obtained from f by canceling thek th bit in the binary representation of f(x) is also in GapP. We say thatGapP is closed under inserting a bit at position k, if for any GapP function f ,the function f+ that is obtained from f by inserting a zero at position k inthe binary representation of f(x) is also in GapP. We give necessary condi-tions and su�cient conditions for the property of GapP being closed undercanceling or inserting a bit at a �xed position.



4 Thierauf, Toda & Watanabe2. PreliminariesWe follow the standard de�nitions and notations in computational comple-xity theory (see, e.g., Balcazar et al. 1988, Balcazar et al. 1991). We �x analphabet to � = f0; 1g; by a string we mean an element of ��, and by alanguage we mean a subset of ��. For a language L, we denote L as thecomplement of L, and for a class C of languages, co-C = fL j L 2 C g. Forany string x, let jxj denote the length of x, and for any set X, let kXk denotethe cardinality of X. The standard lexicographical ordering of �� is used;that is, for strings x; y 2 ��, x is lexicographically smaller than y (denoted byx < y) if either (i) jxj < jyj, or (ii) jxj = jyj and there exists z 2 �� such thatx = z0u and y = z1v. We consider a standard one-to-one pairing functionfrom ����� to �� that is computable and invertible in polynomial time. Forinputs x and y, we denote the output of the pairing function by (x; y); thisnotation is extended to denote every n tuple. For a function f , we simplywrite f(x; y) instead of f((x; y)). A non-negative function f is polynomiallybounded, if there exists a polynomial p such that f(x) � p(jxj), for all x 2 ��.For our computation model, we consider a standard Turing machine model.A machine is either deterministic or nondeterministic, and a deterministicmachine is either an acceptor or a transducer .� P (FP) is the class of sets (functions) computed by a deterministicpolynomial-time bounded acceptor (transducer). Here, we will interpretthe output of a FP function as a non-negative integer (encoded in ��).� NP is the class of sets computed by a nondeterministic polynomial-timebounded acceptor.We also consider an oracle machine, i.e., a machine that can ask queriesto a given oracle set. For example, NPNP is the class of sets accepted bysome NP machine with an oracle set from NP. The Polynomial HierarchyPH (Stockmeyer 1977) is de�ned as� PH = NP [ NPNP [ NPNPNP [ : : : .For counting the number of solutions of NP sets, Valiant (1979) introducedthe function class #P.



On Closure Properties of GapP 5� #P is the class of all functions f mapping from �� to the naturalnumbers such that for some A 2 P and some polynomial p, we havef(x) = kf y 2 �p(jxj) j (x; y) 2 A gk.#P is closed under exponential summation and polynomial products (see Fen-ner et al. 1991), but, since #P functions are non-negative, it is not closedunder subtraction.Fenner, Fortnow, and Kurtz (1991) de�ned the class GapP as the closureof #P under subtraction.� GapP = f f � g j f; g 2 #P g.Equivalently, we can de�ne GapP as the di�erence of a #P function and aFP function or vice versa. We can even restrict the form of the FP function:for every f 2 GapP and any b � 2 there is a g 2 #P and a polynomial p suchthat for all x, f(x) = g(x) � bp(jxj).Even if we only subtract functions f; g 2 #P where f � g, it is not knownwhether f � g is again in #P.� GapP+ = f f 2 GapP j f � 0 g.Wagner (1986) de�ned the Counting Function Hierarchy FCH. We give twoequivalent de�nitions of FCH.� FCH = #P [ #P#P [ #P#P#P [ : : := GapP+ [ GapPGapP+ [ GapPGapPGapP+ [ : : : :Note that we don't claim that these two de�nitions coincide at each level.The following language classes PP (Gill 1977) and C=P (Simon 1975,Wagner 1986a) are related to the above function classes.� PP is the class of all sets L such that there exist a #P function f anda FP function g such that for all x, we have x 2 L() f(x) � g(x).We can even �x g to certain FP functions without changing the class PP. Forexample, we can take g = 2p(jxj), for some polynomial p. The same holds forthe following class.� C=P is the class of all sets L such that there exist a #P function f anda FP function g such that for all x, we have x 2 L() f(x) = g(x).



6 Thierauf, Toda & WatanabeWe can even require that f � g (or f � g), and still get the same classC=P. Therefore, we have C=P � PP. On the other hand, we have PP �NPC=P (Tor�an 1991). Alternatively, we can de�ne PP and C=P in terms ofa GapP function instead of a #P function. Then we can even �x the FPfunction g in the above de�nitions to g = 0.The Counting Hierarchy CH (Wagner 1986b) is de�ned as� CH = PP [ PPPP [ PPPPPP [ : : : .Since PPPP = PPC=P (Tor�an 1991), we can as well use C=P as the oracleclass over PP in the de�nition of CH. Clearly, FCH = FPCH.For any FP function � � 2, the class Mod�P (Beigel et al. 1990) is de�nedas follows.� Mod�P is the class of all sets L such that there exists a #P function fsuch that for all x, we have x 2 L() f(x) 6� 0 (mod �(x)).Mod2P is also denoted as �P (Papadimitriou and Zachos 1983, Goldschlagerand Parberry 1986).Loosely speaking, given a base b representation of a #P function f , thena PP set can be decided by the high order bit of f and a ModbP set can bedecided by the low order bit of f . Toda (1991) showed that for every set Lin the Polynomial Hierarchy there is a #P function f such that L can bedecided by one bit of f (not necessarily the high or low order bit). This ledto the de�nition of the MidBitP (Green et al. to appear) classes.For any b � 2 and any polynomially bounded FP function �,� MidBitPb(�) is the class of all sets L such that there exists a #P functionf such that for all x, we have x 2 L () the �(x) th bit in the b-aryrepresentation of f(x) is not 0,� MidBitPb is the union of MidBitPb(�) over all polynomially boundedFP functions �.Equivalently, for any �xed a, where 0 � a < b, we can require that the �(x) thbit in the b-ary representation of f(x) is not a. When b = 2, we omit thesubscript, i.e., MidBitP = MidBitP2. By the above discussion, it is clear thatModbP and PP are contained in MidBitPb, and by the result of Toda (1991),PH is contained in MidBitPb, for any prime b � 2.The class SPP (Ogiwara and Hemachandra 1991, Fenner et al. 1991) isde�ned as the GapP analogue of the class UP (Valiant 1979) (unambiguouspolynomial time). In WPP and LWPP (Fenner et al. 1991) the strong re-striction of SPP is a bit relaxed.



On Closure Properties of GapP 7� SPP is the class of all sets L for which there is a function f 2 GapPsuch that for all x, x 2 L =) f(x) = 1;x 62 L =) f(x) = 0:� WPP is the class of all sets L for which there are functions f 2 GapPand g 2 FP such that for all x, we have g(x) 6= 0 andx 2 L =) f(x) = g(x);x 62 L =) f(x) = 0:� LWPP denotes the restricted version of WPP, where the function gdepends only on the length of x.Instead of 0 and 1 in the de�nition of SPP, we can as well take any FPfunction g and require that f(x) = g(x) in one case and f(x) = g(x) + 1 inthe other case. Similar for WPP, we can take two FP function g and h andrequire that f(x) = g(x) in one case, and f(x) = h(x) in the other case.Note that any set in WPP, where the function g in the above de�nition ispolynomially bounded, is already in SPP. More precisely, let Gap-Few be theclass of all sets L for which there exist a polynomially bounded GapP+ func-tion f and a P predicate Q such that for all x, we have x 2 L() Q(x; f(x))is true. Fenner, Fortnow, and Kurtz (1991) showed that Gap-Few = SPP.Examples of sets in these classes are the Graph Automorphism problemthat is in SPP and the Graph Isomorphism problem that is in LWPP (K�obleret al. 1992).SPP is low for GapP (and for GapP+), i.e., GapPSPP = GapP (Fenner etal. 1991). As a consequence, SPP is contained in, and in fact low for all theabove de�ned counting classes PP, C=P, ModbP for any b � 2, WPP, LWPP,and SPP. WPP is also known to be low for PP. As a consequence, if PPwould be contained in WPP or even SPP then, by an inductive argument, thewhole Counting Hierarchy would collapse down to WPP or SPP, respectively.Since PP � SPPC=P (Tor�an 1991), we have PP = SPP () C=P = SPP.(But it is not known whether C=P =WPP implies PP = WPP.)It is not known whether the Counting Hierarchy collapses, but we don'texpect that CH = WPP. In this sense, we take any result of the form \someassumption implies PP = WPP or even PP = SPP" as evidence that theassumption is not true. Similarly, regarding functions, if GapP+ would be



8 Thierauf, Toda & Watanabecontained in FPSPP, then the Counting Function Hierarchy FCH would col-lapse to FPSPP, and we can argue along the same lines as above for CH.For any b � 2, consider the b-ary representation of a GapP function thatde�nes some set in SPP. It is all zero, only the low order bit can be zeroor one, thereby deciding membership in the SPP set. For any polynomiallybounded FP function �, we introduce the class SWPPb(�) (strong WPP) thatis de�ned as SPP, but where the crucial bit is at position �.� SWPPb(�) is the class of all sets L for which there is a function f 2GapP such that for all x,x 2 L =) f(x) = b�(x);x 62 L =) f(x) = 0:� SWPPb is the union of SWPPb(�) over all polynomially bounded FPfunctions �.Again, we omit the subscript when b = 2. For any b and � as above, SPP �SWPPb(�) � WPP � C=P \ co-C=P, and SWPPb(�) � MidBitPb(�). Also,for any �1 � �2 we have SWPPb(�1) � SWPPb(�2).While it is easy to see that SPP is closed under Boolean operationsand SWPPb(�) is closed under complementation, it is not known whetherSWPPb(�) is closed under union and intersection. Clearly, the union andintersection of two SWPPb(�) sets is in SWPPb(2�).3. Decrement, Maximum, and MedianDefinition 3.1. For integers n and d, we de�ne the decrement of n by d asn	 d = ( n� d; if n � d;0; otherwise.Our �rst result states that for any �xed function � 2 FP, GapP+ is notclosed under decrement by �, unless the Counting Hierarchy collapses to SPPand the Counting Function Hierarchy collapses to FPSPP. Additionally, ifindeed GapP+ is not closed under decrement, then these hierarchies don'tcollapse to the SPP level.



On Closure Properties of GapP 9Theorem 3.2. Let � > 0 be a polynomially bounded FP function. Thefollowing conditions are equivalent.(i) GapP+ is closed under decrement by �,(ii) C=P = SPP,(iii) GapP+ = FPSPP.Proof. To show that (i) implies (ii), let L be a set in C=P. Then thereexists a function f 2 GapP+ such that for all x, x 2 L () f(x) = 0. Now,de�ne g by g = (� + 1) � f � ( (� + 1) � f 	 � ):Since g � 0 and GapP+ is closed under decrement by � by assumption, wehave g 2 GapP+. Furthermore, for all x, we have g(x) = 0, if x 2 L,and g(x) = �(x), otherwise. This shows L 2 WPP. But in fact, since � ispolynomially bounded, L 2 Gap-Few, and hence in SPP, since Gap-Few =SPP (Fenner et al. 1991).To show that (ii) implies (iii), note that (ii) is equivalent with PP = SPP.Then the implication follows from the fact that GapP+ � FPPP.To show that (iii) implies (i), note that we can certainly compute thedecrement of two GapP+ functions in FPGapP+ . Since FPGapP+ = FPSPP =GapP+ by assumption, we have that GapP+ is closed under decrement. 2The simplest function we can choose is � = 1.Corollary 3.3. GapP+ is closed under decrement by one if and only ifC=P = SPP.If we don't have a polynomial bound on �, then the proof of Theorem 3.2shows that C=P = WPP. Notice that from C=P = WPP, we have PPPP =PPC=P = PPWPP = PP since WPP is low for PP; thus, this closure propertyimplies that the Counting Hierarchy collapses to PP.Corollary 3.4. Let � > 0 be a FP function. If GapP+ is closed underdecrement by �, then C=P =WPP.Can we compute the i th smallest value of k �xed GapP functions in GapP?The following theorem says that this is not possible, unless the CountingHierarchy collapses to SPP and the Counting Function Hierarchy collapses



10 Thierauf, Toda & Watanabeto FPSPP, and, if indeed GapP is not closed under this operation then thesehierarchies don't collapse to the SPP level.Theorem 3.5. Let k � 2 and 1 � i � k. The following conditions areequivalent.(i) GapP is closed under determining the i th smallest out of k GapP func-tions,(ii) C=P = SPP,(iii) GapP+ = FPSPP.Proof. To show that (i) implies (ii), let L be a set in C=P. Then thereexists a function f 2 GapP+ such that for all x, x 2 L () f(x) = 0. Wede�ne GapP functions g1; : : : ; gk and let h(x) be the i th smallest value ofg1(x); : : : ; gk(x). We distinguish two cases.Case 1 : i < k. De�ne g1 = : : : = gi�1 = �1, gi = f , and gi+1 = : : : = gk =1. Then we have h(x) = 0, if x 2 L, and h(x) = 1, if x 62 L. This showsL 2 SPP.Case 2 : i = k. De�ne g1 = : : : = gk�1 = �1 and gk = �f . Then we haveh(x) = 0, if x 2 L, and h(x) = �1, if x 62 L. Again, we have L 2 SPP.The proofs of the other implications are similar to the corresponding proofsof Theorem 3.2. 2Since Theorem 3.5 holds for every �xed i and k � 2, we get the same resultfor special operators: For k = 2, we get the minimum operator, when i = 1,and the maximum operator, when i = 2. For any k � 2, we get the medianoperator, when i = bk=2c.Corollary 3.6. Let k � 2. The following conditions are equivalent.(i) GapP is closed under minimum,(ii) GapP is closed under maximum,(iii) GapP is closed under median of k GapP functions,(iv) C=P = SPP.



On Closure Properties of GapP 114. DivisionThe following theorem characterizes the question of whether GapP is closedunder division in terms of a collapse of some ModP classes to SPP. We con-clude that it is unlikely that GapP is closed under division. This questionhas also been considered by Gupta (1992). But he shows the result only fordivision by a polynomially bounded FP function. Note also that Theorem 4.1is a special case of Theorem 5.4 below. We include here anyway a proof ofTheorem 4.1, because some crucial points in the proof of Theorem 5.4 canalready be explained here in the simpler case.Clearly, by division we mean integer division bn=bc, for integers n and b 6= 0.Theorem 4.1. Let � � 2 be a FP function. GapP is closed under divisionby � if and only if Mod�P = SPP.Proof. Assume that GapP is closed under division by �. Let L bea set in Mod�P, i.e., there exists a function f 2 #P such that for all x,x 2 L() f(x) 6� 0 (mod �(x)). De�ne the function g byg = b(f + � � 1)=�c � bf=�c:By our assumption, g 2 GapP. Let x be �xed. We can write f(x) = � ��(x) + a, where � � 0 and 0 � a < �(x). Then clearly, the second termin the de�nition of g, bf=�c = �. But the �rst term b(f + � � 1)=�c is� only when a = 0, and � + 1 otherwise. Hence, we can conclude thatx 2 L =) g(x) = 1 and x 62 L =) g(x) = 0. This shows that L 2 SPP.For the reverse direction, we adapt the proof of Gupta (1992). Let F bea function in GapP. Then there exist a function f 2 #P and a polynomialq such that for all x, F (x) = f(x) � �(x)q(jxj). Observe that bF (x)=�(x)c =bf(x)=�(x)c � �q(jxj)�1, thus it su�ces to show that bf(x)=�(x)c is in GapP.Let A 2 P and p be a polynomial such that f(x) = kf y 2 �p(jxj) j (x; y) 2A gk. Consider the following set X. For any x and y, where y = p(jxj),(x; y) 2 X () kf z 2 �p(jxj) j (x; z) 2 A and z � y gk � 0 (mod �(x)):For any x, there are bf(x)=�(x)c many pairs (x; y) in X.Obviously, X is in co-Mod�P, and hence in SPP by assumption (recallthat SPP is closed under complementation). Therefore, there is a function



12 Thierauf, Toda & Watanabeg 2 GapP such that g(x; y) = 1, if (x; y) 2 X, and g(x; y) = 0, otherwise.Now, de�ne h(x) = Xy2�p(jxj) g(x; y):Obviously, h is in GapP, and we have h(x) = bf(x)=�(x)c. 2Corollary 4.2. (Gupta 1992) GapP is closed under division by two if andonly if �P = SPP.Note that it is not known whether the collapse of a ModP class to SPPimplies that of the Counting Hierarchy to SPP, though the converse implica-tion holds. Thus, for the evidence that GapP is not closed under division, thecollapse of a ModP class to SPP may not be as strong as that of the CountingHierarchy. 5. Bit Cancellation and Bit InsertionIn this section, we de�ne a generalized operation of division and multiplicationwhich we call bit cancellation and bit insertion, respectively.Definition 5.1. Let n; k, and b be integers, where k � 0 and b � 2. Thenwe de�ne(1) n� = bn=bk+1c � bk + n mod bk. We say that n� is obtained from n bycanceling the k th bit of n in base b, and(2) n+ = bn=bkc � bk+1 + n mod bk. We say that n+ is obtained from n byinserting a bit at position k in n in base b,where by n mod bk we mean n� bn=bkc � bk. Equivalently, n+ = n+ (b � 1) �bn=bkc � bk.A more intuitive explanation is the following. Let n � 0 in b-ary notationhave the form n = ��bk+1+a�bk+, where � � 0, 0 � a < b, and 0 �  < bk(x).Now, we cancel the k th bit (which is a) and get n� = � � bk + . When weinsert a bit at position k, we get n+ = � � bk+2+ a � bk+1 +0 � bk + , so in fact,we are inserting a zero at position k.



On Closure Properties of GapP 13For negative n, the above explanation does not quite �t in some cases:suppose n = �(��bk+1+a�bk+) for �, a, and  as above. When a > 0 or  >0, then n� = �((�+1)�bk+), which is di�erent from \canceling the k th bit",i.e., �(��bk+). Similarly, when  > 0, then n+ = �(��bk+2+(a+1)�bk+1+),which is di�erent from \inserting the k th bit", i.e., �(� � bk+2 + a � bk+1 + ).Keeping this in mind, we will anyway call these operations bit cancellationand bit insertion.Clearly, when we �x k = 0, then canceling the k th bit of an integer n inbase b is exactly a division of n by b, and inserting a bit at position k is a mul-tiplication of n by b. Thus, we may view these operations as generalizationsof division and multiplication.Canceling and inserting a bit from/to a GapP function can be done in po-lynomial time, if the function value is given. Therefore, if FPGapP = GapPwhich, by Theorem 3.2, is equivalent with PP being SPP, then GapP is cer-tainly closed under bit cancellation and bit insertion at any polynomial-timecomputable position.Proposition 5.2. If PP = SPP, then GapP is closed under bit cancellationand bit insertion in any base.Our main theorems in this section are necessary conditions and su�cientconditions for the property of GapP being closed under canceling or insertinga bit at a �xed position. Although our theorems are formulated for some�xed base b in which we represent numbers, one can in fact take b as a FPfunction. Our main technical tool is the following lemma.Lemma 5.3. Let � and � be polynomially bounded FP functions and b � 2.If MidBitPb(�) � SWPPb(�), then for all #P functions f , the function h =bf=b�+1c � b2�� is in GapP.Proof. Let f 2 #P and let A 2 P and p be a polynomial such thatf(x) = kf y 2 �p(jxj) j (x; y) 2 A gk.Consider the following sets X and Y . For any x and y, where y = p(jxj),(x; y) 2 X ()the �(x) th bit of kf z 2 �p(jxj) j (x; z) 2 A and z � y gk in base b is 0;and (x; y) 2 Y ()



14 Thierauf, Toda & Watanabethe �(x) th bit of kf z 2 �p(jxj) j (x; z) 2 A and z < y gk in base b is b � 1:For any x, there are bf(x)=b�(x)+1c many pairs (x; y) in X \ Y . To see this,observe that for every b�(x)+1 th y (in the lexicographic ordering) such that(x; y) 2 A, we have (x; y) 2 X \ Y .Obviously, X and Y are in co-MidBitPb(�(x)), and hence in SWPPb(�(x))by assumption (recall that SWPPb(�(x)) is closed under complementation).Therefore, X \ Y 2 SWPPb(2 � �(x)), i.e., there is a GapP function g suchthat g(x; y) = ( b2��(x); if (x; y) 2 X \ Y;0; otherwise.Now, de�ne h(x) =Py2�p(jxj) g(x; y). Obviously, h is in GapP and it followsfrom the above discussion that h(x) = bf(x)=b�(x)+1c � b2��(x). 2Note that we get the factor two in the exponent of b2�� simply because theintersection of two SWPPb(�) sets is in SWPPb(2 ��). If one could show thatSWPPb(�) is closed under intersection, then we could get rid of the factortwo. As a consequence, Theorem 5.4 (1) and 5.5 (1) below would become ifand only if statements (as one can see from the proofs of the correspondingparts (2)).Note also that Lemma 5.3 can be extended to functions f in GapP insteadof #P.Theorem 5.4. Let � be polynomially bounded FP function and b � 2. Then(1) and (2) hold.(1) If GapP is closed under canceling the � th bit in base b, thenMidBitPb(�) = SWPPb(�).(2) If MidBitPb(�) � SWPPb(b�=2c), then GapP is closed under cancelingthe � th bit in base b.Proof. To prove (1), assume that GapP is closed under canceling the � thbit in base b. It su�ces to show that MidBitPb(�) � SWPPb(�). Let L be aset in MidBitPb(�), i.e., there is a function f 2 #P such that for all x, x 2 Lif and only if the �(x) th bit of f(x) in the base b representation is not zero.For any x, we can write f(x) = � � b�(x)+1 + a � b�(x) + ; for some � � 0,0 � a < b, and 0 �  < b�(x). We will show that there is a function h 2 GapPsuch that h(x) = ( 0; if a = 0; i.e., x 62 L;b�(x); if a > 0; i.e., x 2 L: (5.1)



On Closure Properties of GapP 15From this, it clearly follows that L 2 SWPPb(�).De�ne g = f +(b� 1) � b� and let f� and g� be the functions obtained fromf and g, respectively, by canceling the � th bit. We claim that h = g� � f�ful�lls equation (5.1).To see this, observe thatg = � � b�+1 + (a+ b � 1) � b� +  = (� + c) � b�+1 + a0 � b� + ;where c = ( 0; if a = 0;1; if a > 0; and a0 = ( b � 1; if a = 0;a � 1; if a > 0:Therefore g� = (�+ c) � b�+, and hence, h = g��f� = c � b�, as we claimedabove.To prove (2), assume that MidBitPb(�) � SWPPb(b�=2c). Let F 2 GapP.Then there exist a function f 2 #P and a polynomial q such that for all x,F (x) = f(x)� bq(jxj). Without loss of generality, we can assume that q(jxj) >�(x).Let F � and f� be the functions obtained from F and f , respectively, bycanceling the � th bit. Observe that F �(x) = f�(x) � bq(jxj)�1, i.e., it su�cesto show that f� 2 GapP.For any x, we can write f(x) = � � b�(x)+1 + a � b�(x) + ; for some � � 0,0 � a < b, and 0 �  < b�(x). We will show that f�(x) = � � b�(x) +  is inGapP. We do this by showing that both terms (a) � � b�(x) and (b)  areGapP functions. Then, clearly, also f� is in GapP.(a) We apply Lemma 5.3 to f , �, and � = b�=2c. Then we get a GapPfunction h withh(x) = bf(x)=b�(x)+1c � b2�b�(x)=2c = ( � � b�(x); if �(x) is even;� � b�(x)�1; if �(x) is odd:Therefore, the function H(x) that is de�ned as h(x), if �(x) is even, andb � h(x), otherwise, is the desired GapP function.(b) To compute , we apply Lemma 5.3 to f 0(x) = b � f(x) instead off(x), i.e., we shift f(x) by one bit, �, and � = b�=2c. This gives the GapPfunction h0 (instead of h). Now, de�ne H 0 analogous to H above, then wehave H 0(x) = (� � b+ a) � b�(x). Now, observe that  = f(x) �H 0(x). 2Theorem 5.5. Let � > 0 be a polynomially bounded FP function and b � 2.Then (1) and (2) hold.



16 Thierauf, Toda & Watanabe(1) If GapP is closed under inserting a bit at position �, then MidBitP(��1) � SWPP(�). 1(2) If MidBitPb(�� 1) � SWPPb(b�=2c), then GapP is closed under inser-ting a bit at position � in base b.Proof. To prove (1), assume that GapP is closed under inserting a bit atposition �. Let L be a set in MidBitP(�� 1), i.e., there is a function f 2 #Psuch that for all x, x 2 L if and only if the (�(x) � 1) th bit in the binaryrepresentation of f(x) is 1.For any x, we can write f(x) = � � 2�(x) + a � 2�(x)�1 + ; for some � � 0,a 2 f0; 1g, and 0 �  < 2�(x)�1.De�ne g = f + 2��1 and let f+ and g+ be the functions obtained from fand g, respectively, by inserting a bit at position �. We havef+ = � � 2�+1 + a � 2��1 + ;g+ = (� + a) � 2�+1 + (1 � a) � 2��1 + :Let h = g+ � f+ � 2��1. Then h is in GapP and we have h(x) = a � 2�(x).This shows that L 2 SWPP(�) via h.It should be mentioned here that when we consider any base b > 2, theabove proof can be extended to show that L 2 WPP. (De�ne g = f + (b �1) � b��1 and h = g+ � f+ � (b � 1) � b��1. Then h(x) = 0, if a = 0, andh(x) = (b � 1) � b�(x) otherwise.)To prove (2), assume that MidBitPb(� � 1) = SWPPb(b�=2c). Let F 2GapP. Then there exist a function f 2 #P and a polynomial q such that forall x, F (x) = f(x) � bq(jxj). Without loss of generality, we can assume thatq(jxj) > �(x).Let F + and f+ be the functions obtained from F and f , respectively, byinserting a bit at position �. Observe that F +(x) = f+(x) � bq(jxj)+1, i.e., itsu�ces to show that f+ 2 GapP.We apply Lemma 5.3 to f , � � 1, and � = b�=2c. Then we get a GapPfunction h withh(x) = bf(x)=b�(x)c � b2�b�(x)=2c = ( bf(x)=b�(x)c � b�(x); if �(x) is even;bf(x)=b�(x)c � b�(x)�1; if �(x) is odd:Now, f+(x) = f(x) + (b � 1) � h(x), if �(x) is even, and f+(x) = f(x) + (b �1) � h(x) � b, if �(x) is odd, and therefore, f+ is in GapP. 21Recall that MidBitP and SWPP are the abbreviations of MidBitP2 and SWPP2,respectively.



On Closure Properties of GapP 17Suppose, in Theorem 5.4 (1), we not only assume the closure of GapPunder canceling the � th bit for a �xed �, but let � vary over all polynomiallybounded FP functions, then MitBitP collapses down to SWPP, and, sincePP � MidBitP, so does the whole Counting Hierarchy. The same argumentapplies to bit insertion.Corollary 5.6. Let b � 2. Then (1), (2), and (3) hold.(1) If GapP is closed under bit cancellation in base b, then PP = SWPPb,(2) if GapP is closed under bit insertion in binary representation, thenPP = SWPP,(3) if GapP is closed under bit insertion in base b, then PP = WPP.Next, we consider the case when � is small, where \small" means lo-garithmically bounded. In this range for �, Theorems 5.4 and 5.5 be-come if and only if statements. Note that if � = O(log n), then for anyb � 2, SWPPb(�) = SPP (Fenner et al. 1991), and for any prime b,MidBitPb(�) = ModbP (Beigel et al. 1990).Corollary 5.7. Let b be prime and � > 0 be a logarithmically bounded FPfunction. The following conditions are equivalent.(i) GapP is closed under canceling the � th bit in base b,(ii) GapP is closed under inserting a bit at position � in base b,(iii) ModbP = SPP.Let us consider the case when � is large. For a function f 2 GapP and apolynomial p that bounds the length of f , we call the � th bit of f a O(log n)-highest bit of f , if 0 � p � � = O(log n). For large �, the correspondingMidBitP classes fall together with PP (Green et al. to appear). Therefore,when we apply Theorem 5.4 and 5.5 to large functions �, we get the following.Corollary 5.8. Let b � 2. Then (1) and (2) hold.(1) If GapP is closed under canceling a O(log n)-highest bit in base b, thenPP = LWPP,



18 Thierauf, Toda & Watanabe(2) If GapP is closed under inserting a bit at a O(log n)-highest position inbase b, then PP = LWPP.Our last result does not use any FP function � as a pointer to some bitposition to be canceled. Instead, we want to cancel the highest bit of a givenGapP function f that is not zero. In general, we cannot expect that thisposition is computable in polynomial time, unless the Counting Hierarchycollapses down to P.Theorem 5.9. If GapP is closed under canceling the highest non-zero bit inbinary representation, then PP = LWPP.Proof. Let L 2 PP, i.e., there exist a function f 2 #P and a polynomialp such that for all x, f(x) < 2p(jxj), and x 2 L if and only if f(x) � 2p(jxj)�1.Let f� be the function obtained from f by canceling the highest non-zerobit. By our assumption, f� 2 GapP.De�ne g(x) = f(x) � f�(x). Observe that g(x) 2 f 2i j 0 � i � p(jxj) �1 g [ f0g and that g(x) = 2p(jxj)�1 () x 2 L.Now, de�ne h by h(x) = g(x) � p(jxj)�2Yi=0 (g(x) � 2i):Note that h(x) = 0, if x 62 L, and h(x) = 2p(jxj)�1 � Qp(jxj)�2i=0 (2p(jxj)�1 � 2i),otherwise. Since h 2 GapP, we have L 2 LWPP. 26. Conclusions and Open ProblemsWe have characterized the property of GapP being closed under decrement,maximum, minimum, median, or division by seemingly implausible collapsesamong complexity classes. It remains open to to �nd characterizations for theproperty of GapP being closed under bit cancellation or bit insertion. Onepossible approach could be to show that the classes SWPPb(k) are closedunder complementation. Then our Theorems 5.4 and 5.5 would give suchcharacterizations. More general, we think that it is an interesting topic forfurther research to investigate in which ways one can or cannot manipulate(the bits of) #P or GapP functions.
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