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Abstract. We study the closure properties of the function classes GapP
and GapP, . We characterize the property of GapP, being closed under
decrement and of GapP being closed under maximum, minimum, me-
dian, or division by seemingly implausible collapses among complexity
classes; thereby giving evidence that these function classes don’t have
these closure properties.

We show a similar result concerning operations we call bit cancellation
and bit insertion: Given a function f € GapP and a polynomial-time
computable function k. Then we ask whether the function f*(z) that
is obtained from f(a) by canceling the x(z)th bit in the binary repre-
sentation of f(z), or whether the function f*(z) that is obtained from
f(2) by inserting a bit at position x(z) in the binary representation of
f(2),is also in GapP. We give necessary conditions and a sufficient con-
ditions for GapP being closed under bit cancellation and bit insertion,
respectively.
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1. Introduction

In a fundamental paper, Valiant (1979) introduced the class #P of functions
that count the number of solutions of sets in NP. Besides the algorithmical
interest of determining, for example, the number of Hamiltonean cycles in
a graph, the structural properties of #P have become an important subject
in computational complexity theory. For example, there exists a notion of
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reducibility between #P functions and the above example is known to be #P
complete. A hierarchy of complexity classes, the Counting Hierarchy (Wagner
1986b), is based on #P functions and strong connections with the Polynomial
Hierarchy (Stockmeyer 1977) were shown by Toda (1991).

#P has a lot of closure properties; for example, the sum or product of two
#P functions is again a #P function (see, e.g., Fenner et al. 1991 for more
closure properties). When asking for subtraction, we have to take care of the
fact that counting functions are non-negative. For any n,d > 0, let us define
the decrement of n by d as n © d = max{0,n — d}. Although this is a quite
simple operation, surprisingly, it is not known whether #P is closed under
decrement. The same situation we have for (integer-) division.

If one does not succeed in proving some property for some class, after a
while, one might try to prove the contrary, namely that the class does not
have this property. However, this can turn out to be a hard problem as
welll Indeed, Ogiwara and Hemachandra (1993) characterized the property
of #P being closed under decrement or division by a collapse of the Coun-
ting Hierarchy (CH = UP), thereby connecting an important open problem
in computational complexity theory with some arithmetical problems con-
cerning counting function classes. (See also Gupta 1991 for related results.)
Results of this type can be read in two directions. On the one hand, since
the relationship of complexity classes, like in this case, is an open question
for a long time now, this explaines pretty much why it is hard to solve the
above questions concerning the closure properties of #P. Furthermore, since
most people conjecture that the Counting Hierarchy does not collapse to UP,
this gives some evidence that #P is not closed under decrement or division.
On the other hand, transforming some open problem into another one in a
nontrivial way usually gives some better understanding of those problems,
and, in the best case, might even give some hint on how to solve them.

Much less is known, when we weaken the question and ask for the closure of
#P under decrement for a fized function d, say d = 1; that is, “Does f € #P
imply that f &1 € #P?7” Toran (see Ogiwara and Hemachandra 1991) found
a partial answer to this; he showed that if #P is closed under decrement by
one, then NP is contained in a very small counting class (SPP), which is a
generalization of the class UP (unambiguous polynomial time). But it is not
known whether this collapse characterizes this property of #P, i.e., whether
NP C SPP implies that #P is closed under decrement by one.

The situation is similar for division: If #P is closed under division by two,
then some counting classes collapse (6P = SPP) (Ogiwara and Hemachandra
1991). However, it is not known whether the converse implication holds, that
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is, whether this collapse characterizes the property of #P being closed under
division by two.

Ogiwara and Hemachandra (1993) also looked for the closure of #P under
the maximum, minimum, and median operator, and got the following partial
result. If #P is closed under maximum, minimum, or median, then the Coun-
ting Hierarchy collapses (CH = SPP). Again, it is not known whether this
collapse in turn implies the closure of #P under any of the above operations.

In this paper, we study the above questions for the classes GapP and
GapP, where GapP is the class defined as the closure of #P under sub-
traction, and GapP, is the class of functions in GapP that are non-negative.
We are able to completely characterize the property of GapP or GapP_ of
being closed under any of the above operations in terms of a seemingly im-
plausible collapse of counting classes. More precisely, regarding the above
examples, we show in Section 3 and 4 that

o GapP_ is closed under decrement by one if and only if CH = SPP,
o GapP is closed under maximum or median if and only if CH = SPP,

o GapP is closed under division by two if and only if P = SPP.

We should note that the last result concerning division was already shown
by Gupta (1992). But in fact, we show more general results in those sections
and especially, we will improve the result of Gupta.

In Section 5, as one generalization of division and multiplication, we con-
sider operations which we call bit cancellation and bit insertion. Let in-
teger n > 0 in binary notation have the form n = @a;_1...a1a9. Then
In/2| = qjai_y ... ay, i.e., dividing n by two cancels the low order bit in the
binary representation of n. More generally, let 0 < k& < [, we cancel the
kth bit in the binary representation of n, and get n* = «a;... @151 - .. ao.
On the other hand, multiplying n by two appends one 0 to the binary re-
presentation of n. More generally, we insert one 0 at position k, and get
nt =a;...ap0ap_1...a9. We will extend these definitions also to negative
integers. We say that GapP s closed under kth bit cancellation, if for any
GapP function f, the function f* that is obtained from f by canceling the
kth bit in the binary representation of f(x) is also in GapP. We say that
GapP s closed under inserting a bit at position k, if for any GapP function f,
the function f* that is obtained from f by inserting a zero at position k in
the binary representation of f(x) is also in GapP. We give necessary condi-
tions and sufficient conditions for the property of GapP being closed under
canceling or inserting a bit at a fixed position.
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2. Preliminaries

We follow the standard definitions and notations in computational comple-
xity theory (see, e.g., Balcazar et al. 1988, Balcazar et al. 1991). We fix an
alphabet to ¥ = {0,1}; by a string we mean an element of ¥*, and by a
language we mean a subset of ¥*. For a language L, we denote L as the
complement of L, and for a class C of languages, co-C = {L | L € C}. For
any string x, let |x| denote the length of x, and for any set X, let || X'|| denote
the cardinality of X. The standard lexicographical ordering of ¥* is used;
that is, for strings @,y € X%, x is lexicographically smaller than y (denoted by
x < y) if either (i) || < |y|, or (ii) || = |y| and there exists z € ¥* such that
r = z0u and y = z1lv. We consider a standard one-to-one pairing function
from ¥* x ¥* to ¥* that is computable and invertible in polynomial time. For
inputs  and y, we denote the output of the pairing function by (x,y); this
notation is extended to denote every n tuple. For a function f, we simply
write f(x,y) instead of f((x,y)). A non-negative function f is polynomially
bounded, if there exists a polynomial p such that f(z) < p(|z|), for all @ € *.

For our computation model, we consider a standard Turing machine model.
A machine is either deterministic or nondeterministic, and a deterministic
machine is either an acceptor or a transducer.

o P (FP) is the class of sets (functions) computed by a deterministic
polynomial-time bounded acceptor (transducer). Here, we will interpret
the output of a FP function as a non-negative integer (encoded in ).

o NP is the class of sets computed by a nondeterministic polynomial-time
bounded acceptor.

We also consider an oracle machine, i.e., a machine that can ask queries
to a given oracle set. For example, NPNF is the class of sets accepted by

some NP machine with an oracle set from NP. The Polynomial Hierarchy

PH (Stockmeyer 1977) is defined as
o PH=NPUNPN UNPN™ (.

For counting the number of solutions of NP sets, Valiant (1979) introduced
the function class #P.
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o #P is the class of all functions f mapping from ¥* to the natural
numbers such that for some A € P and some polynomial p, we have

flo) = {y e =V | (2,y) € A}.

#P is closed under exponential summation and polynomial products (see Fen-
ner et al. 1991), but, since #P functions are non-negative, it is not closed
under subtraction.

Fenner, Fortnow, and Kurtz (1991) defined the class GapP as the closure
of #P under subtraction.

o GapP ={f—g|f,gc#P}.

Equivalently, we can define GapP as the difference of a #P function and a
FP function or vice versa. We can even restrict the form of the FP function:
for every f € GapP and any b > 2 there is a ¢ € #P and a polynomial p such
that for all z, f(z) = g(x) — b2=D,

Even if we only subtract functions f, ¢ € #P where f > ¢, it is not known
whether f — ¢ is again in #P.

o GapP, = {fe GapP|f>0}.

Wagner (1986) defined the Counting Function Hierarchy FCH. We give two
equivalent definitions of FCH.

o FCH = #P U #P#F U #p#F*"
= GapP, U GaprapP U GaprapPGapP U
Note that we don’t claim that these two definitions coincide at each level.

The following language classes PP (Gill 1977) and C_P (Simon 1975,

Wagner 1986a) are related to the above function classes.

o PP is the class of all sets L such that there exist a #P function f and
a FP function ¢ such that for all x, we have € L <= f(x) > g(x).

We can even fix ¢ to certain FP functions without changing the class PP. For
example, we can take ¢ = 270D for some polynomial p. The same holds for
the following class.

o C_P is the class of all sets L such that there exist a #P function f and
a FP function ¢ such that for all x, we have v € L < f(x) = g(x).
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We can even require that f < ¢g (or f > ¢), and still get the same class
C_P. Therefore, we have C_P C PP. On the other hand, we have PP C
Npe=F (Toran 1991). Alternatively, we can define PP and C_P in terms of
a GapP function instead of a #P function. Then we can even fix the FP
function ¢ in the above definitions to g = 0.

The Counting Hierarchy CH (Wagner 1986b) is defined as

PPP

o CH=PPUPPFPUPPP

Since PPPY = ppC=F (Tordn 1991), we can as well use C_P as the oracle
class over PP in the definition of CH. Clearly, FCH = FPH.
For any FP function g > 2, the class ModzP (Beigel et al. 1990) is defined

as follows.

U....

o ModgP is the class of all sets L such that there exists a #P function f
such that for all x, we have € L <= f(2) Z0 (mod p(x)).

Mod,P is also denoted as &P (Papadimitriou and Zachos 1983, Goldschlager
and Parberry 1986).

Loosely speaking, given a base b representation of a #P function f, then
a PP set can be decided by the high order bit of f and a Mod;P set can be
decided by the low order bit of f. Toda (1991) showed that for every set L
in the Polynomial Hierarchy there is a #P function f such that L can be
decided by one bit of f (not necessarily the high or low order bit). This led
to the definition of the MidBitP (Green et al. to appear) classes.

For any b > 2 and any polynomially bounded FP function «,

o MidBitPy(k) is the class of all sets L such that there exists a #P function
f such that for all #, we have ¥ € L <= the r(x)th bit in the b-ary
representation of f() is not 0,

o MidBitPy is the union of MidBitP,(x) over all polynomially bounded
FP functions x.

Equivalently, for any fixed a, where 0 < a < b, we can require that the () th
bit in the b-ary representation of f(x) is not a. When b = 2, we omit the
subscript, i.e., MidBitP = MidBitP,. By the above discussion, it is clear that
Mod,P and PP are contained in MidBitP;, and by the result of Toda (1991),
PH is contained in MidBitP, for any prime b > 2.

The class SPP (Ogiwara and Hemachandra 1991, Fenner et al. 1991) is
defined as the GapP analogue of the class UP (Valiant 1979) (unambiguous
polynomial time). In WPP and LWPP (Fenner et al. 1991) the strong re-
striction of SPP is a bit relaxed.
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o SPP is the class of all sets L for which there is a function f € GapP
such that for all z,

rel = f(a)

Y

1
0.

o WPP is the class of all sets L for which there are functions f € GapP
and g € FP such that for all x, we have g(x) # 0 and

rel = f(x)=g
r¢L = f(z)=0.

o LWPP denotes the restricted version of WPP, where the function ¢
depends only on the length of x.

Instead of 0 and 1 in the definition of SPP, we can as well take any FP
function ¢ and require that f(x) = g(x) in one case and f(x) = g(x)+ 1 in
the other case. Similar for WPP, we can take two FP function ¢ and h and
require that f(z) = g(«) in one case, and f(x) = h(x) in the other case.

Note that any set in WPP, where the function ¢ in the above definition is
polynomially bounded, is already in SPP. More precisely, let Gap-Few be the
class of all sets L for which there exist a polynomially bounded GapP | func-
tion f and a P predicate @ such that for all x, we have v € L <= Q(z, f(z))
is true. Fenner, Fortnow, and Kurtz (1991) showed that Gap-Few = SPP.

Examples of sets in these classes are the Graph Automorphism problem
that is in SPP and the Graph Isomorphism problem that is in LWPP (Kobler
et al. 1992).

SPP is low for GapP (and for GapP_), i.e., GapP®" = GapP (Fenner et
al. 1991). As a consequence, SPP is contained in, and in fact low for all the
above defined counting classes PP, C_P, Mod;P for any b > 2, WPP, LWPP,
and SPP. WPP is also known to be low for PP. As a consequence, if PP
would be contained in WPP or even SPP then, by an inductive argument, the
whole Counting Hierarchy would collapse down to WPP or SPP, respectively.
Since PP C SPP%" (Toran 1991), we have PP = SPP «—= C_P = SPP.
(But it is not known whether C_P = WPP implies PP = WPP.)

It is not known whether the Counting Hierarchy collapses, but we don’t
expect that CH = WPP. In this sense, we take any result of the form “some
assumption implies PP = WPP or even PP = SPP” as evidence that the
assumption is not true. Similarly, regarding functions, if GapP_ would be
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contained in FP5T then the Counting Function Hierarchy FCH would col-
lapse to FPF and we can argue along the same lines as above for CH.

For any b > 2, consider the b-ary representation of a GapP function that
defines some set in SPP. It is all zero, only the low order bit can be zero
or one, thereby deciding membership in the SPP set. For any polynomially
bounded FP function x, we introduce the class SWPP, (k) (strong WPP) that
is defined as SPP, but where the crucial bit is at position x.

o SWPPy(k) is the class of all sets L for which there is a function f €
GapP such that for all z,

re€L = f(a)=0b
r¢ L = f(z)=0.

o SWPP, is the union of SWPPy(k) over all polynomially bounded FP

functions «.

Again, we omit the subscript when b = 2. For any b and & as above, SPP C
SWPP;(x) € WPP C C_P N co-C_P, and SWPP(x) C MidBitP;(x). Also,
for any k1 < k2 we have SWPP, (k1) € SWPP(k2).

While it is easy to see that SPP is closed under Boolean operations
and SWPPy(k) is closed under complementation, it is not known whether
SWPP; (k) is closed under union and intersection. Clearly, the union and

intersection of two SWPP,(x) sets is in SWPP,(2x).

3. Decrement, Maximum, and Median

DEFINITION 3.1. For integers n and d, we define the decrement of n by d as

{n—¢ ifn>d,
nod=

0, otherwise.

Our first result states that for any fixed function ¢ € FP, GapP_ is not
closed under decrement by ¢, unless the Counting Hierarchy collapses to SPP
and the Counting Function Hierarchy collapses to FP*F. Additionally, if
indeed GapP_ is not closed under decrement, then these hierarchies don’t
collapse to the SPP level.
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THEOREM 3.2. Let 6 > 0 be a polynomially bounded FP function. The
following conditions are equivalent.

(i) GapP is closed under decrement by 0,
(ii) C_P = SPP,
(iii) GapP, = FP""".

PrOOF.  To show that (i) implies (ii), let L be a set in C_P. Then there
exists a function f € GapP_ such that for all z, * € L <= f(x) = 0. Now,
define ¢ by

g = (6+1)-f — ((64+1)-fO ).

Since ¢ > 0 and GapP, is closed under decrement by ¢ by assumption, we
have ¢ € GapP,. Furthermore, for all z, we have g(z) = 0, if 2 € L,
and ¢g(x) = 6(x), otherwise. This shows L € WPP. But in fact, since ¢ is
polynomially bounded, L € Gap-Few, and hence in SPP, since Gap-Few =
SPP (Fenner et al. 1991).

To show that (ii) implies (iii), note that (ii) is equivalent with PP = SPP.
Then the implication follows from the fact that GapP, C FP'.

To show that (iii) implies (i), note that we can certainly compute the
decrement of two GapP_ functions in FPYPP+ - Since FPO*PP+ = FPSTT =

GapP, by assumption, we have that GapP is closed under decrement. O

The simplest function we can choose is 6 = 1.

COROLLARY 3.3. GapP_ is closed under decrement by one if and only if
C_P = SPP.

If we don’t have a polynomial bound on 6, then the proof of Theorem 3.2
shows that C_P = WPP. Notice that from C_P = WPP, we have PP'" =
PPY=F = PPVFY = PP since WPP is low for PP; thus, this closure property

implies that the Counting Hierarchy collapses to PP.

COROLLARY 3.4. Let 6 > 0 be a FP function. If GapP_ is closed under
decrement by 6, then C_P = WPP.

Can we compute the ¢ th smallest value of k fixed GapP functions in GapP?
The following theorem says that this is not possible, unless the Counting
Hierarchy collapses to SPP and the Counting Function Hierarchy collapses
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to FP'Y | and, if indeed GapP is not closed under this operation then these
hierarchies don’t collapse to the SPP level.

THEOREM 3.5. Let k > 2 and 1 < ¢ < k. The following conditions are
equivalent.

(i) GapP is closed under determining the ¢ th smallest out of k GapP func-
tions,

(ii) C_P = SPP,
(iii) GapP, = FP""".

PrOOF.  To show that (i) implies (ii), let L be a set in C_P. Then there
exists a function f € GapP_ such that for all z, z € L < f(z) = 0. We
define GapP functions g¢q,...,¢r and let h(x) be the ith smallest value of
gi(x), ..., gr(x). We distinguish two cases.

Case 1: i < k. Define g, =... =¢;.1=—-1,¢9; = f,and giys = ... = g4 =
1. Then we have h(x) = 0, if # € L, and h(z) = 1, if « ¢ L. This shows
L € SPP.

Case 2: © = k. Define gy = ... = g1 = —1 and g, = —f. Then we have
h(z) =0,if « € L, and h(z) = —1, if « ¢ L. Again, we have L € SPP.

The proofs of the other implications are similar to the corresponding proofs
of Theorem 3.2. O

Since Theorem 3.5 holds for every fixed ¢ and k > 2, we get the same result
for special operators: For k = 2, we get the minimum operator, when ¢z = 1,
and the maximum operator, when : = 2. For any k > 2, we get the median
operator, when ¢ = |k/2].

COROLLARY 3.6. Let k > 2. The following conditions are equivalent.
(i) GapP is closed under minimum,
(ii) GapP is closed under maximum,

(iii) GapP is closed under median of k GapP functions,

(iv) C_P = SPP.
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4. Division

The following theorem characterizes the question of whether GapP is closed
under division in terms of a collapse of some ModP classes to SPP. We con-
clude that it is unlikely that GapP is closed under division. This question
has also been considered by Gupta (1992). But he shows the result only for
division by a polynomaially bounded FP function. Note also that Theorem 4.1
is a special case of Theorem 5.4 below. We include here anyway a proof of
Theorem 4.1, because some crucial points in the proof of Theorem 5.4 can
already be explained here in the simpler case.

Clearly, by division we mean integer division |n/b|, for integers n and b # 0.

THEOREM 4.1. Let # > 2 be a FP function. GapP is closed under division
by B if and only if ModzP = SPP.

PRrROOF. Assume that GapP is closed under division by 3. Let L be
a set in ModgP, i.e., there exists a function f € #P such that for all z,
€L << f(z) #0 (mod f(z)). Define the function g by

g=1F+p-1/8] = LF/5].

By our assumption, ¢ € GapP. Let x be fixed. We can write f(z) = « -
B(x) + a, where @« > 0 and 0 < a < f(x). Then clearly, the second term
in the definition of ¢, |f/#] = a. But the first term [(f + 3 — 1)/3] is
a only when a = 0, and « 4+ 1 otherwise. Hence, we can conclude that
r€L=g(xr)=1and x ¢ L = g(x) = 0. This shows that L € SPP.

For the reverse direction, we adapt the proof of Gupta (1992). Let F be
a function in GapP. Then there exist a function f € #P and a polynomial
¢ such that for all z, F(z) = f(z) — B(x)?1=D. Observe that |F(x)/8(x)] =
| f(x)/B(x)] — B91=D=1 thus it suffices to show that | f(z)/3(z)] is in GapP.

Let A € P and p be a polynomial such that f(z) = |[{y € SPD | (z,y) €
A }||l. Consider the following set X. For any x and y, where y = p(|z|),

(z,y) € X = |{ze 2D | (2,2) e Aand 2 < y}||=0 (mod f(z)).

For any x, there are | f(x)/f(x)] many pairs (z,y) in X.
Obviously, X is in co-ModgP, and hence in SPP by assumption (recall
that SPP is closed under complementation). Therefore, there is a function
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g € GapP such that ¢g(z,y) = 1, if (z,y) € X, and g¢(z,y) = 0, otherwise.

Now, define
he)= 3 g(xy).

yexp(lzh

Obviously, h is in GapP, and we have h(x) = | f(x)/f8(x)]. O

COROLLARY 4.2. (Gupta 1992) GapP is closed under division by two if and
only if ®P = SPP.

Note that it is not known whether the collapse of a ModP class to SPP
implies that of the Counting Hierarchy to SPP, though the converse implica-
tion holds. Thus, for the evidence that GapP is not closed under division, the
collapse of a ModP class to SPP may not be as strong as that of the Counting
Hierarchy.

5. Bit Cancellation and Bit Insertion

In this section, we define a generalized operation of division and multiplication
which we call bit cancellation and bit insertion, respectively.

DEFINITION 5.1. Let n,k, and b be integers, where k > 0 and b > 2. Then
we define

(1) n* = |n/b"*1| - b + n mod b*. We say that n* is obtained from n by
canceling the kth bit of n in base b, and

(2) n* = [n/b*| - B+ + n mod b*. We say that n* is obtained from n by
inserting a bit at position k in n in base b,

where by n mod b* we mean n — |n/b*| - b*. Equivalently, n* =n+ (b—1)-
|n/bk| - b

A more intuitive explanation is the following. Let n > 0 in b-ary notation
have the form n = a-b¥'+a-b+~, wherea > 0,0 < a < b, and 0 < v < b,
Now, we cancel the kth bit (which is a) and get n* = « - b* + . When we
insert a bit at position k, we get nt = a- b"2 4+ a -V +0- V5 + 4, so in fact,
we are inserting a zero at position k.
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For negative n, the above explanation does not quite fit in some cases:
suppose n = —(a-b*+t +a-b* ++) for «, a, and v as above. When a > 0 or vy >
0, then n* = —((a+1)-b*+7), which is different from “canceling the k th bit”,
i.e., —(a-b*+~). Similarly, when v > 0, then n* = —(a-b**24+(a+1)-05+14~),
which is different from “inserting the kth bit”, i.e., —(a - R e S 7).
Keeping this in mind, we will anyway call these operations bit cancellation
and bit insertion.

Clearly, when we fix £ = 0, then canceling the kth bit of an integer n in
base b is exactly a division of n by b, and inserting a bit at position k is a mul-
tiplication of n by b. Thus, we may view these operations as generalizations
of division and multiplication.

Canceling and inserting a bit from/to a GapP function can be done in po-
lynomial time, if the function value is given. Therefore, if FPY*PY = GapP
which, by Theorem 3.2, is equivalent with PP being SPP. then GapP is cer-
tainly closed under bit cancellation and bit insertion at any polynomial-time
computable position.

PrOPOSITION 5.2. If PP = SPP, then GapP is closed under bit cancellation
and bit insertion in any base.

Our main theorems in this section are necessary conditions and sufficient
conditions for the property of GapP being closed under canceling or inserting
a bit at a fixed position. Although our theorems are formulated for some
fixed base b in which we represent numbers, one can in fact take b as a FP
function. Our main technical tool is the following lemma.

LEMMA 5.3. Let v and A be polynomially bounded FP functions and b > 2.
If MidBitPy(x) C SWPP(A), then for all #P functions f, the function h =
| f/b"+| - b is in GapP.

PrROOF. Let f € #P and let A € P and p be a polynomial such that

fla) = {y € =D ] (2,y) € A}
Consider the following sets X and Y. For any = and y, where y = p(|z|),

(r,y) € X <—

the x(z)th bit of ||{z € SP1*D | (2,2) € A and z < y }|| in base b is 0,

and
(r,y) €Y —
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the r(z)th bit of ||[{z € 271D | (2,2) € A and = < y }| in base bis b— 1.

For any z, there are | f(2)/0"®*!| many pairs (z,y) in X NY. To see this,
observe that for every b*®*'th y (in the lexicographic ordering) such that
(x,y) € A, we have (z,y) € X NY.

Obviously, X and Y are in co-MidBitP;(x(x)), and hence in SWPPy(A(x))
by assumption (recall that SWPP,(A(z)) is closed under complementation).
Therefore, X NY € SWPP,(2 - A(2)), i.e., there is a GapP function ¢ such

that @)
e i (a,y) € X NY,
g(w,y) = { 0, otherwise.

Now, define h(x) = 3, csueh (2, y). Obviously, h is in GapP and it follows
from the above discussion that h(z) = [f(x)/bF@+ | . 2N O

Note that we get the factor two in the exponent of ** simply because the
intersection of two SWPP,(\) sets is in SWPP,(2- \). If one could show that
SWPP,(A) is closed under intersection, then we could get rid of the factor
two. As a consequence, Theorem 5.4 (1) and 5.5 (1) below would become if
and only if statements (as one can see from the proofs of the corresponding
parts (2)).

Note also that Lemma 5.3 can be extended to functions f in GapP instead

of #P.

THEOREM 5.4. Let k be polynomially bounded FP function and b > 2. Then
(1) and (2) hold.

(1) If GapP is closed under canceling the kth bit in base b, then
MidBitPy(r) = SWPP,(x).

(2) If MidBitP,(x) € SWPP(|x/2]), then GapP is closed under canceling
the x th bit in base b.

PrOOF. To prove (1), assume that GapP is closed under canceling the x th
bit in base b. It suffices to show that MidBitPy(x) C SWPP,(k). Let L be a
set in MidBitPy(k), i.e., there is a function f € #P such that for all , € L
if and only if the x(x)th bit of f(x) in the base b representation is not zero.

For any z, we can write f(z) = a - 0"+ £ - b 4 4 for some o > 0,
0<a<b and0 <~y < b, We will show that there is a function h € GapP
such that

h(z) =

{ 0, ifa=0, ie,ax &L, (5.1)

b, ifa >0, ie., x€ L.
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From this, it clearly follows that L € SWPPy(k).

Define g = f+(b—1)- b and let f* and ¢* be the functions obtained from
f and g, respectively, by canceling the «th bit. We claim that h = ¢* — f*
fulfills equation (5.1).

To see this, observe that

g = a- b Ha+rb—1) b+ = (a+ec) 0 +d b+,
where

] 0,ifa=0, d o — b—1, if a =0,
TV 1ifa>0 MY TV a-1, ifa>0.

Therefore ¢* = (a4 ¢)- 0"+, and hence, h = ¢*— f* = ¢-b*, as we claimed
above.

To prove (2), assume that MidBitP,(x) € SWPP,(|x/2]). Let F € GapP.
Then there exist a function f € #P and a polynomial ¢ such that for all z,
F(z) = f(x) — b"D, Without loss of generality, we can assume that ¢(|z|) >
k(x).

Let F* and f* be the functions obtained from F' and f, respectively, by
canceling the th bit. Observe that F*(z) = f*(z) — bFD=1 i, it suffices
to show that f* € GapP.

For any z, we can write f(z) = a - 0"+ £ - b 4 4 for some o > 0,
0<a<b and 0 <y < @), We will show that f*(z) = a - ") + v is in
GapP. We do this by showing that both terms (a) a - ) and (b) v are
GapP functions. Then, clearly, also f* is in GapP.

(a) We apply Lemma 5.3 to f, x, and A = [£/2]. Then we get a GapP

function h with

_ @)+ | g2 leye) ) o bR, if x(z) is even,
h(l') Lf(l')/b J b { o - bﬁ(l’)—17 if /i(l') is odd.

Therefore, the function H(x) that is defined as h(x), if k(x) is even, and
b- h(x), otherwise, is the desired GapP function.

(b) To compute 7, we apply Lemma 5.3 to f'(x) = b- f(z) instead of
f(x), i.e., we shift f(x) by one bit, k, and A = |x/2]. This gives the GapP
function A’ (instead of h). Now, define H' analogous to H above, then we

have H'(x) = (o - b4 a) - b**). Now, observe that v = f(z) — H'(z). O

THEOREM 5.5. Let k > 0 be a polynomially bounded FP function and b > 2.
Then (1) and (2) hold.
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(1) If GapP is closed under inserting a bit at position , then MidBitP(x —
1) C SWPP(x). !

(2) If MidBitP,(x — 1) € SWPP,(|x/2|), then GapP is closed under inser-

ting a bit at position k in base b.

PrOOF. To prove (1), assume that GapP is closed under inserting a bit at
position k. Let L be a set in MidBitP(x — 1), i.e., there is a function f € #P
such that for all @, # € L if and only if the (x(x) — 1)th bit in the binary
representation of f(x) is 1.

For any z, we can write f(z) = a - 2°%) 4 q - 250)=1 4 5 for some a > 0,
a€{0,1}, and 0 < 4 < 2¢(®)-1,

Define ¢ = f + 257! and let f* and g* be the functions obtained from f
and ¢, respectively, by inserting a bit at position k. We have

= - 28t 4 a-2°7 4y,
gt = (a+a)- 27 + (1—a)- 2870 4+ .

Let h = gt — f* — 257!, Then A is in GapP and we have h(z) = a - 27,
This shows that L € SWPP(x) via h.

It should be mentioned here that when we consider any base b > 2, the
above proof can be extended to show that L € WPP. (Define g = f + (b —
1)-btand h = gt — f* —(b—1)-b"'. Then h(z) = 0, if @ = 0, and
h(z) = (b—1)- b otherwise.)

To prove (2), assume that MidBitPy(k — 1) = SWPP,(|x/2]|). Let F €
GapP. Then there exist a function f € #P and a polynomial ¢ such that for
all x, F(x) = f(z) — 04070, Without loss of generality, we can assume that
lel) > (o).

Let F* and f* be the functions obtained from F and f, respectively, by
inserting a bit at position #. Observe that F*(x) = ft(z) — b1lZD+1 e it
suffices to show that f+ € GapP.

We apply Lemma 5.3 to f, k — 1, and A = |£/2]. Then we get a GapP
function h with

o (s 9| k(x)/2] Lf(l’)/bﬁ(gg)J ), if k(x) is even,
h(x) = | f)/b | - e { e e, e e

Now, f*(x) = f(z) 4+ (b—1)- h(x), if k(x) is even, and f+(x) = f(x) + (b —
1) h(x) - b, if x(x) is odd, and therefore, f* is in GapP. O

TRecall that MidBitP and SWPP are the abbreviations of MidBitPs and SWPPs,

respectively.
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Suppose, in Theorem 5.4 (1), we not only assume the closure of GapP
under canceling the « th bit for a fixed &, but let k vary over all polynomially
bounded FP functions, then MitBitP collapses down to SWPP, and, since
PP C MidBitP, so does the whole Counting Hierarchy. The same argument
applies to bit insertion.

COROLLARY 5.6. Let b > 2. Then (1), (2), and (3) hold.
(1) If GapP is closed under bit cancellation in base b, then PP = SWPP,,

(2) if GapP is closed under bit insertion in binary representation, then

PP — SWPP,
(3) if GapP is closed under bit insertion in base b, then PP = WPP.

Next, we consider the case when x is small, where “small” means lo-
garithmically bounded. In this range for x, Theorems 5.4 and 5.5 be-
come if and only if statements. Note that if x = O(logn), then for any
b > 2, SWPPy(x) = SPP (Fenner et al. 1991), and for any prime b,
MidBitP,(x) = Mod,P (Beigel et al. 1990).

COROLLARY 5.7. Let b be prime and k > 0 be a logarithmically bounded FP
function. The following conditions are equivalent.

(i) GapP is closed under canceling the  th bit in base b,
(ii) GapP is closed under inserting a bit at position r in base b,
(iii) Mod,P = SPP.

Let us consider the case when « is large. For a function f € GapP and a
polynomial p that bounds the length of f, we call the « th bit of f a O(logn)-
highest bit of f, if 0 < p —k = O(logn). For large k, the corresponding
MidBitP classes fall together with PP (Green et al. to appear). Therefore,
when we apply Theorem 5.4 and 5.5 to large functions x, we get the following.

COROLLARY 5.8. Let b > 2. Then (1) and (2) hold.

(1) If GapP is closed under canceling a O(log n)-highest bit in base b, then
PP — LWPP,
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(2) If GapP is closed under inserting a bit at a O(log n)-highest position in
base b, then PP = LWPP.

Our last result does not use any FP function k as a pointer to some bit
position to be canceled. Instead, we want to cancel the highest bit of a given
GapP function f that is not zero. In general, we cannot expect that this
position is computable in polynomial time, unless the Counting Hierarchy
collapses down to P.

THEOREM 5.9. If GapP is closed under canceling the highest non-zero bit in
binary representation, then PP = LWPP.

PrOOF. Let L € PP, i.e., there exist a function f € #P and a polynomial
p such that for all z, f(z) < 222D and & € L if and only if f(x) > 2v(eD=1,

Let f* be the function obtained from f by canceling the highest non-zero
bit. By our assumption, f* € GapP.

Define g(z) = f(x) — f*(z). Observe that g(z) € {2°] 0 < < p(|z]) —
1} U {0} and that g(z) = 2°UPD=! = o € L.

Now, define h by

p(lz))-2 '
h(z)=g(x)- I (g(x) -2
=0
Note that h(z) = 0, if « € L, and h(z) = 2°{=D-1. Hfi'gD_Z(Zp('ggl)_l — 2%,
otherwise. Since h € GapP, we have L € LWPP. O

6. Conclusions and Open Problems

We have characterized the property of GapP being closed under decrement,
maximum, minimum, median, or division by seemingly implausible collapses
among complexity classes. It remains open to to find characterizations for the
property of GapP being closed under bit cancellation or bit insertion. One
possible approach could be to show that the classes SWPP,(k) are closed
under complementation. Then our Theorems 5.4 and 5.5 would give such
characterizations. More general, we think that it is an interesting topic for
further research to investigate in which ways one can or cannot manipulate

(the bits of ) #P or GapP functions.
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