
Functions Computable with NonadaptiveQueries to NPHarry Buhrman �CWI Amsterdam Jim Kadin yUniversity of Maine Thomas Thierauf zUniversit�at UlmAbstractWe study FPNPk , the class of functions that can be computed inpolynomial time with nonadaptive queries to an NP oracle. This ismotivated by the question of whether it is possible to compute wit-nesses for NP sets within FPNPk . The known algorithms for this taskall require sequential access to the oracle. On the other hand, there isno evidence known yet that this should not be possible with parallelqueries.We de�ne a class of optimization problems based on NP sets, wherethe optimum is taken over a polynomially bounded range (NPbOpt).We show that if such an optimization problem is based on one of theknown NP-complete sets, then it is hard for FPNPk . Moreover, wewill characterize FPNPk as the class of functions that reduces to suchoptimization functions. We will call this property strong hardness.The main question is whether these function classes are completefor FPNPk . That is, whether it is possible to compute an optimal va-lue for a given optimization problem in FPNPk . We show that these�CWI. PO Box 94079, 1090 GB Amsterdam, The Netherlands. E-mail: buhr-man@cwi.nl. Part of this research was done while visiting the Univ. Polit�ecnica de Ca-talunya in Barcelona. Partially supported by the Dutch foundation for scienti�c research(NWO) through NFI Project ALADDIN, under contract number NF 62-376. Part ofthis research was done while visiting Boston University with the support of NSF GrantCCR-8814339yDepartment of Computer Science, University of Maine, 5752 Neville Hall, Orono,Maine 04469-5752.zAbteilung Theoretische Informatik, Universit�at Ulm, Oberer Eselsberg, 89069 Ulm,Germany. E-mail: thierauf@informatik.uni-ulm.de. Part of the work done while visitingthe Department of Computer Science at the University of Rochester, Rochester, NY andthe Department of Computer Science at the University of Maine, Orono. Supported inpart by DFG Postdoctorial Stipend Th 472/1-1 and NSF grant CCR-8957604 and DAADAcciones Integradas. 1

optimization problems are complete for FPNPk , if and only if one cancompute membership proofs for NP sets in FPNPk . This indicates thatthe completeness question is a hard one.1 IntroductionA fundamental issue in the study of NP and related classes is the complexityof generating proofs that a string is a member of a given language. For NP-complete sets, it is well known that the lexicographically smallest witness ofmembership can be generated in FPNP, the class of functions computablein polynomial time with access to an oracle in NP [Va76]. For example, ifwe consider the NP-complete set SAT, the following function is in FPNP.fleft (') = 8><>: the lexicographically smallestsatisfying assignment of '; if ' 2 SAT;?; if ' 62 SAT;where ? is some special symbol to denote that a function is unde�ned at apoint. (The name fleft comes from the fact that the lexicographically smal-lest satisfying assignment of a formula is the leftmost one in the standardbinary tree to represent all possible assignments.)Krentel [Kr88] showed that every function in FPNP can be reduced tofleft , and thus fleft is complete for FPNP. His proof involved showing that theleftmost accepting path of an NP computation can be made to correspond tothe correct query path of a FPNP computation and to the leftmost satisfyingassignment in the output of Cook's reduction to SAT [Co71].While we have FPNP as an upper bound on the complexity of computingNP witnesses, we note that there are satisfying assignments that are moredi�cult to compute than the leftmost one: Toda [To90] showed that compu-ting the lexicographically middle satisfying assignments is FPPP-complete,where PP denotes probabilistic polynomial time. In this paper, we ask whe-ther there are satisfying assignments that are easier to compute than inFPNP. An interesting candidate class is FPNPk , the class of functions inFPNP that can be computed by making nonadaptive queries to NP, thatis, all the queries must be written down before any answers are receivedfrom the oracle. More speci�cally, our work is motivated by the followingquestions.(1) What is the structure of FPNPk ? What functions are in FPNPk ? Whatfunctions are hard (or complete) for FPNPk ?2

(2) Can proofs of membership for NP-complete sets (for example satisfyingassignments) be computed by functions in FPNPk ?(3) Are there classes of proofs that are easier to generate than the leftmostproof? What is the relationship between di�erent proofs? Do all proofsof membership contain the same amount of information?With respect to (1), Chen and Toda [CT93] showed many functions tobe complete for FPNPk (see also [JT93]). An example is the function thatfor any Boolean formula ' gives the supremum of the satisfying assignmentsof '. Observe that the supremum does not necessarily have to be a satisfyingassignment of '.With respect to (2) and (3), note that fleft minimizes over an exponentialrange. Intuitively, we expect a function to be easier when we optimize overa smaller range. As an example, we might ask for an satisfying assignmenthaving the maximum number of zeros. Then the range is polynomially (infact, linearly) bounded. However, such an assignment need not to be unique.We de�ne Fzero as a class of functions.1f 2 Fzero () f(') = 8>>><>>>: some satisfying assignment of 'having the maximumnumber of zeros; if ' 2 SAT;?; if ' 62 SAT:Although we expect Fzero to at least contain satisfying assignments thatare easier to compute than the left most (if there are any), we will showin Section 3 that Fzero is hard for FPNPk under some appropriate functionaltype of reduction. Moreover, we will show that FPNPk is precisely the classof functions that reduces to Fzero . Thus, although we don't know whetherFPNPk \ Fzero 6= ;, we show that at least any function that reduces to Fzerois already in FPNPk . We will call this property strong hardness. Hence. Fzerois strongly hard for FPNPk . An interesting consequence is that fleft cannotbe reduced to Fzero , unless FPNP = FPNPk . This supports the intuition thatFzero is computationally easier than fleft .In Section 4, we link the question of whether these functions are completein the classical sense { some member has to be computable in FPNPk { tothe complexity of generating proofs of membership for certain NP-complete1An alternative de�nition is in terms of multivalued functions as for example in [Se94].3

sets. For example consider the following function class.f 2 Fsat () f(') = (some satisfying assignment of '; if ' 2 SAT;?; if ' 62 SAT:We show that some function in Fzero is computable in FPNPk if and only ifsome function in Fsat is computable in FPNPk . In other words, if it is at allpossible to compute some satisfying assignment within FPNPk , then this canbe done for Fzero . Thus, loosely speaking, the \easy" assignments survivewhen going from Fsat to Fzero .The above results extend to a large class of optimization problems, thepolynomially bounded NP optimization problems , NPbOpt for short, wherewe have a polynomially bounded cost function associated with the solutionsof an NP set which we want to optimize. An example is Fzero , where we countthe number of zeros. We will show that the NPbOpt's based on one of theknown NP-complete sets are all equivalent under an appropriate functionalreducibility. Therefore, the above results for Fzero carries over to any suchNPbOpt. Examples are maximum clique, longest paths, or various versionsof the travelling salesman problem. See Section 2.2 for more examples.We note that Chen and Toda [CT91] introduced a similar concept, theNP combinatorial optimization problems, NPCOP for short. The di�erenceto an NPbOpt is that the domain of the optimization problem has to bepolynomial-time decidable. This di�erence doesn't matter when conside-ring for example the maximum clique problem, because here, the domainis simply the set of all graphs. However, Fzero is not an NPCOP unless P= NP, because here, the domain is SAT. Thus, the class of optimizationproblems introduced in this paper, NPbOpt, is the more general framework.NPSV is the class of functions that can be computed by single-valuednondeterministic polynomial-time transducers. NPSV is a subclass of FPNPk .Is it possible to compute satisfying assignments even within NPSV? Hemas-paandra et.al. [HNOS94] give a negative answer: this is not possible withinNPSV, unless the polynomial-time hierarchy collapses to the second level,i.e., Fsat \ NPSV 6= ; =) PH = �P2 .An improvement of their result to FPNPk will therefore give a negativeanswer to the completeness (in the classical sense) of functions computingsolutions to Fzero . In Section 5, we will make a �rst step by extendingtheir result to FPNPSV[1]. Very recently, this has been improved further byOgihara [Og95] to FPNPSV[c log(n)], for c < 1.4

Furthermore, we show that Fsat is strongly hard for NPSV, FPNPSV[1],and FPNPSVk under appropriate types of reducibilities, respectively. As aconsequence, we improve upon a result of Watanabe and Toda [WT93].They show that fleft cannot be reduced to Fsat , unless NP 6= co-NP. Weshow that even FPNPSV[1] cannot be reduced to Fsat , unless NP 6= co-NP.(Note that fleft is hard for FPNPSV[1].)The following is a summary of our main results:(1) We extend the work of [CT91] and show that a broad class of functions,that are interreducible, is hard for FPNPk (Theorem 3.1 and 3.2).(2) We show that these functions are unlikely to complete for FPNPk byproviding a link to the problem of generating proofs of membershipfor NP-complete sets like SAT (Theorem 4.2).(3) We will characterize FPNPk as the class of functions that is (metric)reducible to Fzero (Theorem 4.5). Furthermore, NPSV, FPNPSVk , andFPNPk are precisely the class of functions that are reducible to Fsatfor appropriate types of reducibilities, respectively (Theorem 5.5). Wewill call this property strong hardness.(4) As a consequence of the strong hardness results, we strengthen a resultof Watanabe and Toda [WT93] (Corollary 5.7).2 Preliminaries2.1 NP-Relations and Optimization ProblemsLet � = f0; 1g be an alphabet and let R be a relation on �� � ��. Thedomain of R is the set DR = f x 2 �� j 9y 2 �� xRy g. Any y 2 ��witnessing that some x is in DR is called a solution for x with respect to R.The set of all solutions for some x 2 �� with respect to R is denoted bySR(x), and SR is the set of all solutions.We say that R is a NP-relation, if the following two conditions hold.(i) There is a polynomial p such that for all x 2 DR, any solution for xhas length p(jxj), i.e., SR(x) � �p(jxj), and(ii) R is decidable in polynomial time.5

By FR, we denote the class of all functions f : �� ! SR [f?g such that forall x 2 �� f(x) = (some y 2 SR; if x 2 DR;?; otherwise.Note that there is not a unique terminology for such function classes. Theproof generating functions such as FR are called inverse functions in [WT93].Most of the classes we are considering were de�ned in [BLS84] or [Se94].Selman [Se94] denotes these classes in terms of multivalued functions . Aninclusion of two function classes here becomes a re�nement in terms ofmultivalued functions.In this paper, we investigate how hard it is to compute some solution fora given x with respect to some NP-relation, i.e., some function in FR. Forcomparing the complexity of this task for di�erent NP-relations, we need toconsider reductions between them. Here, the following question arises. Gi-ven two NP-relations R0 and R1 such that we can many-one reduce DR0 toDR1 via some function h 2 FP, where FP denotes the set of polynomial-timecomputable functions. For any x 2 DR0, can we compute a solution for xwith respect to R0 from a given solution for h(x) with respect to R1? In ge-neral, this is not known. But in some cases, there are such witness-preservingreductions. Consider for example Cook's reduction from an arbitrary NPset to SAT [Co71]. For a �xed NP machine M , for any input x for M ,Cook constructed a Boolean formula 'x such that x is accepted by M i�'x 2 SAT. And in fact, from any satisfying assignment for 'x, one cancompute in polynomial time an accepting path of M on input x.But in general, a many-one reduction doesn't respect the structure ofthe solution spaces of the instances that are mapped to each other. Itjust guarantees the existence/nonexistence of solutions. However, lookingat the many-one reductions of the NP-completeness proofs in the standardtextbooks (see for example in [BDG88, HU79]), we know that all the knownNP-complete sets in fact share the above described property with SAT.Let R be an NP-relation such that DR is NP-complete. We call Rwitness-preserving complete, if, for any NP-relation R0, there exist func-tions g, h 2 FP such that h is a many-one reduction from DR0 to DR, andfor any x 2 DR0 and any y 2 SR(h(x)), we have that g(x; y) 2 SR0(x). Thatis, g computes a witness for x given a witness for h(x). A set L is witness-preserving complete, if it has a witness-preserving complete NP-relation.Note that all sets that are isomorphic to SAT are witness-preserving NP-complete: let L be isomorphic to SAT via an isomorphism h, say, from L6

to SAT. De�ne RL by xRLy if y is a satisfying assignment for h(x). ThenRL is a witness-preserving complete NP-relation for L because for any NPset A, if f is the Cook reduction from A to SAT, then h�1 � f reduces A toL in a witness-preserving way since the Cook reduction does so. Thus, allthe known NP-complete sets are in fact witness-preserving complete.In a very general approach, Agrawal and Biswas [AB92] introduced thenotion of a universal relation, that captures the idea of witness-preservingin a very strict way. They showed that any universal NP-relation is witness-preserving complete. Since all sets that are isomorphic to SAT have a uni-versal relation, the comment in the previous paragraph also follows fromtheir result.We now turn to optimization problems associated with an NP-relation R.A function c 2 FP, c : DR � SR ! N, is called a solution cost function forR. The optimal solution cost function for R, c� : DR ! N is de�ned byc�(x) = maxf c(x; y) j y 2 SR(x) g:For any x 2 DR, we de�ne the set of optimal solutions by OptSolR;c(x) =f y 2 SR(x) j c(x; y) = c�(x) g. For any NP-relation R and any cost func-tion c for R, we say that (R; c) is an NP optimization problem, namely theproblem to compute an optimal solution for any given x 2 DR. For anyfunction f : �� ! SR [f?g, we de�nef 2 OptR;c () f(x) = (some y 2 OptSolR;c(x); if x 2 DR;?; otherwise.(R; c) is called a polynomially bounded NP optimization problem,NPbOpt for short, if there is a polynomial that bounds the solution costfunction c. Note that, from any NP set, we can derive a polynomially boun-ded NP optimization problem by taking some relation witnessing the setbeing in NP and some arbitrary polynomially bounded cost function c. Incontrast, Chen and Toda [CT91] de�ned the more restricted notion of anNP combinatorial optimization problem (NPCOP) which is de�ned similarto an NPbOpt, but with the additional constraint that the domain DR is aset in P.Next, we de�ne two operations for NP-relations: join and embedding.The join corresponds to the linear paddability operation for NPCOP's fromChen and Toda [CT91]. An NP-relation R has a join function, if thereare two functions joinR, g 2 FP such that for any x1; : : : ; xn 2 ��, if7

joinR(x1; : : : ; xn) = z and y 2 SR(z), then g(x1; : : : ; xn; y) = (y1; : : : ; yn)where yi 2 SR(xi), for i = 1; : : : ; n.That is, the join function combines several given strings into one string zin such a way that from any solution for z, we can compute solutions for thegiven strings. An even stronger version of the join function is required inthe de�nition of a universal relation by Agrawal and Biswas [AB92]. Sincethey have shown that all the known NP sets have a universal relation, inparticular, they have a join function.For example, the join function for SAT is essentially the conjunction.That is, for any two Boolean formulas '1 and '2, after renaming the va-riables so that '1 and '2 have disjoint sets of variables, joinsat('1; '2) ='1 ^ '2.For an NPbOpt (R; c) we say that the join function of R respects c, if,when we join two instances, then we can compute an optimal solution for thetwo instances from an optimal solution for the join of the instances. Moreformally, there has to exist a function g 2 FP, g : DR�DR�SR ! SR�SRsuch that for all x0, x1 2 DR and for all y 2 OptSolR;c(joinR(x0; x1)), ifg(x0; x1; y) = (y0; y1), then y0 2 OptSolR;c(x0) and y1 2 OptSolR;c(x1).We say that (R; c) has an embedding function, if there exist two func-tions e; g 2 FP, e : �� ! DR and g : �� � SR ! SR, such that there is af 2 OptR;c such that for all x 2 ��8y 2 OptSolR;c(e(x)) : g(x; y) = f(x):That is, e maps a given string x to some string z in the domain DR of Rsuch that from an optimal solution for z, one can either compute an optimalsolution for x, if x 2 DR, or detect that x 62 DR.We adapt the notion of Agrawal and Biswas [AB92] to our frameworkand call an NPbOpt (R; c) universal , if1. R is a witness-preserving complete NP-relation,2. R has a join function that respects c, and3. (R; c) has an embedding function.2.2 ExamplesFirst of all, note that all examples of Chen and Toda for NPCOP's can easilybe modi�ed to be universal NPbOpt's. They mention for example8

� Maximum Two Satis�ability, where each clause of a CNF formulacontains at most two literals,� Maximum Clique,� Minimum Coloring,� Longest Path,� 0-1 Integer Programming, and� 0-1 Travelling Salesman, where the edges have weights zero or one.These problems can be formulated as universal NPbOpt's because thereis an associated NP-complete decision problem for each of them. This,however, we expect for any interesting optimization problem, and therefore,we extend the concept of Chen and Toda. We give some examples that arenot expressible as an NPCOP unless P = NP, because the domain of theseproblems is NP-complete.� FzeroLet Rsat be the NP-relation for SAT that checks satisfying assignments, and#zero be the cost function that counts the number of zeros in a satisfyingassignment. Then (Rsat ;#zero) is an NPbOpt that requires to compute somesatisfying assignment with the maximum number of zeros, i.e., a functionfrom Fzero .The join function is the conjunction which respects #zero . Furthermore,(Rsat ;#zero) has an embedding function. Let ' = '(x1; : : : ; xn) be a Boo-lean formula and let z1; : : : ; zn+1 be new variables. De�ne�(x1; : : : ; xn; z1; : : : ; zn+1) = ' _ (z1 ^ � � � ^ zn+1):Then � 2 SAT, and if ' 2 SAT and a is a satisfying assignment with themaximum number of zeros for ', then a0n+1 is a satisfying assignment for� with the maximum number of zeros. On the other hand, if ' 62 SAT, then0n1n+1 is a satisfying assignment for � with the maximum number of zeros.Therefore, getting a satisfying assignment with the maximum number ofzeros for �, one can either get one for ' or detect that ' 62 SAT.We conclude that (Rsat ;#zero) is a universal NPbOpt.� Fmax-zero-guess 9

Fmax-zero-guess is de�ned on instances (N; x; 1m) for the standard univer-sal NP-complete set, i.e., it is asked whether the nondeterministic Turingmachine N accepts input x in at most m steps. Any nondeterministic com-putation path of N can be represented as a binary string corresponding tothe nondeterministic branch points in the computation. Fmax-zero-guess isthe class of functions that, on input (N; x; 1m), give some accepting path ofN on x with the maximum number of zeros, and are unde�ned, if there isno accepting path. Join and embedding functions are similar as for Fzero .Here, one has to manipulate the input machine N appropriately.� Unary-TSPIn unary-TSP, there is given an undirected graph G with integer weightsgiven in unary notation on the edges, so that the weights are bounded bythe size of the input. The task is to determine a traveling salesman tourin G having minimal weight.2 For the join function see [AB92]. For theembedding function, let B be the sum of the weights of the edges of G. LetG0 be the extension of G to a complete graph, where all new edges haveweight B + 1. Now, G0 clearly has a traveling salesman tour. Furthermore,if the tour with minimum weight in G0 is bounded by B, then this is also aminimum tour in G. Otherwise, there is no traveling salesman tour in G.In Section 3 and 4, we show several properties of universal NPbOpt's.Hence, in particular, this applies to all the above mentioned optimizationproblems.2.3 Functional ReducibilitiesThere are several notions of reducibility between functions. Krentel [Kr88]introduced the metric reduction. Let f , g be functions.f �FP1-T g () 9t1; t2 2 FP : f(x) = t2(x; g � t1(x)):This clearly captures the idea of being able to compute f(x) from one callto g.Watanabe and Toda [WT93] and Chen and Toda [CT91] extended thisreduction to function classes. Let G be a class of functions. We distinguishthe case that one pair of translation functions reduces f to all functions in2Note that unary-TSP is a minimization problem. By de�ning an appropriate solutioncost function, this can be easily turned into a maximization problem.10

G, or that for each function g 2 G there is a pair of translation functionsthat reduces f to g. In the �rst case, we call the reduction uniform.f �uniform-FP1-T G () 9t1; t2 2 FP 8g 2 G : f(x) = t2(x; g � t1(x));f �FP1-T G () 8g 2 G 9t1; t2 2 FP : f(x) = t2(x; g � t1(x)):We will also consider the more general type of reduction when more thanone instance is given to a function in G. That is, t1(x) produces a listof instances and t2 gets the function values of some function in G of theseinstances. This is called a truth-table reduction and denoted by �uniform-FPttand �ttFP , respectively.If G is a class of partial functions, we must deal with the case that f(x)is de�ned, while g � t1(x) is unde�ned. We call a reduction strict , denotedby f �FP-stricttt G, if there are functions t1, t2 2 FP witnessing that f �ttFP Gsuch that for all x, if f(x) is de�ned, then g is de�ned for all instancesproduced by t1(x), for all g 2 G.Let �r be any of the reducibilities de�ned here. For a class F of func-tions, we say that G is hard for F with respect to �r-reduction, if for allfunctions f 2 F , we have f �r G. This is denoted by F �r G. Furthermore,we say that G is complete for F , if in addition there is some function in Gthat is also in F , i.e., F \ G 6= ;.We also consider the case that eventually not all functions in F arereducible to G, but that any function in G can be used to compute somefunction in F . We call this a weak reduction.F �weak-FP1-T G () 8g 2 G 9t1; t2 2 FP : t2(x; g � t1(x)) 2 F:The uniform and truth-table versions of this reduction are de�ned analo-gously. The uniform weak Turing reduction was de�ned in [FHOS93].It is easy to see that all the reducibilities de�ned here are transitive, butin general, only the weak reducibilities are re
exive.Although the uniformness condition seems to be a strong restriction onthe reduction, Watanabe and Toda [WT93], using a proof technique fromGrollmann and Selman [GS88], have shown that for many function classesthese two reduction types are in fact equivalent.Lemma 2.1 [WT93] Let f be a function, R an NP-relation and c a solu-tion cost function for R. Then we have(i) f �ttFP FR () f �uniform-FPtt FR,11

(ii) f �ttFP OptR;c () f �uniform-FPtt OptR;c.The same holds for the other reducibilities de�ned above, i.e., �FP1-T ,�FP-stricttt , �FP-strict1-T , �weak -FP1-T , and �weak -FPtt .When we consider NP optimization problems that have embedding func-tions as in the previous section, then reductions to it can always be madestrict.Lemma 2.2 Let f be a function and (R; c) a universal NPbOpt. Then wehave f �ttFP OptR;c () f �FP-stricttt OptR;c.The lemma also holds for the other reducibilities de�ned above.3 Function Classes Hard for FPNPkChen and Toda [CT91] showed that linearly paddable NPCOP's are hardfor FPNPk under �FP1-T -reductions. Our �rst theorem states that this holdsas well for universal NPbOpt's, as for example Fzero . The proof is similarto that of Chen and Toda, however, we need the embedding function to getaround the di�culty that the domains of our optimization problems are inNP.Theorem 3.1 Let (R; c) be a universal NPbOpt. Then FPNPk �FP1-T OptR;c:Proof. Let f 2 FPNPk via some polynomial-time transducer T and someNP set A. Let x 2 �� be �xed. We show how to compute f(x) when gettingan arbitrary optimal solution for some instance z with respect to (R; c).Let w1; : : : ; wk be the queries of transducer T on input x to A. SinceDR is NP-complete, there is a function h 2 FP reducing A to DR. Let eand g be embedding functions for (R; c) . We use e to map all strings h(wi)to DR and then combine all the resulting strings into one string z using thejoin function, joinR, of R. That is, we de�nez = joinR(e � h(w1); : : : ; e � h(wk)):Let y 2 OptSolR;c(z). Since joinR respects c, from y we can computesolutions yi 2 OptSolR;c(e �h(wi)), for i = 1; : : : ; k. Now, g(h(wi); yi) eithergives a witness that h(wi) is in DR, and hence wi is in A, or g(h(wi); yi) isunde�ned, and hence wi is not in A.12

Thus, we can compute the answers to w1; : : : ; wk from y, and therefore,we can compute f(x). 2Our next theorem shows that any universal NPbOpt is hard for any otherNPbOpt under �weak -FP1-T -reductions, and hence, any two such NPbOpt'sare equivalent to each other. In the previous theorem it was not necessairyfor the relation R to be witness-preserving complete, but now we seem toneed this property.Theorem 3.2 Let (R0; c0) be a universal NPbOpt. Then, for any NPbOpt(R; c), we have OptR;c �weak-FP1-T OptR0;c0.Proof. We will show that for any x 2 ��, we can map x to some stringz 2 DR0 such that from an optimal solution for z with respect to (R0; c0),we can either compute an optimal solution for x with respect to (R; c) ordetect that x is not in DR.Let us de�ne the NP-relation R0 as follows. For any x 2 �� and k �p(jxj), where p is some polynomial that bounds the solution cost function c,(x; k)R0y () xRy and c(x; y) � k:Let x 2 �� be �xed and let k� be the maximum k such that (x; k) 2 DR0 .Observe that any solution for (x; k�) with respect toR0 is an optimal solutionfor x with respect to (R; c), i.e., SR0(x; k�) � OptSolR;c(x). We will showhow to compute a witness for each (x; k) 2 DR0 when getting an arbitraryoptimal solution for some instance z with respect to (R0; c0). From thesewitnesses, we output the one for (x; k�).Since R0 is an NP-relation and since R0 is witness-preserving complete,there is a function h 2 FP that reduces DR0 to DR0 in such a way that forany (x; k) 2 DR0 and from any witness for h(x; k) 2 DR0 we can compute awitness for (x; k) 2 DR0.As in the proof of Theorem 3.1, using the embedding functionand the join function for R0, we combine all the resulting stringsh(x; 1); : : : ; h(x; p(jxj)) into one string z such that from a witness forz 2 DR0 , we can compute witnesses for all h(x; k) that are in DR0 . 2Corollary 3.3 Let (R; c) and (R0; c0) be universal NPbOpt's. Then we haveOptR0;c0 �weak -FP1-T OptR;c 13

Thus all the examples of optimization problems we give in Section 2.2 areequivalent with respect to �weak -FP1-T reductions. So although Fzero mightlook as a somewhat technical problem, it is in fact equivalent to any of themore natural NPbOpt's.We remark that if we don't assume the existence of an embedding func-tion for the NPbOpt's, then the above theorems still hold, but with thecorresponding truth-table reductions, respectively.4 CompletenessIn the previous section, we established a framework for proving certainfunctions hard for FPNPk . The natural question that arises is whether thesefunctions are also complete for FPNPk . (Recall that G is complete for F if Gis hard for F and, in addition, F \G 6= ;). Chen and Toda [CT91] showedthat a randomized version of FPNPk can actually compute any NPCOP inthe following sense: for any NPCOP there is a two-place function f 2 FPNPk ,that, when given as one input the problem instance x and as the other inputsome randomly chosen string, outputs with high probability an optimal so-lution for x with respect to the given NPCOP. This result holds also forNPbOpt's.Theorem 4.1 [CT91] Let (R; c) be an NPbOpt and let e be a polynomial.Then there exist a function f 2 FPNPk and a polynomial r such that for allx 2 DR, jxj = n,Probfw 2 f0; 1gr(n) j f(x; w) 2 OptSolR;c(x) g � 1� 2�e(n):However, at present time, we do not know whether the NPbOpt resultsfrom the previous section can be extended to completeness results. Ournext theorem states that if it is at all possible to compute some satisfyingassignment with parallel queries to NP, then this is also possible withinFzero . In other words, obtaining such a completeness result is exactly ashard as any proof that one can indeed compute some satisfying assignmentin FPNPk .Theorem 4.2 Let (R; c) be an NPbOpt and R0 be a witness-preservingcomplete NP-relation. Then FR0 \ FPNPk 6= ; () OptR;c \ FPNPk 6= ;.14

Proof. Let f 2 FR0 \ FPNPk . We de�ne an NP-relation R0 as follows.For any x 2 �� and k � p(jxj), where p is some polynomial that bounds thesolution cost function c,(x; k)R0y () xRy and c(x; y) � k:Since R0 is an NP-relation and since R0 is witness-preserving complete, thereare functions h, g 2 FP such that h many-one reduces DR0 to DR0 and forany (x; k) 2 DR0 and any string z witnessing that h(x; k) 2 DR0 , g(x; k; z)is a witness that (x; k) is in DR0 .Let x 2 �� be �xed. We show that we can compute some value inOptSolR;c(x) with parallel queries to some NP set.Let k� be the maximal k such that (x; k) 2 DR0, i.e., we have c�(x) = k�.Then h(x; k�) is in DR0 and, by our assumption, z = f � h(x; k�) is somewitness for this. Hence, g(x; k�; z) is a witness that (x; k�) 2 DR0 andtherefore, we have that g(x; k�; z) 2 OptSolR;c(x). That is, we de�nef 0(x) = g(x; c�(x); f � h(x; c�(x)):It remains to show that f 0 2 FPNPk . We leave this to the reader. 2Corollary 4.3 Fsat \ FPNPk 6= ; () Fzero \ FPNPk 6= ;.On the other hand, we will show in the next theorem that all functionsthat are �FP1-T -reducible to some NPbOpt are already in FPNPk , and there-fore, together with Theorem 3.1, it follows that FPNPk can be characterizedas the class of functions that are �FP1-T -reducible to some NPbOpt. Thiscan be interpreted as a weaker form of completeness.De�nition 4.4 Let F and G be function classes. We say that G is stronglyhard for F under �r-reduction, if F = f f j f �r G g.The next theorem and corollary show that the hardness results obtainedfor NPbOpt's can indeed be strengthened to strong hardness.Theorem 4.5 Let f be a function such that f �FP1-T OptR;c, for someNPbOpt (R; c). Then f is in FPNPk .15

Proof. By Lemma 2.1, we can assume that the reduction is uniform. Letf be reducible to OptR;c via t1, t2 2 FP, i.e., we have for any x and for ally 2 OptSolR;c(t1(x)) that f(x) = t2(x; y).De�ne NP sets A and B as follows. For any x 2 ��, k � p(jxj), and i �q(jxj), where p is some polynomial that bounds the solution cost function cand q is some polynomial that bounds the length of the solutions for x withrespect to R(x; k) 2 A () 9y 2 SR(t1(x)) : c(t1(x); y) � k;(x; k; i) 2 B () 9y 2 SR(t1(x)) : c(t1(x); y) � k andthe i-th bit of t2(x; y) is a one.Let k� be the maximal k such that (x; k) 2 A. Then the i-th bit of f(x)is one, if (x; k�; i) 2 B, and zero, otherwise, for i = 1; : : : ; q(jxj). Therefore,we can compute f(x) by asking in parallel the queries (x; k) to A and (x; k; i)to B, for k = 1; : : : ; p(jxj) and i = 1; : : : ; q(jxj). Thus f 2 FPA�Bk � FPNPk .2In fact, in Theorem 4.5, it su�ces to assume that f �ttFP OptR;c.Taking Theorem 4.5 and Theorem 3.1 together, we obtain the alreadymentioned characterization of FPNPk as the class of functions that is reducibleto any universal NPbOpt.Corollary 4.6 Let (R; c) be a universal NPbOpt. ThenFPNPk = f f j f �FP1-T OptR;c g = f f j f �ttFP OptR;c g:Corollary 4.7 FPNPk = f f j f �ttFP Fzero g.It follows that if any FPNP-complete function is reducible to, say Fzero ,then this function can already be computed with parallel queries to NP, andhence FPNP would be the same as FPNPk .Corollary 4.8 Let (R; c) be a universal NPbOpt. Thenfleft �FP1-T OptR;c () FPNPk = FPNP () PNP = PNPk :16

5 Negative Results and NPSVFor certain subclasses of FPNPk , one can show that it is not possible tocompute satisfying assignments, unless the polynomial-time hierarchy, PH,collapses. Hemaspaandra et al. [HNOS94] showed such a result for the classNPSV.De�nition 5.1 A nondeterministic Turing transducer N is single-valued,if, for each input x, N generates the same output on all accepting com-putations. NPSV is the class of partial functions that can be computed bysingle-valued nondeterministic polynomial-time transducers. FPNPSV[k]k de-notes the class of functions that is computable in polynomial time with knonadaptive queries to an NPSV oracle.Note that NPSV � FPNPk , since with the help of an NP set one canget in parallel all the bits of an NPSV function value. In fact, FPNPk =FPNPSVk [FHOS93].Theorem 5.2 [HNOS94] If NPSV \ Fsat 6= ;, then PH = �P2 .The following lemma will enable us to extend this result to FPNPSV[1].Lemma 5.3 Let R be an NP-relation. ThenFR \ FPNPSV[1] 6= ; () FR \ NPSV 6= ;:Proof. If FR \ FPNPSV[1] = ; then the lemma clearly holds. So assume thatf 2 FR \ FPNPSV[1]. Let M be a FP machine and N be an NPSV machinewitnessing that f 2 FPNPSV[1]. We have to show that FR \ NPSV 6= ;.Consider the following machine N 0 on input x. First, N 0 simulatesM oninput x until M queries it's oracle. Let qx be the query. Then N 0 assumesthat the answer to the query is ? and continues the simulation of M . Let ybe the output of M . If xRy holds, then N 0 outputs y and halts. (Note thatthis is a deterministic computation up to here.) Otherwise, N 0 simulatesN on input qx. If N rejects, then so does N 0. If N accepts, let z be thevalue computed by N . Now, N 0 continues the simulation ofM with z as theanswer to qx. Note that z is the answer that M actually gets when askingits oracle. Therefore, N 0 will generate the same output as M at the end ofthe computation.Clearly, N 0 is an NPSV machine. Furthermore, if x 62 DR, then N 0generates no output. If x 2 DR, then N 0 outputs some y 2 SR(x). 217

Corollary 5.4 If Fsat \ FPNPSV[1] 6= ; then PH = �P2 .This result has been improved recently by Ogihara [Og95] who showedthat Fsat \ FPNPSV[c log(n)] = ;, for c < 1, unless the polynomial-timehierarchy collapses. It is an interesting open problem whether these resultscan be extended to even larger function classes.The following theorem shows that for any witness-preserving completeNP-relation R, FR is hard, and, in fact, even strongly hard for NPSV,FPNPSV[1] and FPNPSVk with respect to di�erent types of reductions.Theorem 5.5 Let R be a witness-preserving complete NP-relation.(i) NPSV = f f j f �FP-strict1-T FR g = f f j f �FP-stricttt FR g,(ii) FPNPSV[1] = f f j f �FP1-T FR g,(iii) FPNPSVk = f f j f �ttFP FR g.Proof. (i) Let f be in NPSV and let N be an NPSV machine for f .Consider the following NP-relation RN . For x; y 2 ��, where jyj � p(jxj)and p is some polynomial that bounds the the running time of NxRNy () y is a computation path of N on xon which N produces an output.Since R is a witness-preserving complete NP-relation, there exist two func-tions t1, t2 2 FP such that t1 maps any x from the domain of RN to thedomain of R and for any solution y for t1(x), i.e., t1(x)Ry holds, t2(x; y)gives a solution for x, i.e., xRN t2(x; y) holds. Clearly, from t2(x; y) onecan compute f(x) in polynomial time. Furthermore, the reduction (t1; t2) isstrict.For the other direction, let f be a function that is �FP-stricttt -reducibleto FR via the functions t1, t2 2 FP. Consider the following NP machine Non input x. First, N computes the queries t1(x) = (w1; : : : ; wk) and thenguesses solutions y1; : : : ; yk for them with respect to R. If wiRyi for i =1; : : : ; k, then N outputs t2(x; y1; : : : ; yk).Since the reduction is strict, there will be a path where N �nds solutionsfor all w1; : : : ; wk. Furthermore, for every k-tuple of solutions y1; : : : ; yk,t2(x; y1; : : : ; yk) will give the same value, namely f(x). Hence, N is single-valued and computes f . 18

The inclusion from left to right of (ii) and (iii) follows by an easy modi-�cation of the argument for (i). In fact, we get the more general result thatFPNPSV[k]k � f f j f �k-ttFP FR g, for every k 2 FP.For the reverse inclusion of (ii), let f be a function that is �FP1-T -reducibleto FR via the functions t1, t2 2 FP. Consider the following NP machine Non input x. First, N computes t1(x) and then guesses a solution y for itwith respect to R. If t1(x)Ry, then N outputs t2(x; y).Clearly, N is a NPSV machine that outputs f(x) if it is de�ned. Now aFP machine with N as an oracle can compute f(x) by producing the sameoutput as N on x when it is de�ned, and t2(x;?), otherwise.For the reverse inclusion of (iii), let f be a function that is �ttFP -reducibleto FR via the functions t1, t2 2 FP. We show how to compute f withparallel queries to NP. Let x 2 �� be �xed and let w1; : : : ; wk be the queriesproduced by t1(x). By asking the wi's to DR, we can �nd out which onesof them actually have a solution with respect to R. Suppose l of w1; : : : ; wkare in DR, where 0 � l � k. Observe that an NP machine knowing l canactually compute (on some path) the wi's in DR together with some solutionfor them, and therefore, via t2 also f(x). Since there are only k possibilitiesfor l, i.e. polynomially many, we can de�ne an NP set that, for each l, refersto the bits of f(x), similar as in the proof of Theorem 4.5. All together, wecan compute f(x) by asking polynomially many queries in parallel to DRand the latter NP set. 2Corollary 5.6 Fsat is strongly hard for NPSV and FPNPSV[1], but not com-plete for these classes for �FP-strict1-T - and �FP1-T -reduction, respectively, un-less the polynomial-time hierarchy collapses.Watanabe and Toda [WT93] asked whether one can compute the leftmostsatisfying assignment of a formula from any other satisfying assignment.Recall that fleft is a FPNP-complete function. They showed that this is veryunlikely to be true: if fleft �FP-stricttt Fsat , then NP = co-NP. However, bythe characterizations obtained in Theorem 5.5, we have that the assumptionmade is equivalent to NPSV = FPNP. Thus we can now strengthen the resultof Watanabe and Toda [WT93] by weakening the assumption to NPSV =FPNPSV[1], which still leads to the same consequence.Corollary 5.7 Let R be a witness-preserving complete NP-relation.(i) If FPNPSV[1] �FP -stricttt FR, then NP = co-NP.19

(ii) For any k > 1, if FPNPSV[k]k �FP1-T FR, then PNP[l]k = PNP[1] for anyl � 1, and hence the polynomial-time hierarchy collapses.(iii) Let (R0; c) be a universal NPbOpt. If OptR0;c �FP1-T FR, then PNPk =PNP[1], and hence the polynomial-time hierarchy collapses.Proof. (i) From the assumption together with Theorem 5.5 (i), we con-clude that FPNPSV[1] = NPSV. As a special case, when considering onlycharacteristic functions, it follows that PNPSV[1] = NP. Now, observe thatco-NP � PNPSV[1].(ii) From the assumption together with Theorem 5.5 (ii), we concludethat FPNPSV[k]k = FPNPSV[1], and hence PNPSV[k] = PNPSV[1]. Now, theclaim follows since PNPSV[l]k = PNP[l]k for any l � 0 [FHOS93].(iii) Follows from a similar argument as in (ii) together with Theorem 3.1and the transitivity of the �FP1-T -reduction. 2AcknowledgementsWe want to thank Manindra Agrawal and Somenath Biswas for helpful dis-cussions. The referee comments helped a lot to improve the representationof the paper.References[AB92] M. Agrawal, S. Biswas. Universal Relations. In Proc. 7th Struc-ture in Complexity Theory Conference, pages 207{220, 1992. Toappear in Information and Computation.[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I.EATCS Monographs in Theoretical Computer Science. Springer-Verlag, 1988.[BLS84] R. Book, T. Long, A. Selman. Quantitative relativizations ofcomplexity classes. SIAM Journal on Computing 13(3):461-487,1984.[Co71] S. Cook. The Complexity of Theorem-Proving Procedures. InProc. 3rd ACM Symposium on Theory of Computing, pages 151{158, 1971. 20

[CT91] Z. Chen and S. Toda. On the Complexity of Computing OptimalSolutions. In International Journal of Foundations of ComputerScience 2:207-220, 1991.[CT93] Z. Chen and S. Toda. An Exact Characterization of FPNPk . Ma-nuscript, 1993.[FHOS93] S. Fenner, S. Homer, M. Ogiwara, and A. Selman. On UsingOracles That Compute values. In Proc. 10th Annual Symposiumon Theoretical Aspects of Computer Science (STACS), 398{407,1993. To appear in SIAM Journal on Computing .[GS88] J. Grollmann and A. Selman. Complexity Measures for Public-Key Cryptosystems. SIAM Journal on Computing 17:309{335,1988.[HNOS94] L. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. Com-puting Solutions Uniquely Collapes the Polynomial Hierarchy. InAlgorithms and Computaation, International Symposium ISAAC'94, Springer Verlag LNCS 834, pages 56{64, 1994. To appear inSIAM Journal on Computing .[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory,Languages, and Computation. Addison-Wesley, 1979.[JT93] B. Jenner and J. Tor�an. Computing Functions With ParallelQueries to NP. Theoretical Computer Science 141, 175{193, 1995.[Kr88] M. Krentel. The Complexity of Optimization Problems. Journalof Computer and System Sciences 36(3):761{767, 1988.[Og95] M. Ogihara. Functions Computable with Limited Access to NP.Information Processing Letters 58:35-38, 1996.[Se94] A. Selman. A taxonomy of complexity classes of functions. Jour-nal of Computer and System Science 48:357{381, 1994.[To90] S. Toda. The complexity of �nding medians. Proc. 31st IEEEAnnual Symposium on Foundations of Computer Science, 778{787, 1990.[Va76] L. Valiant. The Relative Complexity of Checking and Evaluating.Information Processing Letters 5:20{23, 1976.21

[WT93] O.Watanabe and S. Toda. Structural Analysis on the Complexityof Inverse Functions. Mathematical Systems Theory 26:203{214,1993.

22

