
Nonrelativizing Separations

Harry Buhrman� Lance Fortnowy Thomas Thieraufz
CWI Dept. of Computer Science Abt. Theoretische Informatik

University of Chicago Universität Ulm

PO Box 94079 1100 E. 58th St. Oberer Eselsberg
1090 GB Amsterdam Chicago, IL 60637 89069 Ulm

The Netherlands USA Germany

Abstract

We show thatMAEXP, the exponential time version of

the Merlin-Arthur class, does not have polynomial size cir-

cuits. This significantly improves the previous known result

due to Kannan since we furthermore show that our result

does not relativize. This is the firstseparationresult in com-

plexity theory that doesnotrelativize. As a corollary to our

separation result we also obtain thatPEXP, the exponen-

tial time version ofPP is not inP=poly.

1 Introduction
Baker, Gill and Solovay [BGS75] noticed that the re-

sults proven in computational complexity theory relativize,

i.e. the proofs go through virtually unchanged if all of the

machines involved have access to the same information via

an oracle. They then developed relativized worlds where

P = NP andP 6= NP and thus argued that the current tech-

niques in complexity theory could not settle this question.

More than two decades later, relativization still plays

in important role in complexity theory. Though no longer

believed to be any form of an independence result, they do�Email: buhrman@cwi.nl. URL: http://www.cwi.nl/˜buhrman. Par-

tially supported by the Dutch foundation for scientific research (NWO)

by SION project 612-34-002, and by the European Union through Neu-

roCOLT ESPRIT Working Group Nr. 8556, and HC&M grant nr.

ERB4050PL93-0516.yEmail: fortnow@cs.uchicago.edu.

URL: http://www.cs.uchicago.edu/˜fortnow. Work done while on leave at

CWI. Email: fortnow@cs.uchicago.edu. Supported in part byNSF grant

CCR 92-53582, the Dutch Foundation for Scientific Research (NWO) and

a Fulbright Scholar award.zEmail: thierauf@informatik.uni-ulm.de. URL:

http://hermes.informatik.uni-ulm.de/ti/Personen/tt.html.

help us decide where and how to put our efforts into solving

problems in complexity theory. It is still true that virtually

all of the theorems in computational complexity theory that

have reasonable relativizations do relativize (see [For94]).

But we do have a small number of exceptions that arise

from the area of interactive proofs. These results have pre-

viously always taken the form of collapses such asIP =
PSPACE [LFKN92, Sha92],MIP = NEXP [BFL91] and

PCP(O(1); O(log n)) = NP [ALM +92].

In this paper we give the first reasonable nonrel-

ativizing separation results. Namely, we show that

there exist languages inMAEXP, a one-round Merlin-

Arthur game [BM88] with an exponential-time verifier,

that cannot have polynomial-size circuits, in other words,

MAEXP 6� P=poly. On the other hand, we then cre-

ate a relativized world where everyMAEXP language has

polynomial-size circuits, i.e.,MAEXP � P=poly.

Paul, Pippenger, Szemerédi and Trotter [PPST83] show

a separation of nondeterministic linear time from determin-

istic linear time where one can create a relativized world

where these two classes coincide. However, both the sepa-

ration and the oracle heavily depend on the machine model

where our results are model independent.

We can strengthen our oracle to work forMIPEXP, the

languages accepted bymultiple prover interactive proof

systems [BGKW88] with an exponential-time verifier. In

fact, besides having small circuits, relative to our oracle

MIPEXP languages can be accepted inPNP and in�P.

Since these classes are contained inMIPEXP, we get a rel-

ativized world where

MIPEXP = P=poly \ PNP \ �P:
This contrasts greatly with the situation in the unrelativized

world where we have

PNP [�P � PSPACE� EXPSPACE� NEEXP= MIPEXP;
where NEEXP is nondeterministic double exponential

time.

Our proof thatMAEXP does not lie inP=poly uses the

result of Babai, Fortnow, Nisan and Wigderson [BFNW93]

that if EXP has polynomial-size circuits thenEXP = MA.

Since this is the only part of the proof that does not rel-

ativize, our paper gives the first oracle where this Babai-

Fortnow-Nisan-Wigderson result does not relativize.

As a corollary to our separation result we also obtain the

separation betweenPEXP, the exponential time version of

PP, andP=poly. Finding nonrelativizing results like these

allows us to better understand the importance and limita-

tions of relativization and gives us new ideas on how to

prove other nonrelativizing results.

2 Preliminaries
We usehx1; : : : ; xki to be any polynomial-time com-

putable and invertible tupling function. For a languageA,

we denote the characteristic function ofA asA(:).
We assume the reader familiar with basic notations in

complexity theory and classes such asP andNP. We let

EXP = DTIME[2nO(1)] andNEXP = NTIME[2nO(1)].
The classP=poly consists of languages accepted by

a family of polynomial-size circuits or equivalently a

polynomial-time Turing machine given a polynomially-

lengthadvicethat depends only on the length of the input.

More formally,L 2 P=poly if there existA 2 P and a

polynomially length bounded functionh : N 7! �� such

that for allx x 2 L () hx; h(jxj)i 2 A:
The valueh(jxj) is called theadvice for strings of lengthjxj.

Let #M(x) represent the number of accepting compu-

tations of a nondeterministic Turing machineM(x), and#MR(x) the number of rejecting computations ofM(x).
A languageL is in�P if there exists a polynomial-time

nondeterministic Turing machineM such that for allx,x 2 L () #M(x) is odd:
A languageL is in PP if there exists a polynomial-time

nondeterministic Turing machineM such that for allx,x 2 L () #M(x) > #MR(x):
PEXP is the exponential-time version ofPP, i.e., the

polynomial-time nondeterministic Turing machine in the

definition ofPP is nondeterministic exponential-time.

A languageL is in MA if there exists a probabilistic

polynomial time Turing machineM and a polynomialq(n)
such that� x 2 L) 9y 2 �q(jxj) Pr(M(x; y) accepts) � 2=3,

and� x 62 L) 8y 2 �q(jxj) Pr(M(x; y) accepts) � 1=3.

This corresponds to the Merlin-Arthur games due to Babai

and Moran [BM88].

We also consider multiple-prover interactive proof sys-

tems as developed by Ben-Or, Goldwasser, Kilian and

Wigderson [BGKW88]. In this model, the verifier can ask

questions of several provers that are unable to communi-

cate with each other. Babai, Fortnow and Lund [BFL91]

show that the class,MIP, of languages provable by such

systems is equal toNEXP.

We useMAEXP andMIPEXP to represent the Merlin-

Arthur games and multiple-prover interactive proof sys-

tems where we allow the verifier to use time2nk for some

fixedk. In particular, the provers can send messages up to

this length to the verifier.

3 A Nonrelativizable Separation
The computational power of polynomial-size circuits,

P=poly, is an interesting issue. In particular, whether one

can solve all sets inNP within P=poly is still an open ques-

tion, although there are strong indications that this is not

possible: otherwise the polynomial hierarchy collapses to�p2 [KL80].

2

With respect to absolute separations, Kannan [Kan82]

showed that there are sets inNEXPNP that cannot be com-

puted by polynomial-size circuits.

Theorem 3.1 (Kannan)
NEXPNP \ coNEXPNP 6� P=poly.

We improve Kannan’s result and show that there are sets

in MAEXP that cannot be computed by polynomial-size cir-

cuits. We use the following result of Babai, Fortnow, Nisan

and Wigderson [BFNW93].

Theorem 3.2 (BFNW)
EXP � P=poly =) EXP = MA.

In order to prove the separation result we will also need

the following lemma.

Lemma 3.3
NPNP = MA =) NEXPNP = MAEXP.

Proof: Let A be a set inNEXPNP, and let this be

witnessed by an alternating Turing machine that runs in

time 2p(n) for some polynomialp. Consider the following

padded version ofA:A0 = fhx; 02p(jxj)i j x 2 Ag:
It follows thatA0 is in NPNP and by assumption is inMA.

This however implies that removing the padding yields thatA 2 MAEXP. 2
We are now ready to prove our separation result.

Theorem 3.4 MAEXP 6� P=poly.

Proof: Assume to the contrary thatMAEXP � P=poly.

SinceEXP � MAEXP it follows that

EXP � P=poly;
and we can apply Theorem 3.2. Hence, we have

EXP = MA:
SinceNPNP � EXP, we get that

NPNP � MA:
By Lemma 3.3 this yields

NEXPNP � MAEXP � P=poly:

But this contradicts Theorem 3.1. 2
The same proof works forMAEXP \ coMAEXP instead

of just MAEXP. Then we need the form of Kannan’s result

as stated in Theorem 3.1.

Corollary 3.5 MAEXP \ coMAEXP 6� P=poly.

Vereshchagin [Ver92] shows thatMA is in PP. By

padding analogously to the proof of Lemma 3.3 this im-

plies thatMAEXP � PEXP.

Corollary 3.6 PEXP 6� P=poly.

4 Relativized Collapse
In this section we show that our separation result from

the previous section doesnot relativize. This is the first

known example of a non-relativizing separation result.

Theorem 4.1 There exists an oracleA such that

MAA
EXP � PA=poly:

Proof: Let Mi be an enumeration of potential verifiers,

i.e., probabilistic Turing machines, that run in time2n. It is

sufficient to encode just these machines: for verifiers that

use time2nk we can use padding to reduce the language to

a verifier that uses2n time.

We first describe how to encode inputs of a single

length. Later we will show how to combine lengths. For

inputs of lengthn, we will encode languages proven to ver-

ifiersM1; : : : ;Mn.

The strings in our oracleA will be of the formhr; i; xi,
wherer 2 �5n, 1 � i � n andx 2 �n. Consider the

following requirement:(Rr;i;x) : 9y 2 �2n Pr(MAi (x; y) accepts) � 23() hr; i; xi 2 A:
Our construction ofA will guarantee that for alli, one of

the following two conditions is fulfilled:

(i) either for somen andx 2 �n,13 < maxy2�2n Pr(MAi (x; y) accepts) < 23
(ii) or, for all n, there is somer 2 �5n such that for allx 2 �n, Rr;i;x holds.

3

Note that this suffices to prove the theorem. Ther
will act as the advice for strings of lengthn. To accept

a language inMAA
EXP with verifierMi, a polynomial-time

machine on inputx just needs to ask the oracleA abouthr; i; xi.
Let Sr = fhr; i; xi j 1 � i � n; x 2 �ng. Dur-

ing the course of the construction we will mark somer
as frozenmeaning that we guarantee thatA(hr; i; xi) will

not change. We will also mark tupleshi; xi asforcedif we

guarantee thatMAi (x; y) accepts for somey.

The construction works in stages. Initially, in stages =0, A = ;, none of ther is frozen and none of thehi; xi are

forced.

Stages. Pick the first unfrozenr. Does there exist an

unforcedhi; xi, a setB � Sr, and ay such thatPr(MA[Bi (x; y) accepts) � 23 ?� If not, then encode all strings inSr with thisr accord-

ing to condition (ii) from above. That is, puthr; i; xi
intoA for all forcedhi; xi. Then halt the construction.

Thisr will serve as the advice.� Otherwise pick the first suchhi; xi,B andy. LetA =A [B, markhi; xi as forced and freezer.
Consider the computation paths ofMAi (x; y) for this

newA. Assume we haveT paths each occurring with

equal probability. For each pathp let Qp be set of

queries made along this path. Freeze all of ther such

that jfp j Sr \Qp 6= ;gj � T6 � 22n (1)

and go to the next stage.

We need to show that the construction will terminate

and that either condition (i) or (ii) is fulfilled.

Since the setsSr are disjoint and there are at most2n
queries on each path, by Equation (1) at most1 + 6 � 23nr’s can be frozen in each stage. There aren2n tuples so at

most(1+6 � 23n)n2n < 25n r’s are frozen. Since we have25n r’s, we will run out of tupleshi; xi before we run out

of r’s.

Now we argue that for each inputx and machinei we

properly encodedhr; i; xi using ther from the construction

above. We have two cases.

Case 1: tuple hi; xi is not forced. LetA0 be the value

of A right before the last stage of the construction. Sincehi; xi is not forced, there is no setB � Sr andy that causesMA0[Bi (x; y) to accept. But the finalA does equalA0 [B
for someB � Sr. SoMAi (x; y) still will not accept and

remains properly encoded.

Case 2: tuplehi; xi is forced. LetA0 be the value ofA
at the end of the stage whenhi; xi was forced. We have

that somey will causeMA0i (x; y) to accept. Each stage

can only add strings toA in oneSr and there are at mostn2n + 1 stages. After the stage wherehi; xi was forced,

we will only add strings inSr that affect the probability

of MAi (x; y) accepting by at most 16�22n . Thus the total

probability of acceptance can go down by at most16 � 22n (n2n + 1) < 16 :
Hence for the final oracleA we have thaty causesMAi (x; y) to accept with probability at least 1/2. Thus we

have maxy2�2n Pr(MAi (x; y)) � 12
fulfilling either condition (i) or (ii).

We still need to make our oracle work for all input

lengths. For this, we replacer with r1#r2# : : :#rn,

where, fori < n, ri plays the role ofr for strings of lengthi, andrn is what we vary for this proof. 2
We can generalize this result.

Theorem 4.2 There exists a relativized world where

MIPEXP = P=poly \ PNP \ �P

Proof Sketch: To getMIPEXP, we just replace the single

prover messagey in the above proof by the strategy of the

provers.

To get�P we encodeMAi (x) accept if there are an odd

number ofr such thathr; i; xi is inA.

To getPNP we pick ourr in lexicographical order and

then find r in PNPA by using binary search to find the

largest tuplehr; i; xi in A. We then user as our advice.2
5 Conclusion

We give the first reasonable nonrelativizing separation

showing thatMAEXP is not computable by polynomial-size

4

circuits. We believe our techniques give us a foot in the

door that may open to many other exciting separations.

References
[ALM +92] S. Arora, C. Lund, R. Motwani, M. Sudan,

and M. Szegedy. Proof verification and hard-

ness of approximation problems. InProceed-

ings of the 33rd IEEE Symposium on Foun-

dations of Computer Science, pages 14–23.

IEEE, New York, 1992.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-

deterministic exponential time has two-prover

interactive protocols. Computational Com-

plexity, 1(1):3–40, 1991.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and

A. Wigderson. BPP has subexponential sim-

ulations unless EXPTIME has publishable

proofs. Computational Complexity, 3:307–

318, 1993.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and

A. Wigderson. Multi-prover interactive

proofs: How to remove intractability assump-

tions. InProceedings of the 20th ACM Sym-

posium on the Theory of Computing, pages

113–131. ACM, New York, 1988.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativiza-

tions of the P = NP question.SIAM Journal

on Computing, 4(4):431–442, 1975.

[BM88] L. Babai and S. Moran. Arthur-Merlin games:

a randomized proof system, and a hierarchy

of complexity classes.Journal of Computer

and System Sciences, 36(2):254–276, 1988.

[For94] L. Fortnow. The role of relativization in com-

plexity theory. Bulletin of the European As-

sociation for Theoretical Computer Science,

52:229–244, February 1994.

[Kan82] R. Kannan. Circuit-size lower bounds and

non-reducibility to sparse sets.Information

and Control, 55:40–56, 1982.

[KL80] R. Karp and R. Lipton. Some connections

between nonuniform and uniform complexity

classes. InProceedings of the 12th ACM Sym-

posium on the Theory of Computing, pages

302–309. ACM, New York, 1980.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and

N. Nisan. Algebraic methods for interac-

tive proof systems. Journal of the ACM,

39(4):859–868, 1992.

[PPST83] W. Paul, N. Pippenger, E. Szemerédi, and

W. Trotter. On determinism versus non-

determinism and related problems. InPro-

ceedings of the 24th IEEE Symposium on

Foundations of Computer Science, pages

429–438. IEEE, New York, 1983.

[Sha92] A. Shamir. IP = PSPACE.Journal of the

ACM, 39(4):869–877, 1992.

[Ver92] N. Vereshchagin. On the power of PP. InPro-

ceedings of the 7th IEEE Structure in Com-

plexity Theory Conference, pages 138–143.

IEEE, New York, 1992.

5

