
The Satis�ability Problem forProbabilisti Ordered Branhing ProgramsManindra Agrawal �Dept. of Computer SieneIndian Institute of TehnologyKanpur 208016, India Thomas ThieraufAbt. Theoretishe InformatikUniversit�at Ulm89069 Ulm, GermanyAbstratWe show that the satis�ability problem for bounded-error proba-bilisti ordered branhing programs is NP-omplete. If the error isvery small, however (more preisely, if the error is bounded by thereiproal of the width of the branhing program), then we have apolynomial-time algorithm for the satis�ability problem.1 IntrodutionBranhing programs are an interesting omputational model to investigate.One reason for this is the tight relationship of the size of a branhing programto the spae needed by (nonuniform) Turing mahines [Mas76℄ (see [BS90℄).Another reason is the use of restrited kinds of branhing programs in ap-pliations, as, for example, iruit veri�ation (see [Bry92, MT98, Weg00℄for good overviews).De�nition 1.1 A (deterministi) branhing program B in n variablesx1; : : : ; xn is a direted ayli graph with the following type of nodes. Thereis a single node of in-degree zero, the initial node of B. All nodes have out-degree two or zero. A node with out-degree two is an internal node of B andis labeled with a variable xi, for some i 2 f1; : : : ; ng. One of its outgoingedges is labeled with 0, the other with 1. A node with out-degree zero is a�nal node of B. The �nal nodes are labeled either with aept or rejet.The size of a branhing program is the number of its nodes.�Researh done in part while visiting the university of Ulm, Germany. Supported inpart by an Alexander von Humboldt fellowship.1



A branhing program B in n variables de�nes an n-ary boolean fun-tion from f0; 1gn to f0; 1g in the obvious way: for an assignment a =(a1; : : : ; an) 2 f0; 1gn, we walk through B, starting at the initial node, al-ways following the (unique) edge labeled ai when the node has label xi, untilwe reah a �nal node. If the �nal node is an aepting node, we de�neB(a) = 1, and B(a) = 0 otherwise.The restritions on branhing programs often onsidered bound the num-ber of times a variable an be tested.De�nition 1.2 A branhing program is alled read-one, if, on eah pathfrom the initial node to a �nal node, every variable ours at most one asa node label.Of partiular interest are read-one branhing program where the vari-ables are read in a ertain �xed order.De�nition 1.3 A ordered branhing program (also alled ordered binarydeision diagram, OBDD for short) is a read-one branhing program suhthat there is a permutation � on f1; : : : ; ng suh that, if a path leads from anode labeled xi to a node labeled xj, then �(i) < �(j).An advantage of ordered branhing programs is that one an eÆientlymanipulate them. For example, given two ordered branhing programs (ofthe same order), one an easily onstrut a new one omputing the onjun-tion of the given ones (viewed as boolean funtions on the input variables).Also, there are fast algorithms (in fat, linear time algorithms) to hek theequivalene of two ordered branhing programs.The main drawbak of ordered branhing programs is their limited om-putational power. For example, multipliation requires exponential size or-dered branhing programs [Bry91℄. (For more lower bounds see for example[BRS93, BHR95, Juk89, KMW91, Pon95, Weg88℄.) It is therefore of greatinterest to determine whether there is some less restritive model in orderto be able to ompute more funtions within small size, but, at the sametime, to maintain all the nie properties ordered branhing programs have.For example read-one branhing programs, in general, do not seem tobe appropriate: not only do many of the lower bound proofs for orderedbranhing programs work as well in the read-one model, also, in general,one annot ombine them aording to boolean operations: there are exam-ples of funtions that have small read-one branhing programs, but theironjuntion requires exponential size.2



In the literature one an �nd many interesting restrited branhing pro-gram models. We refer the interested reader to [MT98, Weg00℄. In thispaper we onsider probabilisti branhing programs introdued by Ablayevand Karpinski [AK96℄.De�nition 1.4 Probabilisti branhing programs are branhing programswith extra probabilisti nodes that have no variable label and unboundedfan-out.On some input, when we reah a probabilisti node, the edge on whihto proeed is hosen under uniform distribution out of all outgoing edges. Aprobabilisti branhing program aepts its input if the probability of reahingthe aepting node is at least 1=2. Otherwise the input is rejeted.A probabilisti branhing program has bounded error if there is an Æ > 0suh that the aeptane probability is either at most 1=2 � Æ or at least1=2 + Æ on all inputs. The error � is 1=2� Æ in this ase.The error is one-sided, if, in addition, rejeted inputs have aeptaneprobability 0.We use BP-OBDD as a short hand for bounded-error probabilisti or-dered branhing programs.Ablayev and Karpinski [AK96℄ exhibit a funtion f that requiresexponential-size read-one branhing programs, whereas f an be omputedby polynomial-size BP-OBDDs.Another example is Permutation-Matrix, the problem to deidewhether a given n � n 0-1-matrix is a permutation matrix, i.e., whetherthere is preisely one 1 in every row and every olumn. The problemPermutation-Matrix requires exponential-size nondeterministi read-one branhing programs [Juk89, KMW91℄, whereas it an be omputedby polynomial-size BP-OBDDs [Sau98℄.We add a further example to this list: the Clique-Only funtion.This was independently observed by M. Sauerho� (personal ommunia-tion). Given the adjaeny matrix of a graph G with n nodes and a k � n.One has to determine whether G has a k-lique and the lique edges are theonly edges of G. Clique-Only requires exponential-size nondeterministiread-one branhing programs [BRS93℄. We show that it an be omputedby polynomial-size BP-OBDDs.On the other hand, the Indiret-Storage-Aess and the Hidden-Weighted-Bit funtion require exponential-size BP-OBDDs [Sau97℄(see [Abl97, Sau98℄ for more lower bounds).It is easy to see that bounded-error probabilisti ordered branhing pro-gram are losed under boolean ombinations. So the most interesting open3



question with respet to this model is to ask for eÆient satis�ability- orequivalene tests. In this paper, we solve this open problem. However, wegive a negative answer with respet to the most interesting ases in Setion 4:the satis�ability problem for bounded-error probabilisti ordered branhingprograms is NP-omplete. Only if the error of the branhing program isbounded by the reiproal of its width we have a polynomial-time algorithmfor the satis�ability problem. This is shown in Setion 5. Beause the equiv-alene problem is reduible to the satis�ability problem, this also provides aneÆient equivalene test for probabilisti ordered branhing program withsmall error.We start by providing some basi fats about probabilisti branhingprograms in the next setion.2 Basi PropertiesOrdered branhing programs, OBDDs, are somehow similar to �nite au-tomata, with the di�erene that branhing programs are a nonuniformmodel and that the input might be read in a di�erent order than justfrom left to right. Many of the onstrution, however, done with �nite au-tomata an be adapted to ordered branhing programs. For example theyhave a anonial form [Bry86℄: for any ordered branhing program there isa uniquely determined minimal equivalent one with respet to this order.Sine the minimization proess an be arried out eÆiently, this also pro-vides a polynomial-time equivalene test. Another example is the onstru-tion of the ross produt of two suh programs that obey the same order.This essentially allows to ombine ordered branhing programs aording toboolean operations [Bry86, Bry92℄.We sketh the onstrution for two BP-OBDDs B0 and B1 that obeythe same order. Assume that B0 and B1 are layered suh that there arealternating probabilisti and deterministi nodes, and that furthermore allvariables appear on every path, so that the same variable is tested in everydeterministi layer. Edges go only from one level to the next. This aneasily be ahieved by introduing redundant nodes. These are nodes whih,in ase of a deterministi node, have both its edges going to the same node.In ase of a probabilisti node there is only one edge that goes to somenode with probability 1. Now we de�ne program B: it has the same layersas B0 and B1, the nodes of eah layer are the ross produt of the nodesof B0 and B1 at the orresponding layer. Edges are de�ned suh that Bsimulates B0 and B1 in parallel. That is, there is an edge from node (u; v)4



to (u0; v0) in sueeding levels of B if there is an edge from u to u0 in B0and from v to v0 in B1. The size of B is bounded by jB0jjB1j and thenumber of paths that reah a node multiply: if some input x is aeptedby B0 with probability p0 and by B1 with probability p1, then B on input xreahes the (aept,aept)-node with probability p0p1, the (aept,rejet)-node with probability p0(1 � p1), the (rejet,aept)-node with probability(1� p0)p1, and the (rejet,rejet)-node with probability (1� p0)(1� p1).Using the ross produt, one an ahieve probability ampli�ation forBP-OBDDs. Let B be suh a program in n variables that omputes somefuntion f with error 1=2 � Æ. That is,Prob[B(x) = f(x)℄ � 1=2 + Æ:We apply the above ross produt onstrution t times with B = B0 =B1. This yields program Bt that onsists of t fators B. The aeptaneof Bt is de�ned aording to a majority vote on its t fators. The sizeof Bt is bounded by jBjt. Sine t is in the exponent, we have to hoose tonstant in order to keep Bt within size polynomial in jBj. Therefore, bystandard arguments (for example using Cherno�-bounds), we an amplifythe orretness of B from 12 + Æ to 1� �, for any onstant 0 < � < 1=2.Lemma 2.1 ([Sau98℄) Let B be a BP-OBDD that omputes some fun-tion f with error 1=2 � Æ and let 0 < � < 1=2. Then there is a BP-OBDDof size polynomial in jBj that omputes f with error �.As a �rst appliation we show that BP-OBDDs an be ombined aord-ing to boolean operations.Lemma 2.2 BP-OBDDs (with the same order) an be ombined in polyno-mial time aording to any boolean operation.Proof. BP-OBDDs an be omplemented by exhanging aepting andrejeting states. Therefore it remains to show how to onstrut the onjun-tion of two BP-OBDDs B0 and B1 with n variables. By Lemma 2.1, we anassume that the error of eah is at most 1=4.The idea for onstruting a BP-OBDD that omputes B0 ^ B1 is thesame as for deterministi OBDDs: assume that B0 and B1 are layered suhthat deterministi and probabilisti node alternate and that all variablesour on every path. Then we an build the ross produt B = B0�B1 andde�ne the (aept,aept) node as the aepting node of B and the otherleafs as rejeting nodes. 5



Let a 2 �n. If a is aepted by both, B0 and B1, then B aepts a withprobability at least (3=4) (3=4) = 9=16. On the other hand, if a is rejetedby B0 or B1, then B aepts a with probability at most 1=4. �3 The Computational PowerAs already mentioned, there are some funtions that an be omputed bysmall BP-OBDDs but require exponential size ordered (in fat, read-one)branhing programs. In this setion we give some examples to demonstratehow branhing programs an use randomization.Although polynomial size BP-OBDDs annot multiply [AK98℄ they annevertheless verify multipliation. That is, given x, y, and z they an hekwhether xy = z.Theorem 3.1 BP-OBDDs an verify multipliation with one-sided errorand within polynomial-size.Proof. Given n-bit numbers x and y and 2n-bit number z. Small branhingprograms annot handle suh numbers. Instead, we do omputationsmodulosome small prime p.For example it is easy to onstrut an ordered branhing program thatomputes (x mod p) in the sense that there are p �nal nodes numbered0; : : : ; p � 1 suh that the program ends up in node (x mod p). Based onthis, we onstrut an ordered branhing program Bp(x; y; z) that hekswhether xy � z (mod p):Program Bp starts by omputing (x mod p). It then reads the bits of y =yn�1 � � � y0. Sine(x mod p) y � n�1Xi=0(x mod p) 2iyi (mod p);it an also ompute (xy mod p). Now it remains to ompute (z mod p) andto ompare it with (xy mod p). The size of Bp is O(p2n). Note that Bp isordered.If indeed xy = z, then Bp will aept for all p. On the other hand, ifxy 6= z then B an aept anyway for some prime p, beause we ould stillhave that xy � z (mod p) in this ase. Sine these numbers are boundedby 22n, there are at most 2n primes where our test an fail.6



Our �nal program B therefore probabilistially branhes to pro-grams Bp1 ; : : : ; Bp4n , where p1; : : : ; p4n are the �rst 4n prime numbers.Eah of those heks whether xy � z (mod pi). If xy = z, thenProb[B(x; y; z) aepts ℄ = 1. Otherwise Prob[B(x; y; z) aepts ℄ � 1=2.By the Prime Number Theorem p4n is polynomially bounded in n.Therefore B has polynomial size. �Another example is provided by the Clique-Only funtion, whih wasindependently observed by M. Sauerho� 1 (personal ommuniation). Reallthat on input of a graph G and a k, we have to deide whether G has a k-lique and no other edges outside the lique.Theorem 3.2 Clique-Only has polynomial-size BP-OBDDs with one-sided error.Proof. Let A be an adjaeny matrix of a graph G with n nodes, andk � n. Graph G onsists only of a k-lique i�(i) there exist k rows suh that eah ontains preisely k�1 ones and theremaining rows are all zero, and(ii) any two nonzero rows must be idential exept for the positions wherethey interset the main diagonal.Condition (i) is easy to hek, even for deterministi OBDDs. The vari-able order is row-wise, i.e., x1;1 < x1;2 < � � � < xn;n�1 < xn;n. Therefore itremains to hek ondition (ii) with an BP-OBDD that has the same order,and then apply Lemma 2.2.Suppose we add a 1 at the diagonal positions of the nonzero rows of A.Then ondition (ii) says that the resulting nonzero rows must be idential.Let r1; : : : ; rn denote the rows of A and interpret them as binary numbers.Introduing a one at the diagonal position of nonzero row rj orresponds toadding 2n�j to rj . Therefore it suÆes to hek that for any two onseutivenonzero rows, say rj and rk, we haverj + 2n�j = rk + 2n�k: (1)We onstrut a deterministi OBDD Bp that veri�es equation (1) modulosome small prime p. Program Bp looks for the �rst nonzero row, say j andomputes s = (xj + 2n�j mod p) by doing a binary ount modulo p as in1In fat, Sauerho� onsiders the slightly more triky ase that only the upper triangularpart of the (symmetri) adjaeny matrix is given as input.7



the previous theorem. Then Bp heks for eah forthoming nonzero row kthat xk + 2n�k = s. (again by ounting modulo p to determine the value(xk + 2n�k mod p)). The size of Bp is O(n2p2).Now we an again use the same tehnique as in Theorem 3.1 to obtaina polynomial-size BP-OBDD that heks ondition (ii). �4 NP-Complete Satis�ability ProblemsIn this paper we are mainly interested in satis�ability and equivalene prob-lems. Note that the satis�ability problem is at most as hard as the equiv-alene problem, sine satis�ability asks for (not) being equivalent with theall-zero funtion.Consider a read-one branhing program. Here, the satis�ability problemis trivial sine it is enough to hek that there is a path from the initial tothe aepting node. It is well known that already for the extension to read-twie branhing programs, the satis�ability problem is NP-omplete. Onlyin the restrited ase that there are a onstant number of layers of orderedbranhing programs, all respeting the same order (so alled k-OBDDs), thesatis�ability problem stays in P [BSSW98℄.The above reahability argument still works for nondeterministi read-one branhing programs. (Also the argument in [BSSW98℄ for k-OBDDsgoes through.) However, this is not lear for probabilisti read-one branh-ing programs, not even for ordered ones. The task here is to �nd an inputthat is aepted with high probability by suh a program B. What we ando is the following: for every given input a 2 f0; 1gn we an determine howmany paths in B lead to the aepting node, respetively, to the rejetingnode. That is, we an ompute Prob[B aepts a℄ in polynomial time. Thesatis�ability problem for probabilisti read-one branhing programs (withunbounded error) an be stated as9a : Prob[B aepts a℄ � 1=2:Therefore it is in NP. It is also NP-omplete:Proposition 4.1 The satis�ability problem for probabilisti ordered branh-ing programs (with unbounded error) is NP-omplete.Proof. We provide a redution from CNF-Sat. Let F = Vmi=1 Ci bea CNF-formula with m lauses C1; : : : ; Cm. We onstrut a probabilistiordered branhing program BF suh thatF 2 Sat () 9a : Prob[BF aepts a℄ � 1=2:8



Let Bi be a deterministi ordered branhing program that aepts iflause Ci is satis�ed on a given input. Program BF is onstruted as follows.The initial node of BF is a probabilisti node that branhes 2m times. Ofthe 2m edges, m lead to the initial nodes of programs Bi. The remaining medges go diretly to the rejeting node.It follows that BF aepts input a if and only if all the programs Biaept (reall that these are deterministi), whih is only possible when asatis�es F . �When onsidering the ase of bounded error , there is a subtlety on howto de�ne the satis�ability problem preisely: let B be a probabilisti orderedbranhing program and �x the error to � = 1=4. Then B aepts an input a,i� Prob[B aepts a℄ � 3=4. Additionally we also would have to hek that,in fat, B has bounded error on all inputs. However, already this latterproblem is oNP-omplete.Proposition 4.2 Given a probabilisti ordered branhing program B andan � > 0. The problem to deide whether B is of bounded error � is oNP-omplete.Proof. The argument is essentially the same as for Proposition 4.1. Con-sider the ase � = 1=4. Construt BF as above but with 4m�4 edges leavingthe initial node and 3m � 4 of them going diretly to the rejeting node.Then we haveF 2 Sat () 9a : 1=4 < Prob[BF aepts a℄ < 3=4: �Hene, eÆient satis�ability algorithms an only exist for the promiseversion of the problem: given B and Æ > 0, we take as a promise that B is infat a probabilisti ordered branhing program with aeptane probabilitybounded away from 1=2 by Æ. With this assumption we want to deidewhether there exists an input a suh that Prob[B aepts a℄ � 1=2 + Æ. Ifthe promise is not true, then we an give an arbitrary answer.However, (unfortunately, from a pratial point of view) even the promiseversion of the satis�ability problem for BP-OBDDs is NP-omplete.Theorem 4.3 The satis�ability problem for BP-OBDDs is NP-omplete.Proof. Manders and Adleman [MA78℄ have shown that some spei� Dio-phantine equations so alled binary quadratis, areNP-omplete. More pre-isely, the following set Q de�ned over the natural numbers isNP-omplete:Q = f (a; b; ) j 9x; y : ax2 + by =  g:9



As a slight generalization of Theorem 3.1, BP-OBDDs an verify suhbinary quadratis. That is, the setQ0 = f (a; b; ; x; y) j ax2 + by =  gan be aepted by a polynomial-size BP-OBDD, all it B.For �xed a; b; , we an onstrut a BP-OBDD Bab from B that om-putes the subfuntion of B with a, b, and  plugged in as onstants. Reallthat B is deterministi exept for the root node. Therefore we an ob-tain Bab by reduing B appropriately. For example, to �x variable x1 to a1in B, we onstrut Bx1=a1 as follows: eliminate all nodes labeled x1 in Band rediret edges to suh a node w to the node that follows the a1-edgeof w.For all natural numbers a; b; , we have that(a; b; ) 2 Q () Bab is satis�able:This proves the theorem. �Corollary 4.4 The equivalene problem for BP-OBDDs is oNP-omplete.5 An EÆient Satis�ability Test for BP-OBDDswith Small ErrorOrdered branhing programs an be layered : by introduing redundantnodes we an ahieve that every variable ours on every path of the pro-gram. Then all nodes that test the same variable have the same distane tothe root, they form a layer of the program. The maximum number of nodesin a layer is alled the width of the program.We an extend these notions to BP-OBDDs: here we also have proba-bilisti layers that ontain probabilisti nodes only. Then we require thatdeterministi and probabilisti layers alternate. The width is again the max-imum size of a layer.The main result in this setion is an eÆient satis�ability test for BP-OBDDs that have small error, namely, error bounded by 1=(width + 2).That is, we onsider the following problem:Bounded-Width-BP-OBDD-SatGiven a BP-OBDD B with error � and widthW suh that � < 1=(W+2).Deide whether B is satis�able. 10



Theorem 5.1 Bounded-Width-BP-OBDD-Sat 2 P.Proof. Let B be some BP-OBDD with n variables x1; : : : ; xn, width Wand error � < 1=(W + 2).The Model. As desribed above, we an assume that B is layered, sothat probabilisti and deterministi layers alternate. We number the layersaording to their distane to the root. The root layer (whih is a singlenode) has number 0.We will modify B and thereby hange the probabilities a probabilistinode branhes to its suessors. In the beginning, all probabilities have theform 1=p if a node has p suessors. Sine we will also get other rationalnumbers as probabilities, we generalize the BP-OBDD model and write theprobabilities on the edges, for example as pairs of integers in binary repre-sentation.Outline of the Algorithm. We want to �nd out whether B is satis�able,i.e., whether there exists an input suh that B aepts with probabilitygreater than 1 � �. We transform B layer by layer, starting at the initialnode, i.e. with layer ` = 0 and B0 = B. Suppose we have reahed layer ` � 0and let B` denote the branhing program onstruted so far. Program B`has the following properties whih are invariants of our onstrution:(I1) B` is deterministi up to layer `�1, and idential to B from layer `+1downwards,(I2) the error of B` is bounded by �,(I3) the width of B` is at most W + 1, and(I4) B` is satis�able i� B is satis�able.In general, B` aepts only a subset of the strings aepted by B. Nev-ertheless, we ensure property (I4) whih is enough to hek the satis�abilityof B. In partiular, the resulting branhing program, after we have proessedthe last level, is a deterministi ordered branhing program. Sine the sat-is�ability problem for ordered branhing programs is simply a reahabilityproblem on a direted graph, this will prove our theorem.
11
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Figure 1: Three onseutive layers of B`.The Transformation of Layer `. We now desribe how to proesslayer ` � 0. If layer ` is deterministi then de�ne B`+1 = Bl and pro-eed to the next layer. So let layer ` be a probabilisti layer of B`. Weonsider three onseutive layers as shown in �gure 1. Let eah layer havethe maximum number of nodes.2Layer ` onsists of probabilisti nodes u1, u2, : : : , uW+1. We an indu-tively assume that the part of Bl from the initial node to the u-nodesis deterministi.Layer `+ 1 onsists of deterministi nodes v1, v2, : : :, vW whih all querythe same variable, say xt, for some t.Layer `+ 2 onsists of probabilisti nodes w1, w2, : : :, wW .These nodes are onneted as follows.2If there are fewer nodes in some layer, we an add dummy nodes that lead to rejetionwith probability 1. 12
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(a)Figure 2: (a) All possible ways of getting from ui to wk inB` when variable xthas value b. (b) In the modi�ed program, node ui is deterministi and leadsto the new node vbi if xt has value b. From vbi we get to wk with probabilityqb;i;k = Psl=1 pi;jl, whih is preisely the probability to reah wk from uiin B`. Therefore the modi�ed program is equivalent to B`.u-nodes with v-nodes: eah node ui is onneted to all the nodes vj withthe edge between them having probability pi;j (in ase ui is not on-neted to some node vj , we take the probability pi;j to be zero). Wehave Pj pi;j = 1 for eah 1 � i �W + 1.v-nodes with w-nodes: the deterministi node vj is onneted tonodes we(j;0) and we(j;1) via edges labeled 0 and 1 respetively.Now we modify the u- and v-nodes and the edges going out from them.Figure 2 shows the hanges at a fragment of B`.Changing u-Nodes. Our �rst step is to make the nodesu1; u2; : : : ; uW+1 deterministi. For this we introdue 2(W + 1) new nodesat layer ` + 1, all them v01 , v11 , v02 , v12 , : : :, v0W+1, v1W+1 (these nodes willbe probabilisti) that replae the old v-nodes. The u-nodes get label xt, the13



variable queried by the old v-nodes, and we put the b-edge of ui to node vbi ,for b 2 f0; 1g.Changing v-Nodes. Next, we introdue an edge from node vbi to thenode wk in layer ` + 2 and assign probability qb;i;k to it suh that qb;i;k ispreisely the probability to reah wk from ui in B` if variable xt has value b.This is ahieved by summing over all probabilities pi;j suh that node vjleads to node wk for xt = b, i.e.,qb;i;k = Xjwe(j;b)=wk pi;j: (2)Finally, delete all the old v-nodes and edges adjaent to them.The branhing program onstruted so far is equivalent to B`: the prob-ability to reah a node wk has not hanged and, in partiular, the errorprobability is the same as in B`, i.e., at most �.Merging v-Nodes and w-Nodes. Now we have two onseutive lay-ers of probabilisti nodes. We an merge the layer of w-nodes into thev-nodes and hange the probabilities on the edges going out from v-nodesappropriately suh that the previous probabilities to reah a node in thelayer below the w-nodes is not altered. Then we still have 2(W +1) v-nodesand no more w-nodes. Let B 0̀ be the branhing program onstruted so far.A Problem and its Solution. If we would just use this proess toeliminate all the probabilisti nodes from B`, we might end up with anexponential number of nodes in the �nal branhing program. So we haveto redue the number of v-nodes in B 0̀ . More preisely, we promised tomaintain property (I3) whih does not hold for B 0̀ .The idea now is to use the fat that we only want to know whether B`is satis�able: we an throw out some v-nodes from B 0̀ as long as we anguarantee that the redued branhing program is still satis�able if B 0̀ issatis�able.We show that we an redue the number of v-nodes to at mostW + 1. Then the resulting branhing program, B`+1, ful�lls the invariants(I1), : : : , (I4) given in the outline of the onstrution above. In partiular,the width of B`+1 is bounded byW+1. Hene this ompletes the desriptionof the algorithm. 14
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Figure 3: Program B 0̀ on input ab. Part a leads to vi, whih branhes tothe nodes in the next level with probabilities qi;1; : : : ; qi;W , respetively. Thelatter nodes aept b with probabilities y1; : : : ; yW , respetively. Thereforeab is aepted by B 0̀ with probabilityPWj=1 qi;jyj.Reduing the Number of v-Nodes. Let us rename the v-nodesbak to v1; : : : ; v2(W+1). Reall that there are no probabilisti nodes abovethe v-nodes. Therefore, B 0̀ is satis�able i� there is a v-node vi suh thatthe aeptane probability of vi on some input is at least 1� �. Also, eahv-node has aeptane probability of either at least 1 � � or at most � onany input.For node vi, let qi;k be the probability to reah the k-th node in thenext layer (note that qi;k is independent of the input) as shown in �gure 3.We interpret these probabilities as a point qi = (qi;1; : : : ; qi;W )T in the W -dimensional vetor spae over the rationals, QW .Any input for the probabilisti OBDD B 0̀ an be split into two parts ab.The �rst part a is used in the upper deterministi part, until some v-node isreahed, say vi. Consequently, the seond part b is used below the v-nodes.Now, let yb = (y1; : : : ; yW )T 2 QW be the aeptane probabilities of bwhen starting at the nodes in the layer below the v-nodes. Then, with aleading to node vi, we haveProb[B 0̀ aepts ab℄ = qi � yb:15



Therefore B 0̀ is satis�able i� there exist i and b suh that qi � yb � 1 � �.To see this, note that we an take any a that leads to suh a node vi. Thenab is aepted by B 0̀ .Suppose now that there are two v-nodes vi and vj suh that qi �yb � 1��and qj � yb0 � 1 � �, for some b and b0. Then there are at least two inputsthat are aepted by B 0̀ , one via vi and one via vj. In this ase we an deleteone of vi or vj from B 0̀ 3, and still maintain the property that the resultingbranhing program is satis�able if and only if B 0̀ is.If we were able to eÆiently detet this ase, then we ould delete all butone of the v-nodes. Unfortunately we don't know how to do so. Instead,we tighten the ondition to delete a v-node. This will lead to the linearprogramming problem (4) below that an be solved eÆiently. Thereby weend up with more than one remaining v-node, but, as we will show, with atmost W + 1 however.Instead of tightening the above ondition for deleting a v-node, we dotwo relaxation steps of its negation: we keep node vi if vi aepts some band all other vj rejet every b0.The �rst relaxation is to hange the universal quanti�er for b0 into anexistential one, and to unify b and b0. That is, we keep node vi if vi aeptssome b that is rejeted by all other v-nodes.Criterion to keep a node vi: there exists a yb suh that vi isthe only v-node that has aeptane probability qi � yb � 1� �.In other words, we keep vi if the following system of inequalities has asolution yb for some b: qi � yb � 1� �; (3)qj � yb � �; for j 6= i:The seond relaxation step is to make the above ondition aessible forlinear programming: instead of probability vetors yb, that are assoiatedwith some b, we onsider vetors y 2 (Q \ [0; 1℄)W . That is, we onsiderproduts qi �y that we all pseudo-aeptane probabilities, beause y mightnot our as a probability vetor yb for any b. But learly, the range of yinludes all the atually appearing probabilities yb.We relax inequalities (3) and get a linear program: a v-node vi is theonly one with pseudo-aeptane probability 1� � if the following system of3deleting , say, vi means to rediret the inoming edges of vi to the rejeting node, andto anel vi and its outgoing edges from B 0̀ .16



linear inequalities has a solution y = (y1; : : : ; yW ) 2 QW :qi � y � 1� �;qj � y � �; for j 6= i, and (4)0 � yk � 1; for 1 � k �W:After deleting a v-node for whih the system (4) has no solution, werepeat the above proess again for the remaining v-nodes, until system (4)has a solution for every remaining v-node. We show next that the numberof remaining v-nodes an be at most W + 1.Bounding the Number of the Remaining v-Nodes. Letv1; v2; : : : ; vr be the v-nodes that remain after the above proedure, wherer � 2(W + 1). Let q1; q2; : : : ; qr be the assoiated probability vetors, and,furthermore, let yi be a vetor that satis�es the above system of inequali-ties (4) for vi.Consider the set Q = fq1; q2; : : : ; qrg. We laim that Q is aÆnely inde-pendent in QW , that is, the points in Q span a (r�1)-dimensional subspaeof QW (see [Gr�u67℄ for a referene). Sine there an be at most W + 1aÆnely independent points in QW , it follows that r �W + 1.By Lemma 5.2 below, to prove our laim that Q is aÆnely independent,it suÆes to show that for any S � Q there exists an aÆne plane thatseparates S from Q � S (i.e., the points in S lie on one side of the planewhereas the points in Q�S lie on the other). We an assume that jSj � r=2(otherwise replae S by Q� S).The aÆne plane an be de�ned as the set of points x 2 QW that ful�llthe equation hS � x = 1� 1W + 2 ; wherehS = Xqj2S yj :For any point qi 2 S we have:hS � qi � yi � qi � 1� � > 1� 1W + 2 :
17



For any point qi 2 Q� S we have:hS � qi = Xqj2S yj � qi� � jSj� � r2� � (W + 1)< W + 1W + 2= 1� 1W + 2 :This proves our laim.The Running Time. To see that our algorithm runs in polynomialtime, we note that the system (4) of linear inequalities an be solved inpolynomial-time using Khahian's algorithm [Kha79℄.A more subtle point we have to take are of is the size of the probabil-ity numbers that we write on the edges of our branhing programs: theyshould be represented with only polynomially many bits (in the size of BP-OBDD B).Beause all numbers are between zero and one, it suÆes to bound thedenominators. In the beginning, in the given BP-OBDD, all probabilitiesare of the form 1=m, where m � W . Let p1; : : : ; pt be all primes up to W .If prime pi ours in the prime fatorization of an m as above, then itsexponent is bounded by logpi W . We show that in the prime fatorization ofthe denominators at the end of the onstrution, the exponent of prime piis bounded by 2n logpi W . Sine we onsider only t � W primes, it followsthat the denominators are bounded by W 2nW , whih an be representedwith polynomially many bits.In eah round, there are two steps where we hange the probabilities:1. in the sum in equation (2). The new denominator is the least ommonmultiple of all the denominators in that sum. Considering its primefatorization, the upper bound on the exponent of eah prime remainsthe same as before.2. when we merge the v-nodes and the w-nodes, we have to multiply twoprobabilities and add, maybe several. Just as before, addition doesn'tmatter. For a multipliation, one fator is a probability from a v-node18



to a w-node whih we have already hanged, the other fator omesfrom the branhing probability of a w-node whih is still from theinput branhing program B. Hene, a multipliation may add anotherlogpi W to the urrent exponent of prime pi.Sine B has depth 2n, we have up to 2n rounds of this onstrution. There-fore, the exponent of prime pi is bounded by 2n logpi W as laimed above.We onlude that our algorithm runs in polynomial time.Now Lemma 5.2 below ompletes the proof of the theorem. �Lemma 5.2 Let Q � Qm suh that for every S � Q there is an aÆneplane hS that separates S from Q� S. Then Q is aÆnely independent.Proof. Let Q = fq1; : : : ; qrg. By de�nition, Q is aÆnely dependent ifthere exist �1; : : : ; �r that are not all zero, suh that Pri=1 �i qi = 0 andPri=1 �i = 0.We embed Q in Qm+1 by mapping qi to q0i = (qi; 1). Let Q0 denote theembedding of Q in Qm+1. Then we have that Q is aÆnely dependent i� Q0linearly dependent.Corresponding to an aÆne plane that separates S from Q� S, we nowhave a hyperplane that separates S0 from Q0 � S0. Namely, for the aÆneplane hS � x = d, where x 2 Qm, we take the hyperplane (hS ;�d) � x = 0,where x 2 Qm+1.Now, suppose that Q0 is linearly dependent. This implies that there are�1; : : : ; �r 2 Q suh that not all of them are zero andrXi=1 �i q0i = 0: (5)Let S0 be the set of those q0i suh that �i � 0 and let hS0 be the hyperplanethat separates S0 from Q0 � S0. By equation (5) we have0 = hS0 � ( rXi=1 �i q0i) (6)= rXi=1 �i (hS0 � q0i) (7)Now observe that eah term in equation (7) is non-negative and at leastone term is non-zero. To see this note that if �i � 0 then q0i 2 S0 andhene hS0 � q0i > 0. On the other hand, if �i < 0 then q0i 2 Q0 � S0 and19



hene hS0 � q0i < 0. Therefore this latter sum annot be zero and we have aontradition. We onlude that Q must be aÆnely independent. �Note that we annot push a BP-OBDD with too large error into the rangeof Theorem 5.1 by the standard ampli�ation tehnique. This is beausethere we use the ross-produt onstrution whih inreases the width ofthe resulting BP-OBDD. In the spei� BP-OBDDs presented in Setion 3and Theorem 4.3 there is an alternative way of ampli�ation: we ouldhoose more primes. But again this inreases the width of the resulting BP-OBDD. More preisely, onsider the BP-OBDDs that verify multipliationor binary quadratis. For eah prime p, the sub-OBDD that veri�es theequation modulo p has width p2. So if we verify equations modulo the �rstk primes p1; : : : ; pk, then the width of the resulting BP-OBDD isW = kXi=1 p2i � k3:The error � an be as large as �(n=k). Hene we get� � n=W 1=3 > 1=W 1=3 > 1=(W + 2):This shows that neither the above polynomial-time algorithm an be gen-eralized to signi�antly larger error bounds, nor an the NP-ompletenessproof be generalized to signi�antly smaller errors, unless P = NP. It re-mains an open question to settle the satis�ability problem for errors in therange O( 1W 1=3 ) \ !( 1W ).The equivalene problem for BP-OBDDs an be redued to the satis-�ability problem: let B0 and B1 be two BP-OBDDs, then B0 6� B1 i�B = B0 � B1 is satis�able. Program B an be onstruted by Lemma 2.2.Therefore we also get an eÆient algorithm for (the promise version of) theequivalene problem for BP-OBDDs of small error. Note that the widthof B is bounded by the produt of the widths of B0 and B1 and the errorssum up.Corollary 5.3 The equivalene problem for BP-OBDDs of width W witherror � is in P, provided that 2� < 1=(W 2 + 2).AknowledgmentsWe would like to thank Somenath Biswas, Harry Buhrman, Lane Fortnow,Johen Messner, Jaobo Toran, and Klaus Wagner for helpful disussions.20
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