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tWe show that the satis�ability problem for bounded-error proba-bilisti
 ordered bran
hing programs is NP-
omplete. If the error isvery small, however (more pre
isely, if the error is bounded by there
ipro
al of the width of the bran
hing program), then we have apolynomial-time algorithm for the satis�ability problem.1 Introdu
tionBran
hing programs are an interesting 
omputational model to investigate.One reason for this is the tight relationship of the size of a bran
hing programto the spa
e needed by (nonuniform) Turing ma
hines [Mas76℄ (see [BS90℄).Another reason is the use of restri
ted kinds of bran
hing programs in ap-pli
ations, as, for example, 
ir
uit veri�
ation (see [Bry92, MT98, Weg00℄for good overviews).De�nition 1.1 A (deterministi
) bran
hing program B in n variablesx1; : : : ; xn is a dire
ted a
y
li
 graph with the following type of nodes. Thereis a single node of in-degree zero, the initial node of B. All nodes have out-degree two or zero. A node with out-degree two is an internal node of B andis labeled with a variable xi, for some i 2 f1; : : : ; ng. One of its outgoingedges is labeled with 0, the other with 1. A node with out-degree zero is a�nal node of B. The �nal nodes are labeled either with a

ept or reje
t.The size of a bran
hing program is the number of its nodes.�Resear
h done in part while visiting the university of Ulm, Germany. Supported inpart by an Alexander von Humboldt fellowship.1



A bran
hing program B in n variables de�nes an n-ary boolean fun
-tion from f0; 1gn to f0; 1g in the obvious way: for an assignment a =(a1; : : : ; an) 2 f0; 1gn, we walk through B, starting at the initial node, al-ways following the (unique) edge labeled ai when the node has label xi, untilwe rea
h a �nal node. If the �nal node is an a

epting node, we de�neB(a) = 1, and B(a) = 0 otherwise.The restri
tions on bran
hing programs often 
onsidered bound the num-ber of times a variable 
an be tested.De�nition 1.2 A bran
hing program is 
alled read-on
e, if, on ea
h pathfrom the initial node to a �nal node, every variable o

urs at most on
e asa node label.Of parti
ular interest are read-on
e bran
hing program where the vari-ables are read in a 
ertain �xed order.De�nition 1.3 A ordered bran
hing program (also 
alled ordered binaryde
ision diagram, OBDD for short) is a read-on
e bran
hing program su
hthat there is a permutation � on f1; : : : ; ng su
h that, if a path leads from anode labeled xi to a node labeled xj, then �(i) < �(j).An advantage of ordered bran
hing programs is that one 
an eÆ
ientlymanipulate them. For example, given two ordered bran
hing programs (ofthe same order), one 
an easily 
onstru
t a new one 
omputing the 
onjun
-tion of the given ones (viewed as boolean fun
tions on the input variables).Also, there are fast algorithms (in fa
t, linear time algorithms) to 
he
k theequivalen
e of two ordered bran
hing programs.The main drawba
k of ordered bran
hing programs is their limited 
om-putational power. For example, multipli
ation requires exponential size or-dered bran
hing programs [Bry91℄. (For more lower bounds see for example[BRS93, BHR95, Juk89, KMW91, Pon95, Weg88℄.) It is therefore of greatinterest to determine whether there is some less restri
tive model in orderto be able to 
ompute more fun
tions within small size, but, at the sametime, to maintain all the ni
e properties ordered bran
hing programs have.For example read-on
e bran
hing programs, in general, do not seem tobe appropriate: not only do many of the lower bound proofs for orderedbran
hing programs work as well in the read-on
e model, also, in general,one 
annot 
ombine them a

ording to boolean operations: there are exam-ples of fun
tions that have small read-on
e bran
hing programs, but their
onjun
tion requires exponential size.2



In the literature one 
an �nd many interesting restri
ted bran
hing pro-gram models. We refer the interested reader to [MT98, Weg00℄. In thispaper we 
onsider probabilisti
 bran
hing programs introdu
ed by Ablayevand Karpinski [AK96℄.De�nition 1.4 Probabilisti
 bran
hing programs are bran
hing programswith extra probabilisti
 nodes that have no variable label and unboundedfan-out.On some input, when we rea
h a probabilisti
 node, the edge on whi
hto pro
eed is 
hosen under uniform distribution out of all outgoing edges. Aprobabilisti
 bran
hing program a

epts its input if the probability of rea
hingthe a

epting node is at least 1=2. Otherwise the input is reje
ted.A probabilisti
 bran
hing program has bounded error if there is an Æ > 0su
h that the a

eptan
e probability is either at most 1=2 � Æ or at least1=2 + Æ on all inputs. The error � is 1=2� Æ in this 
ase.The error is one-sided, if, in addition, reje
ted inputs have a

eptan
eprobability 0.We use BP-OBDD as a short hand for bounded-error probabilisti
 or-dered bran
hing programs.Ablayev and Karpinski [AK96℄ exhibit a fun
tion f that requiresexponential-size read-on
e bran
hing programs, whereas f 
an be 
omputedby polynomial-size BP-OBDDs.Another example is Permutation-Matrix, the problem to de
idewhether a given n � n 0-1-matrix is a permutation matrix, i.e., whetherthere is pre
isely one 1 in every row and every 
olumn. The problemPermutation-Matrix requires exponential-size nondeterministi
 read-on
e bran
hing programs [Juk89, KMW91℄, whereas it 
an be 
omputedby polynomial-size BP-OBDDs [Sau98℄.We add a further example to this list: the Clique-Only fun
tion.This was independently observed by M. Sauerho� (personal 
ommuni
a-tion). Given the adja
en
y matrix of a graph G with n nodes and a k � n.One has to determine whether G has a k-
lique and the 
lique edges are theonly edges of G. Clique-Only requires exponential-size nondeterministi
read-on
e bran
hing programs [BRS93℄. We show that it 
an be 
omputedby polynomial-size BP-OBDDs.On the other hand, the Indire
t-Storage-A

ess and the Hidden-Weighted-Bit fun
tion require exponential-size BP-OBDDs [Sau97℄(see [Abl97, Sau98℄ for more lower bounds).It is easy to see that bounded-error probabilisti
 ordered bran
hing pro-gram are 
losed under boolean 
ombinations. So the most interesting open3



question with respe
t to this model is to ask for eÆ
ient satis�ability- orequivalen
e tests. In this paper, we solve this open problem. However, wegive a negative answer with respe
t to the most interesting 
ases in Se
tion 4:the satis�ability problem for bounded-error probabilisti
 ordered bran
hingprograms is NP-
omplete. Only if the error of the bran
hing program isbounded by the re
ipro
al of its width we have a polynomial-time algorithmfor the satis�ability problem. This is shown in Se
tion 5. Be
ause the equiv-alen
e problem is redu
ible to the satis�ability problem, this also provides aneÆ
ient equivalen
e test for probabilisti
 ordered bran
hing program withsmall error.We start by providing some basi
 fa
ts about probabilisti
 bran
hingprograms in the next se
tion.2 Basi
 PropertiesOrdered bran
hing programs, OBDDs, are somehow similar to �nite au-tomata, with the di�eren
e that bran
hing programs are a nonuniformmodel and that the input might be read in a di�erent order than justfrom left to right. Many of the 
onstru
tion, however, done with �nite au-tomata 
an be adapted to ordered bran
hing programs. For example theyhave a 
anoni
al form [Bry86℄: for any ordered bran
hing program there isa uniquely determined minimal equivalent one with respe
t to this order.Sin
e the minimization pro
ess 
an be 
arried out eÆ
iently, this also pro-vides a polynomial-time equivalen
e test. Another example is the 
onstru
-tion of the 
ross produ
t of two su
h programs that obey the same order.This essentially allows to 
ombine ordered bran
hing programs a

ording toboolean operations [Bry86, Bry92℄.We sket
h the 
onstru
tion for two BP-OBDDs B0 and B1 that obeythe same order. Assume that B0 and B1 are layered su
h that there arealternating probabilisti
 and deterministi
 nodes, and that furthermore allvariables appear on every path, so that the same variable is tested in everydeterministi
 layer. Edges go only from one level to the next. This 
aneasily be a
hieved by introdu
ing redundant nodes. These are nodes whi
h,in 
ase of a deterministi
 node, have both its edges going to the same node.In 
ase of a probabilisti
 node there is only one edge that goes to somenode with probability 1. Now we de�ne program B: it has the same layersas B0 and B1, the nodes of ea
h layer are the 
ross produ
t of the nodesof B0 and B1 at the 
orresponding layer. Edges are de�ned su
h that Bsimulates B0 and B1 in parallel. That is, there is an edge from node (u; v)4



to (u0; v0) in su

eeding levels of B if there is an edge from u to u0 in B0and from v to v0 in B1. The size of B is bounded by jB0jjB1j and thenumber of paths that rea
h a node multiply: if some input x is a

eptedby B0 with probability p0 and by B1 with probability p1, then B on input xrea
hes the (a

ept,a

ept)-node with probability p0p1, the (a

ept,reje
t)-node with probability p0(1 � p1), the (reje
t,a

ept)-node with probability(1� p0)p1, and the (reje
t,reje
t)-node with probability (1� p0)(1� p1).Using the 
ross produ
t, one 
an a
hieve probability ampli�
ation forBP-OBDDs. Let B be su
h a program in n variables that 
omputes somefun
tion f with error 1=2 � Æ. That is,Prob[B(x) = f(x)℄ � 1=2 + Æ:We apply the above 
ross produ
t 
onstru
tion t times with B = B0 =B1. This yields program Bt that 
onsists of t fa
tors B. The a

eptan
eof Bt is de�ned a

ording to a majority vote on its t fa
tors. The sizeof Bt is bounded by jBjt. Sin
e t is in the exponent, we have to 
hoose t
onstant in order to keep Bt within size polynomial in jBj. Therefore, bystandard arguments (for example using Cherno�-bounds), we 
an amplifythe 
orre
tness of B from 12 + Æ to 1� �, for any 
onstant 0 < � < 1=2.Lemma 2.1 ([Sau98℄) Let B be a BP-OBDD that 
omputes some fun
-tion f with error 1=2 � Æ and let 0 < � < 1=2. Then there is a BP-OBDDof size polynomial in jBj that 
omputes f with error �.As a �rst appli
ation we show that BP-OBDDs 
an be 
ombined a

ord-ing to boolean operations.Lemma 2.2 BP-OBDDs (with the same order) 
an be 
ombined in polyno-mial time a

ording to any boolean operation.Proof. BP-OBDDs 
an be 
omplemented by ex
hanging a

epting andreje
ting states. Therefore it remains to show how to 
onstru
t the 
onjun
-tion of two BP-OBDDs B0 and B1 with n variables. By Lemma 2.1, we 
anassume that the error of ea
h is at most 1=4.The idea for 
onstru
ting a BP-OBDD that 
omputes B0 ^ B1 is thesame as for deterministi
 OBDDs: assume that B0 and B1 are layered su
hthat deterministi
 and probabilisti
 node alternate and that all variableso

ur on every path. Then we 
an build the 
ross produ
t B = B0�B1 andde�ne the (a

ept,a

ept) node as the a

epting node of B and the otherleafs as reje
ting nodes. 5



Let a 2 �n. If a is a

epted by both, B0 and B1, then B a

epts a withprobability at least (3=4) (3=4) = 9=16. On the other hand, if a is reje
tedby B0 or B1, then B a

epts a with probability at most 1=4. �3 The Computational PowerAs already mentioned, there are some fun
tions that 
an be 
omputed bysmall BP-OBDDs but require exponential size ordered (in fa
t, read-on
e)bran
hing programs. In this se
tion we give some examples to demonstratehow bran
hing programs 
an use randomization.Although polynomial size BP-OBDDs 
annot multiply [AK98℄ they 
annevertheless verify multipli
ation. That is, given x, y, and z they 
an 
he
kwhether xy = z.Theorem 3.1 BP-OBDDs 
an verify multipli
ation with one-sided errorand within polynomial-size.Proof. Given n-bit numbers x and y and 2n-bit number z. Small bran
hingprograms 
annot handle su
h numbers. Instead, we do 
omputationsmodulosome small prime p.For example it is easy to 
onstru
t an ordered bran
hing program that
omputes (x mod p) in the sense that there are p �nal nodes numbered0; : : : ; p � 1 su
h that the program ends up in node (x mod p). Based onthis, we 
onstru
t an ordered bran
hing program Bp(x; y; z) that 
he
kswhether xy � z (mod p):Program Bp starts by 
omputing (x mod p). It then reads the bits of y =yn�1 � � � y0. Sin
e(x mod p) y � n�1Xi=0(x mod p) 2iyi (mod p);it 
an also 
ompute (xy mod p). Now it remains to 
ompute (z mod p) andto 
ompare it with (xy mod p). The size of Bp is O(p2n). Note that Bp isordered.If indeed xy = z, then Bp will a

ept for all p. On the other hand, ifxy 6= z then B 
an a

ept anyway for some prime p, be
ause we 
ould stillhave that xy � z (mod p) in this 
ase. Sin
e these numbers are boundedby 22n, there are at most 2n primes where our test 
an fail.6



Our �nal program B therefore probabilisti
ally bran
hes to pro-grams Bp1 ; : : : ; Bp4n , where p1; : : : ; p4n are the �rst 4n prime numbers.Ea
h of those 
he
ks whether xy � z (mod pi). If xy = z, thenProb[B(x; y; z) a

epts ℄ = 1. Otherwise Prob[B(x; y; z) a

epts ℄ � 1=2.By the Prime Number Theorem p4n is polynomially bounded in n.Therefore B has polynomial size. �Another example is provided by the Clique-Only fun
tion, whi
h wasindependently observed by M. Sauerho� 1 (personal 
ommuni
ation). Re
allthat on input of a graph G and a k, we have to de
ide whether G has a k-
lique and no other edges outside the 
lique.Theorem 3.2 Clique-Only has polynomial-size BP-OBDDs with one-sided error.Proof. Let A be an adja
en
y matrix of a graph G with n nodes, andk � n. Graph G 
onsists only of a k-
lique i�(i) there exist k rows su
h that ea
h 
ontains pre
isely k�1 ones and theremaining rows are all zero, and(ii) any two nonzero rows must be identi
al ex
ept for the positions wherethey interse
t the main diagonal.Condition (i) is easy to 
he
k, even for deterministi
 OBDDs. The vari-able order is row-wise, i.e., x1;1 < x1;2 < � � � < xn;n�1 < xn;n. Therefore itremains to 
he
k 
ondition (ii) with an BP-OBDD that has the same order,and then apply Lemma 2.2.Suppose we add a 1 at the diagonal positions of the nonzero rows of A.Then 
ondition (ii) says that the resulting nonzero rows must be identi
al.Let r1; : : : ; rn denote the rows of A and interpret them as binary numbers.Introdu
ing a one at the diagonal position of nonzero row rj 
orresponds toadding 2n�j to rj . Therefore it suÆ
es to 
he
k that for any two 
onse
utivenonzero rows, say rj and rk, we haverj + 2n�j = rk + 2n�k: (1)We 
onstru
t a deterministi
 OBDD Bp that veri�es equation (1) modulosome small prime p. Program Bp looks for the �rst nonzero row, say j and
omputes s = (xj + 2n�j mod p) by doing a binary 
ount modulo p as in1In fa
t, Sauerho� 
onsiders the slightly more tri
ky 
ase that only the upper triangularpart of the (symmetri
) adja
en
y matrix is given as input.7



the previous theorem. Then Bp 
he
ks for ea
h forth
oming nonzero row kthat xk + 2n�k = s. (again by 
ounting modulo p to determine the value(xk + 2n�k mod p)). The size of Bp is O(n2p2).Now we 
an again use the same te
hnique as in Theorem 3.1 to obtaina polynomial-size BP-OBDD that 
he
ks 
ondition (ii). �4 NP-Complete Satis�ability ProblemsIn this paper we are mainly interested in satis�ability and equivalen
e prob-lems. Note that the satis�ability problem is at most as hard as the equiv-alen
e problem, sin
e satis�ability asks for (not) being equivalent with theall-zero fun
tion.Consider a read-on
e bran
hing program. Here, the satis�ability problemis trivial sin
e it is enough to 
he
k that there is a path from the initial tothe a

epting node. It is well known that already for the extension to read-twi
e bran
hing programs, the satis�ability problem is NP-
omplete. Onlyin the restri
ted 
ase that there are a 
onstant number of layers of orderedbran
hing programs, all respe
ting the same order (so 
alled k-OBDDs), thesatis�ability problem stays in P [BSSW98℄.The above rea
hability argument still works for nondeterministi
 read-on
e bran
hing programs. (Also the argument in [BSSW98℄ for k-OBDDsgoes through.) However, this is not 
lear for probabilisti
 read-on
e bran
h-ing programs, not even for ordered ones. The task here is to �nd an inputthat is a

epted with high probability by su
h a program B. What we 
ando is the following: for every given input a 2 f0; 1gn we 
an determine howmany paths in B lead to the a

epting node, respe
tively, to the reje
tingnode. That is, we 
an 
ompute Prob[B a

epts a℄ in polynomial time. Thesatis�ability problem for probabilisti
 read-on
e bran
hing programs (withunbounded error) 
an be stated as9a : Prob[B a

epts a℄ � 1=2:Therefore it is in NP. It is also NP-
omplete:Proposition 4.1 The satis�ability problem for probabilisti
 ordered bran
h-ing programs (with unbounded error) is NP-
omplete.Proof. We provide a redu
tion from CNF-Sat. Let F = Vmi=1 Ci bea CNF-formula with m 
lauses C1; : : : ; Cm. We 
onstru
t a probabilisti
ordered bran
hing program BF su
h thatF 2 Sat () 9a : Prob[BF a

epts a℄ � 1=2:8



Let Bi be a deterministi
 ordered bran
hing program that a

epts if
lause Ci is satis�ed on a given input. Program BF is 
onstru
ted as follows.The initial node of BF is a probabilisti
 node that bran
hes 2m times. Ofthe 2m edges, m lead to the initial nodes of programs Bi. The remaining medges go dire
tly to the reje
ting node.It follows that BF a

epts input a if and only if all the programs Bia

ept (re
all that these are deterministi
), whi
h is only possible when asatis�es F . �When 
onsidering the 
ase of bounded error , there is a subtlety on howto de�ne the satis�ability problem pre
isely: let B be a probabilisti
 orderedbran
hing program and �x the error to � = 1=4. Then B a

epts an input a,i� Prob[B a

epts a℄ � 3=4. Additionally we also would have to 
he
k that,in fa
t, B has bounded error on all inputs. However, already this latterproblem is 
oNP-
omplete.Proposition 4.2 Given a probabilisti
 ordered bran
hing program B andan � > 0. The problem to de
ide whether B is of bounded error � is 
oNP-
omplete.Proof. The argument is essentially the same as for Proposition 4.1. Con-sider the 
ase � = 1=4. Constru
t BF as above but with 4m�4 edges leavingthe initial node and 3m � 4 of them going dire
tly to the reje
ting node.Then we haveF 2 Sat () 9a : 1=4 < Prob[BF a

epts a℄ < 3=4: �Hen
e, eÆ
ient satis�ability algorithms 
an only exist for the promiseversion of the problem: given B and Æ > 0, we take as a promise that B is infa
t a probabilisti
 ordered bran
hing program with a

eptan
e probabilitybounded away from 1=2 by Æ. With this assumption we want to de
idewhether there exists an input a su
h that Prob[B a

epts a℄ � 1=2 + Æ. Ifthe promise is not true, then we 
an give an arbitrary answer.However, (unfortunately, from a pra
ti
al point of view) even the promiseversion of the satis�ability problem for BP-OBDDs is NP-
omplete.Theorem 4.3 The satis�ability problem for BP-OBDDs is NP-
omplete.Proof. Manders and Adleman [MA78℄ have shown that some spe
i�
 Dio-phantine equations so 
alled binary quadrati
s, areNP-
omplete. More pre-
isely, the following set Q de�ned over the natural numbers isNP-
omplete:Q = f (a; b; 
) j 9x; y : ax2 + by = 
 g:9



As a slight generalization of Theorem 3.1, BP-OBDDs 
an verify su
hbinary quadrati
s. That is, the setQ0 = f (a; b; 
; x; y) j ax2 + by = 
 g
an be a

epted by a polynomial-size BP-OBDD, 
all it B.For �xed a; b; 
, we 
an 
onstru
t a BP-OBDD Bab
 from B that 
om-putes the subfun
tion of B with a, b, and 
 plugged in as 
onstants. Re
allthat B is deterministi
 ex
ept for the root node. Therefore we 
an ob-tain Bab
 by redu
ing B appropriately. For example, to �x variable x1 to a1in B, we 
onstru
t Bx1=a1 as follows: eliminate all nodes labeled x1 in Band redire
t edges to su
h a node w to the node that follows the a1-edgeof w.For all natural numbers a; b; 
, we have that(a; b; 
) 2 Q () Bab
 is satis�able:This proves the theorem. �Corollary 4.4 The equivalen
e problem for BP-OBDDs is 
oNP-
omplete.5 An EÆ
ient Satis�ability Test for BP-OBDDswith Small ErrorOrdered bran
hing programs 
an be layered : by introdu
ing redundantnodes we 
an a
hieve that every variable o

urs on every path of the pro-gram. Then all nodes that test the same variable have the same distan
e tothe root, they form a layer of the program. The maximum number of nodesin a layer is 
alled the width of the program.We 
an extend these notions to BP-OBDDs: here we also have proba-bilisti
 layers that 
ontain probabilisti
 nodes only. Then we require thatdeterministi
 and probabilisti
 layers alternate. The width is again the max-imum size of a layer.The main result in this se
tion is an eÆ
ient satis�ability test for BP-OBDDs that have small error, namely, error bounded by 1=(width + 2).That is, we 
onsider the following problem:Bounded-Width-BP-OBDD-SatGiven a BP-OBDD B with error � and widthW su
h that � < 1=(W+2).De
ide whether B is satis�able. 10



Theorem 5.1 Bounded-Width-BP-OBDD-Sat 2 P.Proof. Let B be some BP-OBDD with n variables x1; : : : ; xn, width Wand error � < 1=(W + 2).The Model. As des
ribed above, we 
an assume that B is layered, sothat probabilisti
 and deterministi
 layers alternate. We number the layersa

ording to their distan
e to the root. The root layer (whi
h is a singlenode) has number 0.We will modify B and thereby 
hange the probabilities a probabilisti
node bran
hes to its su

essors. In the beginning, all probabilities have theform 1=p if a node has p su

essors. Sin
e we will also get other rationalnumbers as probabilities, we generalize the BP-OBDD model and write theprobabilities on the edges, for example as pairs of integers in binary repre-sentation.Outline of the Algorithm. We want to �nd out whether B is satis�able,i.e., whether there exists an input su
h that B a

epts with probabilitygreater than 1 � �. We transform B layer by layer, starting at the initialnode, i.e. with layer ` = 0 and B0 = B. Suppose we have rea
hed layer ` � 0and let B` denote the bran
hing program 
onstru
ted so far. Program B`has the following properties whi
h are invariants of our 
onstru
tion:(I1) B` is deterministi
 up to layer `�1, and identi
al to B from layer `+1downwards,(I2) the error of B` is bounded by �,(I3) the width of B` is at most W + 1, and(I4) B` is satis�able i� B is satis�able.In general, B` a

epts only a subset of the strings a

epted by B. Nev-ertheless, we ensure property (I4) whi
h is enough to 
he
k the satis�abilityof B. In parti
ular, the resulting bran
hing program, after we have pro
essedthe last level, is a deterministi
 ordered bran
hing program. Sin
e the sat-is�ability problem for ordered bran
hing programs is simply a rea
habilityproblem on a dire
ted graph, this will prove our theorem.
11
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Figure 1: Three 
onse
utive layers of B`.The Transformation of Layer `. We now des
ribe how to pro
esslayer ` � 0. If layer ` is deterministi
 then de�ne B`+1 = Bl and pro-
eed to the next layer. So let layer ` be a probabilisti
 layer of B`. We
onsider three 
onse
utive layers as shown in �gure 1. Let ea
h layer havethe maximum number of nodes.2Layer ` 
onsists of probabilisti
 nodes u1, u2, : : : , uW+1. We 
an indu
-tively assume that the part of Bl from the initial node to the u-nodesis deterministi
.Layer `+ 1 
onsists of deterministi
 nodes v1, v2, : : :, vW whi
h all querythe same variable, say xt, for some t.Layer `+ 2 
onsists of probabilisti
 nodes w1, w2, : : :, wW .These nodes are 
onne
ted as follows.2If there are fewer nodes in some layer, we 
an add dummy nodes that lead to reje
tionwith probability 1. 12
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(a)Figure 2: (a) All possible ways of getting from ui to wk inB` when variable xthas value b. (b) In the modi�ed program, node ui is deterministi
 and leadsto the new node vbi if xt has value b. From vbi we get to wk with probabilityqb;i;k = Psl=1 pi;jl, whi
h is pre
isely the probability to rea
h wk from uiin B`. Therefore the modi�ed program is equivalent to B`.u-nodes with v-nodes: ea
h node ui is 
onne
ted to all the nodes vj withthe edge between them having probability pi;j (in 
ase ui is not 
on-ne
ted to some node vj , we take the probability pi;j to be zero). Wehave Pj pi;j = 1 for ea
h 1 � i �W + 1.v-nodes with w-nodes: the deterministi
 node vj is 
onne
ted tonodes we(j;0) and we(j;1) via edges labeled 0 and 1 respe
tively.Now we modify the u- and v-nodes and the edges going out from them.Figure 2 shows the 
hanges at a fragment of B`.Changing u-Nodes. Our �rst step is to make the nodesu1; u2; : : : ; uW+1 deterministi
. For this we introdu
e 2(W + 1) new nodesat layer ` + 1, 
all them v01 , v11 , v02 , v12 , : : :, v0W+1, v1W+1 (these nodes willbe probabilisti
) that repla
e the old v-nodes. The u-nodes get label xt, the13



variable queried by the old v-nodes, and we put the b-edge of ui to node vbi ,for b 2 f0; 1g.Changing v-Nodes. Next, we introdu
e an edge from node vbi to thenode wk in layer ` + 2 and assign probability qb;i;k to it su
h that qb;i;k ispre
isely the probability to rea
h wk from ui in B` if variable xt has value b.This is a
hieved by summing over all probabilities pi;j su
h that node vjleads to node wk for xt = b, i.e.,qb;i;k = Xjwe(j;b)=wk pi;j: (2)Finally, delete all the old v-nodes and edges adja
ent to them.The bran
hing program 
onstru
ted so far is equivalent to B`: the prob-ability to rea
h a node wk has not 
hanged and, in parti
ular, the errorprobability is the same as in B`, i.e., at most �.Merging v-Nodes and w-Nodes. Now we have two 
onse
utive lay-ers of probabilisti
 nodes. We 
an merge the layer of w-nodes into thev-nodes and 
hange the probabilities on the edges going out from v-nodesappropriately su
h that the previous probabilities to rea
h a node in thelayer below the w-nodes is not altered. Then we still have 2(W +1) v-nodesand no more w-nodes. Let B 0̀ be the bran
hing program 
onstru
ted so far.A Problem and its Solution. If we would just use this pro
ess toeliminate all the probabilisti
 nodes from B`, we might end up with anexponential number of nodes in the �nal bran
hing program. So we haveto redu
e the number of v-nodes in B 0̀ . More pre
isely, we promised tomaintain property (I3) whi
h does not hold for B 0̀ .The idea now is to use the fa
t that we only want to know whether B`is satis�able: we 
an throw out some v-nodes from B 0̀ as long as we 
anguarantee that the redu
ed bran
hing program is still satis�able if B 0̀ issatis�able.We show that we 
an redu
e the number of v-nodes to at mostW + 1. Then the resulting bran
hing program, B`+1, ful�lls the invariants(I1), : : : , (I4) given in the outline of the 
onstru
tion above. In parti
ular,the width of B`+1 is bounded byW+1. Hen
e this 
ompletes the des
riptionof the algorithm. 14



y1 yW= a

eptan
e probabilities for b
v2(W+1)v1 viqi;1 qi;W

a

Figure 3: Program B 0̀ on input ab. Part a leads to vi, whi
h bran
hes tothe nodes in the next level with probabilities qi;1; : : : ; qi;W , respe
tively. Thelatter nodes a

ept b with probabilities y1; : : : ; yW , respe
tively. Thereforeab is a

epted by B 0̀ with probabilityPWj=1 qi;jyj.Redu
ing the Number of v-Nodes. Let us rename the v-nodesba
k to v1; : : : ; v2(W+1). Re
all that there are no probabilisti
 nodes abovethe v-nodes. Therefore, B 0̀ is satis�able i� there is a v-node vi su
h thatthe a

eptan
e probability of vi on some input is at least 1� �. Also, ea
hv-node has a

eptan
e probability of either at least 1 � � or at most � onany input.For node vi, let qi;k be the probability to rea
h the k-th node in thenext layer (note that qi;k is independent of the input) as shown in �gure 3.We interpret these probabilities as a point qi = (qi;1; : : : ; qi;W )T in the W -dimensional ve
tor spa
e over the rationals, QW .Any input for the probabilisti
 OBDD B 0̀ 
an be split into two parts ab.The �rst part a is used in the upper deterministi
 part, until some v-node isrea
hed, say vi. Consequently, the se
ond part b is used below the v-nodes.Now, let yb = (y1; : : : ; yW )T 2 QW be the a

eptan
e probabilities of bwhen starting at the nodes in the layer below the v-nodes. Then, with aleading to node vi, we haveProb[B 0̀ a

epts ab℄ = qi � yb:15



Therefore B 0̀ is satis�able i� there exist i and b su
h that qi � yb � 1 � �.To see this, note that we 
an take any a that leads to su
h a node vi. Thenab is a

epted by B 0̀ .Suppose now that there are two v-nodes vi and vj su
h that qi �yb � 1��and qj � yb0 � 1 � �, for some b and b0. Then there are at least two inputsthat are a

epted by B 0̀ , one via vi and one via vj. In this 
ase we 
an deleteone of vi or vj from B 0̀ 3, and still maintain the property that the resultingbran
hing program is satis�able if and only if B 0̀ is.If we were able to eÆ
iently dete
t this 
ase, then we 
ould delete all butone of the v-nodes. Unfortunately we don't know how to do so. Instead,we tighten the 
ondition to delete a v-node. This will lead to the linearprogramming problem (4) below that 
an be solved eÆ
iently. Thereby weend up with more than one remaining v-node, but, as we will show, with atmost W + 1 however.Instead of tightening the above 
ondition for deleting a v-node, we dotwo relaxation steps of its negation: we keep node vi if vi a

epts some band all other vj reje
t every b0.The �rst relaxation is to 
hange the universal quanti�er for b0 into anexistential one, and to unify b and b0. That is, we keep node vi if vi a

eptssome b that is reje
ted by all other v-nodes.Criterion to keep a node vi: there exists a yb su
h that vi isthe only v-node that has a

eptan
e probability qi � yb � 1� �.In other words, we keep vi if the following system of inequalities has asolution yb for some b: qi � yb � 1� �; (3)qj � yb � �; for j 6= i:The se
ond relaxation step is to make the above 
ondition a

essible forlinear programming: instead of probability ve
tors yb, that are asso
iatedwith some b, we 
onsider ve
tors y 2 (Q \ [0; 1℄)W . That is, we 
onsiderprodu
ts qi �y that we 
all pseudo-a

eptan
e probabilities, be
ause y mightnot o

ur as a probability ve
tor yb for any b. But 
learly, the range of yin
ludes all the a
tually appearing probabilities yb.We relax inequalities (3) and get a linear program: a v-node vi is theonly one with pseudo-a

eptan
e probability 1� � if the following system of3deleting , say, vi means to redire
t the in
oming edges of vi to the reje
ting node, andto 
an
el vi and its outgoing edges from B 0̀ .16



linear inequalities has a solution y = (y1; : : : ; yW ) 2 QW :qi � y � 1� �;qj � y � �; for j 6= i, and (4)0 � yk � 1; for 1 � k �W:After deleting a v-node for whi
h the system (4) has no solution, werepeat the above pro
ess again for the remaining v-nodes, until system (4)has a solution for every remaining v-node. We show next that the numberof remaining v-nodes 
an be at most W + 1.Bounding the Number of the Remaining v-Nodes. Letv1; v2; : : : ; vr be the v-nodes that remain after the above pro
edure, wherer � 2(W + 1). Let q1; q2; : : : ; qr be the asso
iated probability ve
tors, and,furthermore, let yi be a ve
tor that satis�es the above system of inequali-ties (4) for vi.Consider the set Q = fq1; q2; : : : ; qrg. We 
laim that Q is aÆnely inde-pendent in QW , that is, the points in Q span a (r�1)-dimensional subspa
eof QW (see [Gr�u67℄ for a referen
e). Sin
e there 
an be at most W + 1aÆnely independent points in QW , it follows that r �W + 1.By Lemma 5.2 below, to prove our 
laim that Q is aÆnely independent,it suÆ
es to show that for any S � Q there exists an aÆne plane thatseparates S from Q � S (i.e., the points in S lie on one side of the planewhereas the points in Q�S lie on the other). We 
an assume that jSj � r=2(otherwise repla
e S by Q� S).The aÆne plane 
an be de�ned as the set of points x 2 QW that ful�llthe equation hS � x = 1� 1W + 2 ; wherehS = Xqj2S yj :For any point qi 2 S we have:hS � qi � yi � qi � 1� � > 1� 1W + 2 :
17



For any point qi 2 Q� S we have:hS � qi = Xqj2S yj � qi� � jSj� � r2� � (W + 1)< W + 1W + 2= 1� 1W + 2 :This proves our 
laim.The Running Time. To see that our algorithm runs in polynomialtime, we note that the system (4) of linear inequalities 
an be solved inpolynomial-time using Kha
hian's algorithm [Kha79℄.A more subtle point we have to take 
are of is the size of the probabil-ity numbers that we write on the edges of our bran
hing programs: theyshould be represented with only polynomially many bits (in the size of BP-OBDD B).Be
ause all numbers are between zero and one, it suÆ
es to bound thedenominators. In the beginning, in the given BP-OBDD, all probabilitiesare of the form 1=m, where m � W . Let p1; : : : ; pt be all primes up to W .If prime pi o

urs in the prime fa
torization of an m as above, then itsexponent is bounded by logpi W . We show that in the prime fa
torization ofthe denominators at the end of the 
onstru
tion, the exponent of prime piis bounded by 2n logpi W . Sin
e we 
onsider only t � W primes, it followsthat the denominators are bounded by W 2nW , whi
h 
an be representedwith polynomially many bits.In ea
h round, there are two steps where we 
hange the probabilities:1. in the sum in equation (2). The new denominator is the least 
ommonmultiple of all the denominators in that sum. Considering its primefa
torization, the upper bound on the exponent of ea
h prime remainsthe same as before.2. when we merge the v-nodes and the w-nodes, we have to multiply twoprobabilities and add, maybe several. Just as before, addition doesn'tmatter. For a multipli
ation, one fa
tor is a probability from a v-node18



to a w-node whi
h we have already 
hanged, the other fa
tor 
omesfrom the bran
hing probability of a w-node whi
h is still from theinput bran
hing program B. Hen
e, a multipli
ation may add anotherlogpi W to the 
urrent exponent of prime pi.Sin
e B has depth 2n, we have up to 2n rounds of this 
onstru
tion. There-fore, the exponent of prime pi is bounded by 2n logpi W as 
laimed above.We 
on
lude that our algorithm runs in polynomial time.Now Lemma 5.2 below 
ompletes the proof of the theorem. �Lemma 5.2 Let Q � Qm su
h that for every S � Q there is an aÆneplane hS that separates S from Q� S. Then Q is aÆnely independent.Proof. Let Q = fq1; : : : ; qrg. By de�nition, Q is aÆnely dependent ifthere exist �1; : : : ; �r that are not all zero, su
h that Pri=1 �i qi = 0 andPri=1 �i = 0.We embed Q in Qm+1 by mapping qi to q0i = (qi; 1). Let Q0 denote theembedding of Q in Qm+1. Then we have that Q is aÆnely dependent i� Q0linearly dependent.Corresponding to an aÆne plane that separates S from Q� S, we nowhave a hyperplane that separates S0 from Q0 � S0. Namely, for the aÆneplane hS � x = d, where x 2 Qm, we take the hyperplane (hS ;�d) � x = 0,where x 2 Qm+1.Now, suppose that Q0 is linearly dependent. This implies that there are�1; : : : ; �r 2 Q su
h that not all of them are zero andrXi=1 �i q0i = 0: (5)Let S0 be the set of those q0i su
h that �i � 0 and let hS0 be the hyperplanethat separates S0 from Q0 � S0. By equation (5) we have0 = hS0 � ( rXi=1 �i q0i) (6)= rXi=1 �i (hS0 � q0i) (7)Now observe that ea
h term in equation (7) is non-negative and at leastone term is non-zero. To see this note that if �i � 0 then q0i 2 S0 andhen
e hS0 � q0i > 0. On the other hand, if �i < 0 then q0i 2 Q0 � S0 and19



hen
e hS0 � q0i < 0. Therefore this latter sum 
annot be zero and we have a
ontradi
tion. We 
on
lude that Q must be aÆnely independent. �Note that we 
annot push a BP-OBDD with too large error into the rangeof Theorem 5.1 by the standard ampli�
ation te
hnique. This is be
ausethere we use the 
ross-produ
t 
onstru
tion whi
h in
reases the width ofthe resulting BP-OBDD. In the spe
i�
 BP-OBDDs presented in Se
tion 3and Theorem 4.3 there is an alternative way of ampli�
ation: we 
ould
hoose more primes. But again this in
reases the width of the resulting BP-OBDD. More pre
isely, 
onsider the BP-OBDDs that verify multipli
ationor binary quadrati
s. For ea
h prime p, the sub-OBDD that veri�es theequation modulo p has width p2. So if we verify equations modulo the �rstk primes p1; : : : ; pk, then the width of the resulting BP-OBDD isW = kXi=1 p2i � k3:The error � 
an be as large as �(n=k). Hen
e we get� � n=W 1=3 > 1=W 1=3 > 1=(W + 2):This shows that neither the above polynomial-time algorithm 
an be gen-eralized to signi�
antly larger error bounds, nor 
an the NP-
ompletenessproof be generalized to signi�
antly smaller errors, unless P = NP. It re-mains an open question to settle the satis�ability problem for errors in therange O( 1W 1=3 ) \ !( 1W ).The equivalen
e problem for BP-OBDDs 
an be redu
ed to the satis-�ability problem: let B0 and B1 be two BP-OBDDs, then B0 6� B1 i�B = B0 � B1 is satis�able. Program B 
an be 
onstru
ted by Lemma 2.2.Therefore we also get an eÆ
ient algorithm for (the promise version of) theequivalen
e problem for BP-OBDDs of small error. Note that the widthof B is bounded by the produ
t of the widths of B0 and B1 and the errorssum up.Corollary 5.3 The equivalen
e problem for BP-OBDDs of width W witherror � is in P, provided that 2� < 1=(W 2 + 2).A
knowledgmentsWe would like to thank Somenath Biswas, Harry Buhrman, Lan
e Fortnow,Jo
hen Messner, Ja
obo Toran, and Klaus Wagner for helpful dis
ussions.20



Referen
es[Abl97℄ F. Ablayev. Randomization and nondeterminism are in
ompa-rable for ordered read-on
e bran
hing programs. In 24rd In-ternational Colloquium on Automata Languages and Program-ming, Le
ture Notes in Computer S
ien
e 1256, pages 195{202.Springer-Verlag, 1997.[AK96℄ F. Ablayev and M. Karpinski. On the power of randomizedbran
hing programs. In 23rd International Colloquium on Au-tomata Languages and Programming, Le
ture Notes in ComputerS
ien
e 1099, pages 348{356. Springer-Verlag, 1996.[AK98℄ F. Ablayev and M. Karpinski. A lower bound for integer multi-pli
ation on randomized read-on
e bran
hing programs. Te
hni-
al Report TR98-011, Ele
troni
 Colloquium on ComputationalComplexity, http://www.e


.uni-trier.de/e


/, 1998.[BHR95℄ Y. Breitbart, H. Hunt, and D. Rosenkrantz. On the size of binaryde
ision diagrams representing Boolean fun
tions. Theoreti
alComputer S
ien
e, 145:45{69, 1995.[BRS93℄ A. Borodin, A. Razborov, and R. Smolensky. On lower boundsfor read-k-times bran
hing programs. Computational Complex-ity, 3:1{18, 1993.[Bry86℄ R. Bryant. Graph-based algorithms for Boolean fun
tion manip-ulation. IEEE Transa
tion on Computers, 35(6):677{691, 1986.[Bry91℄ R. Bryant. On the 
omplexity of VLSI implementations andgraph representation of Boolean fun
tions with appli
ationsto integer multipli
ation. IEEE Transa
tion on Computers,40(2):205{213, 1991.[Bry92℄ R. Bryant. Symboli
 Boolean manipulation with ordered binary-de
ision diagrams. ACM Computing Surveys, 24(3):293{318,1992.[BS90℄ R. Boppana and M. Sipser. The 
omplexity of �nite fun
tions.In J. van Leeuwen, editor, Handbook of Theoreti
al ComputerS
ien
e. The MIT Press and Elsevier, 1990.21



[BSSW98℄ B. Bollig, M. Sauerho�, D. Sieling, and I. Wegener. Hierar
hytheorems for k-OBDDs and k-IBDDs. Theoreti
al Computer S
i-en
e, 205:45{60, 1998.[Gr�u67℄ B. Gr�unbaum. Convex Polytopes. Inters
ien
e Publishers (JohnWiley & Sons), 1967.[Juk89℄ S. Jukna. The e�e
t of null-
hains on the 
omplexity of 
onta
ts
hemes. In 7th Fundamentals of Computation Theory, Le
tureNotes in Computer S
ien
e 380, pages 246{256. Springer-Verlag,1989.[Kha79℄ L. Kha
hian. A polynomial algorithm in linear programming.Russian A
ademy of S
ien
es Doklady. Mathemati
s (formerlySoviet Mathemati
s{Doklady), 20:191{194, 1979.[KMW91℄ M. Krause, C. Meinel, and S. Waa
k. Separating the eraserTuring ma
hine 
lasses Le, NLe, and Pe. Theoreti
al ComputerS
ien
e, 86:267{275, 1991.[MA78℄ K. Manders and L. Adleman. NP-
omplete de
ision problems forbinary quadrati
s. Journal of Computer and System S
ien
es,16:168{184, 1978.[Mas76℄ W. Masek. A fast algorithm for the string editing problem andde
ision graphs 
omplexity. Master's thesis, Massa
husetts In-stitute of Te
hnology, 1976.[MT98℄ C. Meinel and T. Theobald. Algorithms and Data Stru
tures inVLSI Design: OBDD - Foundations and Appli
ations. Springer-Verlag, 1998.[Pon95℄ S. Ponzio. Restri
ted Bran
hing Programs and Hardware Veri�-
ation. PhD thesis, Massa
husetts Institute of Te
hnology, 1995.[Sau97℄ M. Sauerho�. Lower bounds for randomized read-k-times bran
h-ing programs. Te
hni
al Report TR97-019, Ele
troni
 Col-loquium on Computational Complexity, http://www.e


.uni-trier.de/e


/, 1997.[Sau98℄ M. Sauerho�. Lower bounds for randomized read-k-times bran
h-ing programs. In 15th Symposium on Theoreti
al Aspe
ts of Com-puter S
ien
e, Le
ture Notes in Computer S
ien
e 1373, pages105{115. Springer-Verlag, 1998.22



[Weg88℄ I. Wegener. On the 
omplexity of bran
hing programs and de
i-sion trees for 
lique fun
tions. Journal of the ACM, 35:461{471,1988.[Weg00℄ I. Wegener. Bran
hing Programs and Binary De
ision Diagrams-Theory and Appli
ations. SIAM Monographs in Dis
rete andApplied Mathemati
s and its Appli
ations. SIAM, 2000.

23


