
Notes on Computational Complexity Theory
CPSC 468/568: Spring 2017

James Aspnes

2018-02-16 14:25

i

Copyright c© 2017 by James Aspnes. Distributed under a Creative Com-
mons Attribution-ShareAlike 4.0 International license: https://creativecommons.
org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents

Table of contents ii

List of figures viii

List of tables ix

List of algorithms x

Preface xi

Syllabus xii

Lecture schedule xv

1 Introduction 1

2 Problems and languages 3

3 Models of computation 5
3.1 Turing machines . 5

3.1.1 Computations . 7
3.1.2 Complexity . 7

3.1.2.1 Asymptotic notation 8
3.1.3 Programming a Turing machine 9

3.1.3.1 Example of computing a function 10
3.1.3.2 Example of computing a predicate 12

3.1.4 Turing machine variants 12
3.1.5 Limitations of simulations 16
3.1.6 Universal Turing machines 19

3.2 Random access machines . 20
3.3 The extended Church-Turing thesis 22

ii

CONTENTS iii

4 Time and space complexity classes 23

5 Nonterminism and NP 25
5.1 Examples of problems in NP 27
5.2 Reductions and NP-complete problems 28
5.3 The Cook-Levin theorem . 29
5.4 More NP-complete problems 30

5.4.1 1-IN-3 SAT . 31
5.4.2 SUBSET SUM and PARTITION 31
5.4.3 Graph problems . 33

5.4.3.1 Reductions through INDEPENDENT SET . 33
5.4.3.2 GRAPH 3-COLORABILITY 35

5.5 coNP and coNP-completeness 36
5.6 Relation to EXP . 37

6 Diagonalization 38
6.0.1 Undecidability of the Halting Problem 38

6.1 Hierarchy theorems . 40
6.1.1 The Space Hierarchy Theorem 40
6.1.2 The Time Hierarchy Theorem 42

6.2 Hierarchy theorems for nondeterminism 46
6.3 Ladner’s Theorem . 46

7 Oracles and relativization 50
7.1 Oracle machines . 50
7.2 Relativization . 51

7.2.1 The Baker-Gill-Solovay Theorem 51
7.3 The oracle polynomial-time hierarchy 52

8 Alternation 53
8.1 The alternating polynomial-time hierarchy 53
8.2 Equivalence to alternating Turing machines 54
8.3 Complete problems . 55
8.4 Equivalence to oracle definition 55
8.5 PH ⊆ PSPACE . 56

9 Space complexity 58
9.1 Space and time . 59
9.2 PSPACE and TQBF . 59
9.3 Savitch’s Theorem . 60

CONTENTS iv

9.4 The Immerman-Szelepcsényi Theorem 60
9.5 Oracles and space complexity 60
9.6 L ?= NL ?= AL = P . 62

9.6.1 Complete problems with respect to log-space reductions 62
9.6.1.1 Complete problems for NL 63
9.6.1.2 Complete problems for P 64

9.6.2 AL = P . 65

10 Circuit complexity 67
10.1 Polynomial-size circuits . 68

10.1.1 P/poly . 69
10.1.2 Information-theoretic bounds 69
10.1.3 The Karp-Lipton Theorem 70

10.2 Uniformity . 71
10.3 Bounded-depth circuits . 72

10.3.1 Parallel computation and NC 73
10.3.2 Relation to L and NL 73
10.3.3 Barrington’s Theorem 74
10.3.4 PARITY 6∈ AC0 . 77

10.3.4.1 Håstad’s Switching Lemma 77
10.3.4.2 Application to PARITY 79
10.3.4.3 Low-degree polynomials 81

11 Natural proofs 84
11.1 Natural properties . 84
11.2 Pseudorandom function generators 85
11.3 The Razborov-Rudich Theorem 85
11.4 Examples of natural proofs 86

12 Randomized classes 88
12.1 One-sided error: RP, coRP, and ZPP 88

12.1.1 P ⊆ RP ⊆ NP . 89
12.1.2 Amplification of RP and coRP 89
12.1.3 Las Vegas algorithms and ZPP 89

12.2 Two-sided error: BPP . 90
12.2.1 Adleman’s Theorem 91

12.3 The Sipser-Gács-Lautemann Theorem 92

CONTENTS v

13 Counting classes 93
13.1 Search problems and counting problems 93

13.1.1 Reductions . 94
13.1.2 Self-reducibility . 95

13.2 FP vs #P . 96
13.3 Arithmetic in #P . 97
13.4 Counting classes for decision problems 97

13.4.1 PP . 97
13.4.2 ⊕P . 98
13.4.3 UP and the Valiant-Vazirani Theorem 98

13.5 Toda’s Theorem . 99
13.5.1 Reducing from Σk to BPP⊕P 100
13.5.2 Reducing from BPP⊕P to P#P 101

14 Descriptive complexity 102
14.1 First-order logic . 103
14.2 Second-order logic . 104
14.3 Counting with first-order logic 105
14.4 Fagin’s Theorem: ESO = NP 106
14.5 Descriptive characterization of PH 107
14.6 Descriptive characterization of NL and L 108

14.6.1 Transitive closure operators 108
14.6.2 Arithmetic in FO(DTC) 109
14.6.3 Expressing log-space languages 109
14.6.4 Evaluating FO(TC) and FO(DTC) formulas 110

14.7 Descriptive characterization of PSPACE and P 111
14.7.1 FO(PFP) = PSPACE 111
14.7.2 FO(LFP) = P . 112

15 Interactive proofs 113
15.1 Private vs. public coins . 114

15.1.1 GRAPH NON-ISOMORPHISM with private coins . . 114
15.1.2 GRAPH NON-ISOMORPHISM with public coins . . 115
15.1.3 Simulating private coins 116

15.2 IP = PSPACE . 118
15.2.1 IP ⊆ PSPACE . 118
15.2.2 PSPACE ⊆ IP . 118

15.2.2.1 Arithmetization of #SAT 118
15.2.3 Arithmetization of TQBF 121

CONTENTS vi

16 Probabilistically-checkable proofs and hardness of approxi-
mation 124
16.1 Probabilistically-checkable proofs 125

16.1.1 A probabilistically-checkable proof for GRAPH NON-
ISOMORPHISM . 125

16.2 NP ⊆ PCP(poly(n), 1) . 126
16.2.1 QUADEQ . 126
16.2.2 The Walsh-Hadamard Code 127
16.2.3 A PCP for QUADEC 128

16.3 PCP and approximability . 129
16.3.1 Approximating the number of satisfied verifier queries 129
16.3.2 Gap-preserving reduction to MAX SAT 130
16.3.3 Other inapproximable problems 131

16.4 Dinur’s proof of the PCP theorem 132
16.5 The Unique Games Conjecture 134

A Assignments 136
A.1 Assignment 1: due Wednesday, 2017-02-01 at 23:00 136

A.1.1 Bureaucratic part . 136
A.1.2 Binary multiplication 136
A.1.3 Transitivity of O and o 139

A.2 Assignment 2: due Wednesday, 2017-02-15 at 23:00 139
A.2.1 A log-space reduction 139
A.2.2 Limitations of two-counter machines 140

A better solution: 142
A.3 Assignment 3: due Wednesday, 2017-03-01 at 23:00 142

A.3.1 A balanced diet of hay and needles 142
A.3.2 Recurrence . 143

A.4 Assignment 4: due Wednesday, 2017-03-29 at 23:00 144
A.4.1 Finite-state machines that take advice 144
A.4.2 Binary comparisons 145

A.5 Assignment 5: due Wednesday, 2017-04-12 at 23:00 146
A.5.1 BPPBPP . 146
A.5.2 coNP vs RP . 147

A.6 Assignment 6: due Wednesday, 2017-04-26 at 23:00 147
A.6.1 NP ⊆ PSquareP . 147
A.6.2 NL ⊆ P . 148

A.7 Final Exam . 149
A.7.1 LA = PHA . 149
A.7.2 A first-order formula for MAJORITY 150

CONTENTS vii

A.7.3 On the practical hardness of BPP 150

Bibliography 152

Index 157

List of Figures

3.1 Turing-machine transition function for reversing the input,
disguised as a C program . 11

3.2 Recognizing a palindrome using a work tape 13

viii

List of Tables

3.1 Turing-machine transition function for reversing the input . . 10

A.1 Transition table for multiplying by 3 (LSB first) 138

ix

List of Algorithms

A.1 Log-space reduction from INDEPENDENT SET to CLIQUE . 141

x

Preface

These are notes for the Spring 2017 semester of the Yale course CPSC
468/568 Computational Complexity. This document also incorporates the
lecture schedule and assignments. Because this is a work in progress, it will
be updated frequently over the course of the semester.

Updated versions of these notes will appear at http://www.cs.yale.
edu/homes/aspnes/classes/468/notes.pdf. If the Yale CS server be-
comes inaccessible, a backup copy can be found at https://www.dropbox.
com/sh/j98y7z3k7u9iobh/AAAglmWHGH5gdyKoi3rSJewaa?dl=0.

The Spring 2016 version of the course was taught by Joan Feigenbaum,
and the organization of this course is in part based this previous version.
Information about the Spring 2016 course, including lecture notes and as-
signments, can be found at http://zoo.cs.yale.edu/classes/cs468/.

Much of the course follows the textbook, Computational Complexity: A
Modern Approach, by Sanjeev Arora and Boaz Barak. In most cases you’ll
find this textbook contain much more detail than what is presented here, so
it is probably better to consider these notes a supplement to it rather than
to treat them as your primary source of information.

xi

http://www.cs.yale.edu/homes/aspnes/classes/468/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/468/notes.pdf
https://www.dropbox.com/sh/j98y7z3k7u9iobh/AAAglmWHGH5gdyKoi3rSJewaa?dl=0
https://www.dropbox.com/sh/j98y7z3k7u9iobh/AAAglmWHGH5gdyKoi3rSJewaa?dl=0
http://zoo.cs.yale.edu/classes/cs468/

Syllabus

Description

Introduction to the theory of computational complexity. Basic complex-
ity classes, including polynomial time, nondeterministic polynomial time,
probabilistic polynomial time, polynomial space, logarithmic space, and
nondeterministic logarithmic space. The roles of reductions, completeness,
randomness, and interaction in the formal study of computation. After
Computer Science 365 or with permission of the instructor.

Meeting times

Monday and Wednesday 1:00–2:15 in AKW 000.

On-line course information

The lecture schedule, course notes, and all assignments can be found in a sin-
gle gigantic PDF file at http://www.cs.yale.edu/homes/aspnes/classes/
468/notes.pdf. You should probably bookmark this file, as it will be up-
dated frequently.

For office hours, see http://www.cs.yale.edu/homes/aspnes#calendar.

Staff

The instructor for the course is James Aspnes. Office: AKW 401. Email:
james.aspnes@gmail.com. URL: http://www.cs.yale.edu/homes/aspnes/.

The for the course is Stanislaw Swidwinski. Email: stanislaw.swidwinski@yale.edu.

xii

http://www.cs.yale.edu/homes/aspnes/classes/468/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/468/notes.pdf
http://www.cs.yale.edu/homes/aspnes#calendar
mailto:james.aspnes@gmail.com
http://www.cs.yale.edu/homes/aspnes/
mailto:stanislaw.swidwinski@yale.edu

SYLLABUS xiii

Textbook

The textbook for the class is:
Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, 2009. ISBN 0521424267. QA267.7.A76X
2009 (LC).

The status of this book is a little complicated. It is available on-line in
an inconvenient format from Yale campus IP addresses at http://proquest.
safaribooksonline.com/9780511530753. A draft version in PDF format
is also available at http://theory.cs.princeton.edu/complexity/book.
pdf, but this is not identical to the final published version. The final
published version is not currently available in printed form. So we will
mostly be working from the PDF draft. Where it makes a difference, in
the notes we will cite the PDF draft as [AB07] and the print version as
[AB09], and we will try to avoid citing the unavailable print version whenever
possible.

Reserved books at Bass library

In addition to the textbook, the following books are on reserve at Bass
Library:

• Oded Goldreich. Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.

• Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

• Michael R. Garey and Davis S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness. W. H. Freeman, 1981.

The first two are other widely-used computational complexity theory
textbooks, which may offer perspectives on various topics that complement
Arora-Barak and the course notes. The last is a classic collection of known
NP-hard problems, and can be helpful as a starting point for checking if
some problem you are interested is also NP-hard.

Other useful resources

• https://complexityzoo.uwaterloo.ca/Complexity_Zoo. On-line cat-
alog of complexity classes.

http://proquest.safaribooksonline.com/9780511530753
http://proquest.safaribooksonline.com/9780511530753
http://theory.cs.princeton.edu/complexity/book.pdf
http://theory.cs.princeton.edu/complexity/book.pdf
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

SYLLABUS xiv

• http://www.scottaaronson.com/papers/pnp.pdf. Survey of cur-
rent state of the P vs. NPproblem.

Course requirements

Six homework assignments (60% of the semester grade) plus a final exam
(40%).

Use of outside help

Students are free to discuss homework problems and course material with
each other, and to consult with the instructor or a TA. Solutions handed in,
however, should be the student’s own work. If a student benefits substantially
from hints or solutions received from fellow students or from outside sources,
then the student should hand in their solution but acknowledge the outside
sources, and we will apportion credit accordingly. Using outside resources in
solving a problem is acceptable but plagiarism is not.

Clarifications for homework assignments

From time to time, ambiguities and errors may creep into homework assign-
ments. Questions about the interpretation of homework assignments should
be sent to the instructor at james.aspnes@gmail.com. Clarifications will
appear in an updated version of the assignment.

In some circumstances, you may be able to get a faster response us-
ing Piazza, at http://piazza.com/yale/spring2017/cpsc468. Note that
questions you ask there are visible to other students if not specifically marked
private, so be careful about broadcasting your draft solutions.

Late assignments

Late assignments will not be accepted without a Dean’s Excuse.

http://www.scottaaronson.com/papers/pnp.pdf
mailto:james.aspnes@gmail.com
http://piazza.com/yale/spring2017/cpsc468

Lecture schedule

As always, the future is uncertain, so you should take parts of the schedule
that haven’t happened yet with a grain of salt. Readings refer to chapters or
sections in the course notes, except for those specified as in AB, which refer
to the course textbook [AB07].

Office hours, lecture times, and assignment due dates can be found at
http://www.cs.yale.edu/homes/aspnes#calendar.

2017-01-18 Computational complexity theory. What the course is about.
Languages and complexity classes. One-tape and k-tape Turing ma-
chines. Review of asymptotic notation. Readings: Chapters 1 and 2,
§3.1 up to §3.1.4; AB §1.1 and 1.2.

2017-01-20 Complexity classes TIME(f(n)), SPACE(f(n)), and P. Tur-
ing machine simulations: one-tape, two-tape, two counters. Crossing
sequence arguments and lower bounds on single-tape Turing machines.
The extended Church-Turing thesis. How to simulate anything with a
Turing machine. Readings: Rest of Chapter 3; AB covers some of this
in §1.2.2 but doesn’t give much detail.

2017-01-23 Nondeterminism and NP. Reductions, NP-complete problems,
and the Cook-Levin theorem. Some flaming about the consequences
of P = NP if true. Readings: Chapter 5 through §5.3; AB §§2.1–2.3,
2.7. Not required, but if you are a big fan of P ?= NP, some other
resources are Aaronson’s very recent (and very large) survey [Aar17]
and a classic paper by Impagliazzo on what happens to cryptography
and other fields if P = NP [Imp95].

2017-01-25 Various NP-complete problems and examples of reductions.
NP-complete languages and coNP-complete languages. Readings:
§§5.4 and section-coNP; AB §§2.4 and 2.6.1.

xv

http://www.cs.yale.edu/homes/aspnes#calendar

LECTURE SCHEDULE xvi

2017-01-30 Diagonalization: Undecidability of the Halting Problem, the
Space Hierarchy Theorem. Readings: Chapter 6 through 6.1.1; AB
§3.2.
It’s probably worth mentioning that in my excitement over restricting
L to one-work-tape machines I forgot to have R∗ test if M halts (which
we can do for space-bounded machines, by using a counter to keep
track of whether we have run long enough to repeat a configuration).
See §6.1.1 for a working version of the upper-bound construction.

2017-02-01 More diagonalization: the Time Hierarchy Theorem, preview of
Ladner’s Theorem. Some impromptu discussion of the polynomial-time
hierarchy, which is not related to the THT but which sounds like it
should be. Readings: §6.1.2; AB §3.1.

2017-02-06 Proof of Ladner’s Theorem. Oracles and relativization: state-
ment of the Baker-Gill-Solovay theorem. Readings: §6.3, §7.1; AB
§§3.4 and 3.5.

2017-02-08 Proof of Baker-Gill-Solovay: oracles with PA = NPA and
PB 6= NPB. Oracles as subroutines and the polynomial-time oracle
hierarchy. Readings: §§7.2.1 and 7.3; AB §§3.5, 5.1 and 5.5.

2017-02-13 Alternation. Equivalence of oracle poly-time hierarchy and
alternating poly-time hierarchy. Complete problems for various levels.
Preview of TQBF and PSPACE. Readings: Chapter 8; AB §§5.2
and 5.3.

2017-02-15 Space complexity: PSPACE and PSPACE-completeness of
TQBF. Savitch’s theorem and the Immerman-Szelepcsényi theorem.
The very flat log-space (alternating) hierarchy and the even flatter
poly-space hierarchy. Readings: Chapter 9; AB §§4.3–4.4.

2017-02-20 A bit about the log-space oracle hierarchy: NLNL = NL. L vs
NL vs P: NL-complete and P-complete problems, AL = P. Readings:
Sections 9.5 and 9.6; AB §6.5.2.

2017-02-22 Circuit complexity: non-uniform families of circuits and P/poly.
Uniform families of circuits and P. Readings: Chapter 10 through
§10.2; AB §§6.1–6.3.

2017-02-27 Restricted circuit complexity classes: ACi, NCi, and NC.
Branching programs and Barrington’s Theorem. Readings: §10.3
through §10.3.3; AB §§6.5 and 13.4.4.

LECTURE SCHEDULE xvii

2017-03-01 Håstad’s Switching Lemma. Readings: §10.3.4.1; AB §13.1.

2017-03-06 PARITY 6∈ AC0 (using Håstad’s Switching Lemma). PARITY 6∈
AC0 plus mod-p gates (using the Razborov-Smolensky approximation
by low-degree polynomials). Readings: §§10.3.4.2 and 10.3.4.3; AB
§13.2.

2017-03-08 Natural proofs. Readings: Chapter 11; AB Chapter 22.

2017-03-27 Randomized complexity: R, coRP, ZPP, and BPP. Defini-
tions, amplification, easy relationships between the classes. Readings:
Chapter 12 through §12.1.3; AB §§7.1–7.4.

2017-03-29 More randomized complexity: Adleman’s Theorem (BPP ⊆
P/poly) and the Sipser-Gács Theorem (BPP ⊆ Σp

2 ∩ Πp
2). Ran-

domized logspace. Start of counting classes: #P. Readings: rest of
Chapter 12, intro to Chapter 13, §13.2; AB §§7.6 and 7.7, 7.10, 9.1,
and 9.2 up to start of §9.2.1.

2017-04-03 Reductions for search problems and counting problems. Prob-
lems complete for #P. Closure properties of #P. Classes of decision
problems based on counting: PP,⊕P,UP. Readings: §§13.1–13.1.2,
§13.3, §13.4.

2017-04-05 The Valiant-Vazirani Theorem: NP ⊆ RPUP. Toda’s Theo-
rem: PH ⊆ PPP. Readings: §§13.4.3 and 13.5; AB §9.3.

2017-04-10 Descriptive complexity and Fagin’s Theorem. Readings: Chap-
ter 14 through §14.4; AB has a bit about this in Chapter 21, but it kind
of dries up in the middle, and indeed the entire chapter was dropped
in the published version of the book. If you are really interested in this
subject, it’s probably worth looking at Immerman’s textbook [Imm99].

2017-04-12 More descriptive complexity: operators and descriptive char-
acterizations of PH, NL, L, PSPACE, and P. Readings: rest of
Chapter 14.

2017-04-17 Start of interactive proofs: interactive proof systems (private
coins) and Arthur-Merlin games (public-coins). Proofs for GRAPH
NON-ISOMORPHISM with or without private coins. Eliminating the
need for private coins in general. Readings: Chapter 15 except §15.2;
AB §§8.1–8.4.

LECTURE SCHEDULE xviii

2017-04-19 More interactive proofs: IP = PSPACE. Readings: §15.2;
AB §8.5.

2017-04-24 Outline of the PCP Theorem: probabilistically-checkable proofs,
PCP for GRAPH NON-ISOMORPHISM, proof of NP ⊆ PCP(poly, 1)
using the Walsh-Hadamard code. Readings: §§16.1 and 16.2; AB §§18.1
and 18.4 (also 19.3 if you want to see the omitted proof that Walsh-
Hadamard codes are locally testable).

2017-04-26 The PCP theorem, constraint satisfaction problems, gap-preserving
reductions, and non-approximability. The Unique Games Conjecture.
Readings: Rest of Chapter 16; AB §18.2, [Kho10] (if you want to know
more about the Unique Games Conjecture).

2017-05-06 Final exam, starting at 2:00pm, in HGS 221. A closed-book
test covering all material discussed during the semester.

Chapter 1

Introduction

The basic question that computational complexity theory 1 tries to
answer is:

Given a problem X, and a machine model M , how long does
it take to solve X using a machine from M?

Unfortunately we can only rarely answer this question. So the real
questions of complexity theory are:

1. How can we classify problems into complexity classes based on their
apparent difficulty?

2. What relationships can we established between these complexity classes?

3. What techniques might we be able to use to resolve relationships
between complexity classes whose status is still open?

The most famous of these questions center around the P vs. NP problem.
Here P consists of problems that can be solved in time polynomial in the
size of the input on reasonable computational devices (we will see a more
formal definition in Chapter 4), NP consists of problems whose solutions can

1When I started in this business, the field was known as just complexity theory. But
“complexity theory” is now often used to refer to the study of complex systems, a field
of research strongly associated with the Santa Fe Institute. At its best, this field represents
some of the finest minds in physics seeking to cope with the realization that the behavior
of much of the universe is nonlinear and cannot be described succinctly. At its worst, it
consists of popular-science writers looking at pictures of fractals and saying “Wow, those
things are really complex!” We use the term “computational complexity theory” to avoid
confusion with this largely unrelated area of research, although when not being careful we
will often drop the “computational” part.

1

CHAPTER 1. INTRODUCTION 2

be verified in time polynomial in the size of the input (Chapter 5), and the
big question is whether there are any problems in NP that are not also in
P. Much of the development of computational complexity theory has arisen
from researchers working very hard to answer this question.

Computational complexity theory also includes questions about other
computational resources. In addition to time, we can ask about how much
space it takes to solve a particular problem. The space class analogous to P
is L, the class of problems that can be solved using space logarithmic in the
size of the input. Because a log-space machine can only have polynomially-
many distinct states, any problem solvable in L is also solvable in P, and
indeed L is the largest space complexity class that includes only problems
we can expect to solve efficiently in practice. As with P, a big open question
is whether solving problems in log space is any harder than checking the
solutions. In other words, is L equal to its nondeterministic counterpart NL?
Other classes of interest include PSPACE, the class of problems solvable
using polynomial space, which contains within it an entire hierarchy of classes
that are to NP what NP is to P.2

In addition to asking about deterministic computations, we can also
ask about what happens with randomness. The class BPP of bounded-
error probabilistic polynomial-time computations, in which we must produce
the right answer substantially more often than not in polynomial time,
corresponds to typical randomized algorithms. It is an open question whether
BPP = P or not. Cryptographers tend to think they are equal (a good
pseudorandom number generator will let you simulate BPP in P), but we
don’t really know. A similar question arises for BQP, the class of problems
solvable with bounded error in polynomial time using a quantum computer.
Quantum computers seem pretty powerful, but as far as we know, BQP
could be equal to P.

Complexity theory is a huge field, probably the most technically developed
part of theoretical computer science, and we won’t be able to cover all of it.
But the hope is that this course will give you enough of an introduction to
the basic ideas of complexity theory that if you are interested, you will be
able to pursue it further on your own.

2Which is to say: possibly equal but probably not.

Chapter 2

Problems and languages

For the most part, the kind of problems we study in complexity theory are
decision problems, where we are presented with an input x and have to
answer “yes” or “no” based on whether x satisfies some predicate P . An
example is GRAPH 3-COLORABILITY:1 Given a graph G, is there a way
to assign three colors to the vertices so that no edge has two endpoint of the
same color?

Most of the algorithms you’ve probably seen have computed actual
functions instead of just solving a decision problem, so the choice to limit
ourselves (mostly) to decision problems requires some justification. The
main reason is that decision problems are simpler to reason about than more
general functions, and our life as complexity theorists is hard enough already.
But we can also make some plausible excuses that decision problems in fact
capture most of what is hard about function computation.

For example, if we are in the graph-coloring business, we probably want
to find a coloring of G rather than just be told that it exists. But if we have a
machine that tells use whether or not a coloring exists, with a little tinkering
we can turn it into a machine that tells us if a coloring exists consistent with
locking down a few nodes to have particular colors.2 With this modified
machine, we can probe potential colorings one vertex at a time, backing off
if we place a color that prevents us from coloring the entire graph. Since we
have to call the graph-coloring tester more than once, this is more expensive
than the original decision problem, but it will still be reasonably efficient if

1It’s conventional to name problems in all-caps.
2Since we can’t necessarily rewrite the code for our graph-coloring tester, this involves

adjusting the input graph. The basic idea is that we can add a triangle off on the side
somewhere that gives us nodes with our three colors, and force a node to have a particular
color by linking it to the two other colors in the triangle.

3

CHAPTER 2. PROBLEMS AND LANGUAGES 4

our algorithm for the decision problem is.
Concentrating on decision problems fixes the outputs of what we are

doing. We also have to formalize how we are handling inputs. Typically
we assume that an instance x of whatever problem we are looking at has
an encoding xxy over some alphabet Σ, which can in principle always be
reduced to just {0, 1}. Under this assumption, the input tape contains a
sequence of symbols from Σ bounded by an infinite sequence of blanks in
both directions. The input tape head by convention starts on the leftmost
symbol in the input.

We typically don’t care too much about the details of this encoding, as
long as (a) it is reasonably efficient in its use of space (for example, we’d
encode a natural number like 19 using its binary representation x19y =
10011 instead of its unary representations 119 = 1111111111111111111);
and (b) it makes the features of the input we want to get at reasonably
accessible (if we want to encode two primes, we represent them something
like x〈17, 19〉y = 10001, 10011 instead of x17 · 19yx323y = 101000011, even
thought the latter representation in principle lets us recover the former).
The justification for being blasé about the details is that we should be able
to convert between reasonable representations at low cost; so if we can solve
a problem efficiently for one representation of the input, we should also be
able to solve it efficiently for any other reasonable representations, and if we
can’t, that’s a sign that there may be something wrong with our problem.3

Summing up, on the output side we consider yes/no outputs only, and
on the input side we insist that all inputs are encoded as strings of symbols.
We can formalize this idea by defining a language as a set of finite strings
over some alphabet Σ. If x ∈ L then are supposed to answer “yes” and if
x 6∈ L, we are supposed to answer “no.” An implementation of a language
is a machine of some sort that does this correctly, and a complexity class
will just be a set of languages whose implementations have some particular
complexity property.

If we have a Turing machine M that halts in an accepting state on any
input x ∈ L and halts in a rejecting state on any input x 6∈ L, we say that
M decides L. Each M that halts on all inputs decides exactly one language
L, which we write as L(M).

3The technical term here is that we want our problems to be representation inde-
pendent, which is borrowed from the theory of abstract data types; the idea is that we
want the meaning of the problem to depend on x and not a particular choice of xxy.

Chapter 3

Models of computation

Many models of computation have been proposed over the years. The
Church-Turing thesis is the observation that all of the ones that are
sufficiently powerful and that can plausibly be realized in practice are capable
of computing the same predicates.1 The extended Church-Turing thesis
says that all reasonable computational models can simulate each other with
slowdown at most polynomial in the duration of the computation.

Taken together, these let us ignore the question of precisely which model
of computation we are using, and we can settle on whatever model we find
convenient (for example, C programs). But when reasoning about specific
computations, it can be helpful to settle on a single, mathematically simple
model. This usually ends up being a Turing machine.

3.1 Turing machines

A Turing machine (TM for short) consists of one or more a tapes, which
we can think of as storing an infinite (in both directions) array of symbols from
some alphabet Γ, one or more heads, which point to particular locations
on the tape(s), and a finite-state control that controls the movement of
the heads on the tapes and that may direct each head to rewrite the symbol
in the cell it currently points to, based on the current symbols under the
heads and its state, an element of its state space Q.

1Alternatively, the Church-Turing thesis is a declaration of what models we will consider
to be plausibly realizable. This roughly means that we can only do a finite amount of
work in a finite amount of time, a restriction that may not hold if, for example, you live
very close to a rotating black hole or have the ability to carry out supertasks in apparent
violation of the usual laws of physics.

5

CHAPTER 3. MODELS OF COMPUTATION 6

In its simplest form, a Turing machine has exactly one tape that is used
for input, computation, and output, and has only one head on this tape.
This is often too restrictive to program easily, so we will typically assume at
least three tapes (with corresponding heads): one each for input, work, and
output. This does not add any significant power to the model, and indeed
not only is it possible for a one-tape Turing machine to simulate a k-tape
Turing machine for any fixed k, it can do so with only polynomial slowdown.
Similarly, even though in principle we can limit our alphabet to just {0, 1},
we will in general assume whatever (finite) alphabet is convenient for the
tape cells.

Formally, we can define a k-tape Turing machine as a tuple 〈Γ, Q, δ〉,
where Γ is the alphabet; Q is the state space of the finite-state controller;
and δ : Q × Γk → Q × Γk × {L, S,R}k is the transition function, which
specifies for each state q ∈ Q and k-tuple of symbols from Γ seen at the
current positions of the heads the next state q′ ∈ Q, a new tuple of symbols
to write to the current head positions, and a direction Left, Stay, or Right to
move each head in.2

More formal definitions of a Turing machine add additional details to the
tuple, including an explicit blank symbol b ∈ Γ, a restricted input alphabet
Σ ⊆ Γ (which generally does not include b, since the blank regions of the
input tape mark the ends of the input), an explicit starting state q0 ∈ Q,
and an explicit list of accepting states A ⊆ Q. We will include these details
as needed.

To avoid confusion between the state q of the controller and the state of
the Turing machine as a whole (which includes the contents of the tapes and
the positions of the heads as well), we will describe the state of the machine
as a whole as its configuration and reserve state for just the part of the
configuration that represents the state of the controller.

Because we allow the Turing machine to do nothing, we do not need to
include an explicit halting state. Instead, we will define the machine to
halt if it reaches a configuration where it does not move its heads, change
its state, or change any of the tape symbols.

2This definition mostly follows the one in §1.2 of Arora and Barak [AB07]. One
difference is that we allow the machine to write to all k of its tapes, while Arora and
Barak reserve the first tape as an input tape and thus define the transition function as
δ : Q× Γk → Q× Γk−1 × {L, S,R}k. The advantage of the more general definition is that
it allows for a one-tape machine where the single tape function in all three roles of input,
storage, and output. The disadvantage is that if we do want a read-only input tape, which
is important when defining sublinear space complexity classes like L, we must explicitly
require that δ always write to the first tape whatever symbol is already there.

CHAPTER 3. MODELS OF COMPUTATION 7

3.1.1 Computations

A computation of a predicate by a Turing machine proceeds as follows:

1. We start the machine in an initial configuration where the first tape
contains the input. For convenience we typically assume that this is
bounded by blank characters that cannot appear in the input. The
head on the first tape starts on the leftmost input symbol. All cells on
all tapes, other than the cells representing the input, start off with a
blank symbol. The controller starts in the initial state q0.

2. Each step of the computation consists of reading the k-tuple of symbols
under the heads on each of the tapes, then rewriting these symbols,
updating the state, and moving the heads according to the transition
function.

3. This continues until the machine halts, which we defined above as
reaching a configuration that doesn’t change as a result of applying
the transition function.

3.1.2 Complexity

The time complexity of an execution is the number of steps until the
machine halts. Typically we will try to bound the time complexity as a
function of the size n of the input, defined as the number of cells occupied
by the input, excluding the infinite number of blanks that surround it.

The space complexity is the number of tape cells used by the com-
putation. We have to be a little careful to define what it means to use
a cell. A naive approach is just to count the number of cells that hold a
non-blank symbol at any step of the computation, but this allows cheating
(on a multi-tape Turing machine) because we can simulate an unbounded
counter by writing a single non-blank symbol to one of our work tapes and
using the position of the head relative to this symbol as the counter value.3
So instead we will charge for any cell that a head ever occupies, whether it
writes a non-blank symbol to that cell or not.

An exception is that if we have a read-only input tape and a write-only
output tape, we will only charge for cells on the work tapes. This allows
space complexity sublinear in n.

3This counter abstraction only supports the operations increment, decrement, and test
for zero, but two such counters are enough to simulate an unbounded ordinary memory
using a construction of Minsky [Min61], and indeed Minsky’s original construction is
described in terms of a 2-tape TM with only one non-black cell per tape.

CHAPTER 3. MODELS OF COMPUTATION 8

3.1.2.1 Asymptotic notation

In computing time and space complexities, we want to ignore constant factors
and performance on small inputs, because we know that constant factors
depend strongly on features of our model that we usually don’t care much
about, and performance on small inputs can always be faked by baking a
large lookup table into our finite-state controller. As in the usual analysis
of algorithms, we get around these issues by expressing performance using
asymptotic notation. This section gives a brief review of asymptotic notation
as used in algorithm analysis and computational complexity theory.

Given two non-negative4 functions f(n) and g(n), we say that:

• f(n) = O(g(n)) if there exist constants c > 0 and N such that f(n) ≤
c · g(n) for all n ≥ N .

• f(n) = Ω(g(n)) if there exist constants c > 0 and N such that f(n) ≥
c · (gn) for all n ≥ N .

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), or equivalently
if there exist constants c1 > 0, c2 > 0, and N such that c1 · g(n) ≤
f(n) ≤ c2 · g(n) for all n ≥ N .

• f(n) = o(g(n)) if for any constant c > 0, there exists a constant N
such that f(n) ≤ c · g(n) for all n ≥ N .

• f(n) = ω(g(n)) if for any constant c > 0, there exists a constant N
such that f(n) ≥ c · g(n) for all n ≥ N .

Note that we are using the equals sign in a funny way here. The convention
is that given an asymptotic expression like O(n) + O(n2) = O(n3), the
statement is true if for all functions we could substitute in on the left-
hand side in each class, there exist functions we could substitute in on the
right-hand side to make it true.5

4This limitation is convenient for talking about time and space complexity, because we
don’t know how to make anything run using negative time or space. In other contexts, like
in analysis (the branch of mathematics), it’s common to allow f(n) or g(n) to be negative
or even complex-valued, and just put in absolute values everywhere to make the definitions
make sense.

5This particular claim happens to be true: to prove this, we would need to show
that if f(n) = O(n) and g(n) = O(n2), then there is some h(n) = O(n3) such that
f(n) + g(n) = h(n). The good news is that we don’t have to guess what h(n) is once we
see f(n) and g(n). The bad news is that, after unpacking the definition of O(−) in each
case, we have at least six different constants to wrangle to show that h(n) = O(n3)

CHAPTER 3. MODELS OF COMPUTATION 9

Intuitively, it may help to think of the five asymptotic operators o, O,
Θ, Ω, and ω as mapping to the five comparison relations <, ≤, =, ≥,
and >. When we say f(n) = o(g(n)), we mean that f(n) grows strictly
more slowly than g(n); f(n) = O(g(n)) means it grows no faster than g(n);
f(n) = Θ(g(n)) means it grows at about the same rate; etc.; where in each
case when we talk about rate of growth we mean the rate of growth ignoring
constant factors and small inputs.

If you are familiar with limits, it is also possible to define f(n) = o(g(n)) as
limn→∞ f(n)/g(n) = 0, and similarly f(n) = ω(g(n)) as limn→∞ g(n)/f(n) =
0, with the caveat that bad things may happen if f(n) or g(n) are ever 0.
This doesn’t work so well for something like f(n) = O(g(n)). For example,
the function

f(n) =
{
n when n is odd
2n when n is even

is Θ(n) (it’s always between n and 2n), but limn→∞ f(n)/n doesn’t exist
since f(n)/n oscillates between 1 and 2.

When expressing complexities in asymptotic form, we usually try to keep
the function inside the big O as simple as possible. This means eliminating
constants and terms that are dominated by other terms. So complexities like
O(n), O(n logn), O(n5), and O(2n · n2 log5 n) are all things you are likely to
see in actual papers, but O(3n), O(n2 + n), and O(2n + n2) are not.

3.1.3 Programming a Turing machine

Although one can in principle describe a Turing machine program by giving
an explicit representation of δ, no sane programmer would ever want to
do this. I personally find it helpful to think about TM programming as if
I were programming in a C-like language, where the tapes correspond to
(infinite) arrays of characters and the head positions correspond to (highly-
restricted) pointers. The restrictions on the pointers are that we can’t do any
pointer operations other than post-increment, post-decrement, dereference,
and assignment through a dereference; these correspond to moving the head
left, moving the head right, reading a tape cell, and writing a tape cell.

The state of the controller represents several aspects of the program. At
minimum, the state encodes the current program counter (so this approach
only works for code that doesn’t require a stack, which rules out recursion
and many uses of subroutines). The state can also be used to hold a finite
number of variables that can take on a finite number of values.

CHAPTER 3. MODELS OF COMPUTATION 10

q read q′ write move
0 〈0, 0, y〉 1 〈0, 0, y〉 〈L, S, L〉
0 〈x, 0, y〉 0 〈x, 0, y〉 〈R, S,R〉
1 〈0, 0, y〉 2 〈0, 0, y〉 〈R,S,S〉
1 〈x, 0, y〉 1 〈x, 0, y〉 〈L,S,S〉
2 〈0, 0, y〉 2 〈0, 0, y〉 〈S, S, S〉
2 〈x, 0, y〉 2 〈x, 0, x〉 〈R, S, L〉

Table 3.1: Turing-machine transition function for reversing the input. In
lines where x appears in the input tape, it is assumed that x is not zero.
Note this is an abbreviated description: the actual transition function would
not use variables x and y but would instead expand out all |Σ| possible values
for each.

3.1.3.1 Example of computing a function

For example, Figure 3.1 is a C program that reverses its input tape to its
output tape. The assumption is that blank symbols (including the ends of
the input) are represented by null characters. 6 Because this program uses
no local variables other than the head position pointers, the state only needs
to represent the program counter. A representation of the corresponding
transition function is given in Figure 3.1.

Realistically, nobody would ever write out either of these representations,
unless they were really trying to be careful about counting states. Instead,
a claim that a Turing machine can reverse its input would probably be
described in terms of a less formal algorithm:

1. Move the input and output heads to the right until the input head
reaches the end of the input.

2. Move the output head back one cell to the left.

3. Move the input head back to the leftmost cell of the input.

4. Copy the input to the output, one cell at a time, moving the input
head right and the output head left after each step.

6Note that this function won’t work on standard C strings, which are (a) not null-
terminated on both sides, and (b) not stored in arrays that are infinite in both directions.
Objection (a) is easily dealt with by demanding null-termination at the start from the
caller. Objection (b) can in principle be dealt with using a clever dynamically-allocated
data structure and C++ overloading magic. As far as I know, nobody has ever bothered
to do this.

CHAPTER 3. MODELS OF COMPUTATION 11

void reverse(char *input, char *work, char *output)
{

/* move output head to past last position of output */
/* state 0 */
while(*input != 0) {

output++;
input++;

}

/* pull output head left one cell to actual last position */
/* start moving input head to leftmost input symbol */
/* state 0 */
output--;
input--;

/* return input head to leftmost input symbol */
/* state 1 */
while(*input != 0) {

input--;
}

/* state 1 */
input++;

/* copy input to output in reverse order */
/* state 2 */
while(*input != 0) {

*output = *input;
input++;
output--;

}

/* HALT */
}

Figure 3.1: Turing-machine transition function for reversing the input, dis-
guised as a C program

CHAPTER 3. MODELS OF COMPUTATION 12

As long as it’s clear that each of these steps only requires reading and
writing cells under the current head positions, each move only moves a head
at most one cell left or right, and the number of states needed to keep track
of everything is finite,

3.1.3.2 Example of computing a predicate

Here’s an example of a predicate computed by a Turing machine. Note that
here we don’t use the output tape. The halting state determines whether we
accept the input or not.

1. Copy the input from the input tape to the work tape, leaving both the
input and work tape heads on the blank cell to the right.

2. Move the work tape head back to the blank cell to the left of the copy
of the input.

3. Finally, walk the work tape head right across the copy while walking
the input tape head left across the input. If we see mismatched symbols
before reaching a blank, halt and reject. If we reach the blanks at the
end, halt and accept.

Note that most of the “steps” in this algorithm are not steps in the sense
of a single move of the TM; instead, we rely on the reader’s sense of how to
program a TM to interpret statements like “Write $L one cell to the right of
the rightmost $R” in terms of a sequence of states and transitions that move
the work-tape head to the appropriate location and update the cell. Doing
this involves the usual wager in mathematical writing: the writer is betting
both their own and the reader’s time against the possibility of embarrassment
if a procedure that has an obvious implementation does not in fact work.

In this case, the algorithm is simple enough that we can also write out
the transition table: see Figure 3.2.

3.1.4 Turing machine variants

A lot of early working on Turing machines and related models went into
showing that each could simulate the others. Most of these simulations are
not very exciting, but knowing they exist can sometimes simplify arguments
about what can or cannot be computed by a Turing machine. The following
lemma gives a few of the more useful reductions:

CHAPTER 3. MODELS OF COMPUTATION 13

q read q′ write move note
0 〈x,−〉 1 〈x, x〉 〈R,R〉 copy symbol
0 〈b,−〉 1 〈b, b〉 〈S, L〉 stop copying
1 〈b, b〉 2 〈b, b〉 〈L,R〉 start comparing
1 〈b, x〉 2 〈b, x〉 〈S,R〉 move work tape head back to start
2 〈b, b〉 3 〈b, b〉 〈S, S〉 reached end, move to accepting state
2 〈x, x〉 2 〈x, x〉 〈L,R〉 when x 6= b; comparison OK, keep going
2 〈x, y〉 2 〈x, y〉 〈S, S〉 when x 6= y; halt and reject
3 〈b, b〉 3 〈b, b〉 〈S, S〉 halt and accept

Figure 3.2: Recognizing a palindrome using a work tape

Lemma 3.1.1. Each of the following models computes the same predicates
and functions as a standard k-tape Turing machine:

1. A machine with a writable input tape and a readable output tape.

2. A machine that allows more than one head per tape.

3. A machine whose tapes have a left boundary, making them infinite in
only one direction.

4. A machine that has only a single tape.

5. A machine with tape alphabet {0, 1}.

6. A machine that has no work tape, but instead has at least two counters
supporting increment, decrement, and test-for-zero operations. (Equiv-
alently, a Turing machine with at least two non-writable work tapes
that each contain exactly one non-blank symbol.)

Proof. 1. The trick here is to add two extra work tapes to the standard
machine. The first extra tape holds a copy of the input, the second
a copy of the output. It is straightforward to modify the transition
function (with a few extra states) so that the first thing the machine
does is copy the non-writable input tape to the first extra work tape,
and the last thing the machine does is copy the second extra work
tape to the output tape. This incurs a time and space overhead linear
in the combined size of the input and output, which is usually not a
problem unless we are considering machines with very restricted space
complexity.

CHAPTER 3. MODELS OF COMPUTATION 14

2. For this we extend the tape alphabet to include markers for the sim-
ulated head positions, so that instead of Γ we are using Γ × P([`])
where [`] = {0, 1, . . . , `− 1} and ` is the number of heads per tape. We
assume, based on the previous construction, that the input and output
tapes are writable.
To execute a step of the multi-head machine, we first send the real heads
across each tape to collect all symbols under the simulated heads. This
takes O(T) time in the worst case, where T is the running time of the
simulated machine. We then compute the new simulated state, moves
of the simulated heads, and symbols written, and again send the real
heads across each tape to make these updates. The actual mechanics
of implementing this are pretty tedious, but it is straightforward to see
that only finitely many extra states are needed to keep track of the
finite vector of symbols that have been, the finite vector of symbols
that need to be written, and which heads still need to move and in
which direction. So this is something that a standard Turing machine
can do.
There is no overhead in space complexity (except possibly dealing with
the issue of a non-writable input tape with multiple heads), but the
time complexity of a computation can easily go from T to O(T 2).

3. Here we take each standard doubly-infinite tape and fold it in half,
turning it into a tape that infinite in only one direction.
The idea is that the i-th cell of the folded tape holds cells at positions
±i on the original tape, with a special mark in cell 0 to indicate the left
edge. If we use an extra bit for this mark, this requires expanding the
tape alphabet from Γ to Γ2 × {0, 1}. We must also expand the state
space to indicate for each head whether it is on the positive or negative
half of the simulated tape, and adjust the transition function to keep
track of this information, move each head in the appropriate direction,
and update whichever side of the simulated tape is appropriate at each
step. These changes will still leave the size of the alphabet, state space,
and transition table constant, and there is no slowdown or increase in
space complexity as a result of the simulation.

4. To reduce from k tapes to a single tape, pack the tapes consecutively
one after each other, with markers as in the previous construction for
the k distinct heads. A simulated step consists of scanning the entire
tape to find the values under the heads O(T (n)) steps, computing the
result of applying δ, and then rewriting new values and moving the

CHAPTER 3. MODELS OF COMPUTATION 15

head markers. This last step takes O(T (n)) time if we don’t have to
increase the space used by any of the work tapes. If we do, we can copy
values to the right of the places where we are expanding to make room;
doing this from right-to-left requires O(1) storage and O(T (n)) time.
In each case the total cost of simulating one step of the k-tape machine
is bounded by O(T (n)), and the total cost of simulating T (n) steps is
bounded by O((T (n))2). This turns out to be optimal, see §3.1.5.

5. To reduce to a two-character alphabet, encode the original alphabet
in binary. Let Γ be the original alphabet, and let k = dlg|Γ|e be
the minimum number of bits needed to represent each element of Γ
uniquely. We will represent each cell of the simulated machine with k
cells in the simulating machine, and represent each symbol in Γ with a
distinct sequence of k bits (note that this requires cooperation from
whoever is supplying our input!)
At the start of each simulated step, we assume that each head is
parked on the leftmost symbol of a k-wide block. To read the simulated
symbols under the heads, we move the heads across the blocks collecting
bits as they go, then move them back; this takes 2(k − 1) steps and
requires expanding the state space to track what we are doing, but the
state space will still be finite. We then compute the transition and
store the new symbols to write in the finite-state controller. A second
2(k − 1)-step walk across the blocks writes the new symbols. Finally,
we take k steps to move the heads left or right k cells as determined
by the simulated transition function.

6. To reduce a TM to two counters, we use a construction of Min-
sky [Min61].
The first idea is that we can replace a doubly-infinite tape with a head
in the middle with two stacks. To move the head right, we pop from
the right stack and push to the left; to move left, we do the reverse.
Next, we can implement a stack with two counters, supporting in-
crement, decrement, and test-for-zero operations. A stack containing
symbols x0, x1, . . . is represented by the number X =

∑∞
i=0 s

ixi, where
s = |Γ| and we assume that a blank symbol is represented by 0 to keep
the total finite. To read the top symbol x0, we must compute X mod s,
which we can do by copying the counter holding x to a second counter
starting at 0 (using X many decrement and increment operations),
and tracking the remainder mod s as we go. To pop the stack, we
compute bX/sc by incrementing the output counter once after every s

CHAPTER 3. MODELS OF COMPUTATION 16

decrements we manage to do on the input counter, throwing away any
remainder at the end. To push a new symbol z, compute X · s+ z by
incrementing the output counter s times for each time we decrement the
input counter, then add an extra z on the end. All of these operations
can be managed by a finite-state controller, since we only need to be
able to count up to s.
Applying both techniques turns k tapes into 2k counters. To reduce to
just two counters, use Goedel numbering [Gö31, §V]: pick 2k distinct
primes p1, p2, . . . , p2k and encode the vector 〈X1, . . . , X2k〉 as Y =
Π2k
i=1p

Xi
i . We can now test if any particular Xi is 0 by testing if Y

is not divisible by pi (which can be done by computing a remainder
while copying Y from one counter to the other), and can increment
or decrement Xi by multiplying or dividing by pi. Again, everything
requires a finite amount of state to manage.
The blow-up in time complexity for this simulation is exponential.
Going from k tapes to 2k counters by itself makes each step cost as
much as O(ksT) counter operations. Each counter operation in turn
can take up to O(pT2k) steps on the two-counter machine, where p2k
will be Θ(k log k) (a constant!) if we are parsimonious in our choice of
primes. Combining these gives a time per step of the original machine of
O(k(sp2k)T), which argues for applying this technique only to machines
with few tapes and small alphabets, if we have to apply it at all. On the
other hand, it shows that even very limited (but unbounded) storage
devices, together with a finite-state controller, can compute anything
computed by a standard Turing machine or any model it can simulate.
This makes general-purpose computation very easy to achieve if we
have unbounded space and don’t care about time too much.

3.1.5 Limitations of simulations

Except for tightly constrained models like Minsky’s two-counter machines,
most of the models we consider can simulate each other with at most poly-
nomial blow-up. A typical case is our ability to simulate a k-tape Turing
machine that runs in O(T (n)) time using a one-tape Turing machine that
runs in O((T (n))2) time. In some of these cases, we can show that this
blow-up is unavoidable.

For example, we have previously seen (§3.1.3.2 that it is possible to decide
the language PALINDROME =

{
x
∣∣∣ x = xR

}
using a Turing machine with

CHAPTER 3. MODELS OF COMPUTATION 17

a work tape in O(n) steps. A classic lower bound of Hennie [Hen65] shows
that a one-tape machine must take Ω(n2) steps to recognize this language.7
We give an explanation of this result below.

Given a computation of a one-tape Turing machine M on input x, we
can consider the sequence of steps that send us back and forth between
cells i and i+ 1 on the tape. The crossing sequence Ci(x) is defined as the
sequence of states q1q2 . . . qk that the finite-state controller holds in each
configuration just before moving from i to i + 1 or from i + 1 to i. The
crossing sequence characterizes what information is carried from the left
side of the tape to the right side of the tape and vice versa. When drawing
a crossing sequence, we’ll often put in arrows indicating which direction
the head is moving at each point in the sequence, but this is redundant:
we know that the head will be on the left side at the beginning, and each
crossing changes which side it is on, so the odd positions in the sequence
always correspond to left-to-right transitions and the even positions always
correspond to right-to-left transitions.

The length of a crossing sequence Ci(x) may depend on x, since different
inputs may result in fewer or more crossings. What makes the crossing
sequences useful is that

∑
iCi(x) is a lower bound on the number of steps

taken by the Turing machine.8 So showing that a computation takes a long
time requires “only” showing that it has many long crossing sequences. We
can do this for PALINDROME, as well as many similar languages like {xx}
where recognizing a member of the language requires comparing a lot of
information on widely-separated parts of the input tape.

The key step is observing that a crossing sequence fully characterizes
what information flows across the boundary between cells i and i+ 1. More
explicitly, we show that if two inputs give the same crossing sequence, we can
swap the parts of the input on either side of the boundary without changing
the outcome of the computation:

Lemma 3.1.2. Let M be a one-tape Turing machine. Consider two inputs
st and uv, where |s| = |u| = i. Then if Ci(st) = Ci(uv) and M(st) = M(uv),
then M(sv)M(st).

Proof. The idea is that we can paste together parts of the computation on
st with parts of the computation on uv to get a computation on sv that
behaves the same as st on the s side of the boundary and as uv on the v

7Strictly speaking, Hennie shows [Hen65, Theorem 5] the same lower bound for the
language x2nx, where x ∈ {0, 1}n. Here the second copy of x is not reversed, but the lower
bound argument is pretty much the same.

8It is not exact because the sum doesn’t include steps where the head doesn’t move.

CHAPTER 3. MODELS OF COMPUTATION 18

side. Divide the st computation into a sequence of k = Ci(st) + 1 fragments
α0α1 . . . αk, where the split between each αj and the following αj+1 is at the
point where the TM head crosses the i–(i+ 1) boundary. Similarly divide
the uv computation into fragments β0 . . . βk.

We now argue that α0β1α2β3 . . . γk describes the sv computation, where
γk is either αk or βk depending on whether k is even or odd. The argument
is a straightforward induction on the step count so far, with the induction
hypothesis stating that at the `-th step of the j-th segment, the active side
of the tape and the finite-state controller are both in the same state as
in the corresponding step of the appropriate unmixed execution, and the
passive side of the tape is in whatever state it would be at the end of the
segment it just completed in its own unmixed execution. This is easily shown
for transitions that don’t cross the boundary. For transitions that cross
the boundary, we appeal to Ci(st) = Ci(uv) to argue that the finite-state
controller’s state is the same coming out of the active side as it should be
going into the previously passive side.

It follows that when the machine halts on the s side, it halts in the same
state as in M(st); if it halts on the v side, it halts in the same state as
in M(uv). In either case it accepts or rejects as in the original unmixed
execution.

How does this help us with PALINDROME? Fix some machine M for
recognizing PALINDROME, and consider the set Sn of inputs of the form
x0nxR, for all x ∈ {0, 1}n. Let Ci(Sn) = {Ci(y) | y ∈ S}. We will argue
that |Ci(S)| is large for all i ∈ n . . . n2− 1, and thus that most crossing
sequences across these boundaries are also large. Since each element of each
Ci(y) crossing sequence corresponds to a step of M(y), this will give us an
Ω(n2) = Ω(|y|2) lower bound on M(y) for some y = x0nxR.

To show |Ci(S)| is large, suppose that there are strings x and y in
{0, 1}n such that Ci(x0nxR) = Ci(y0nyR). Since these two strings are both
palindromes, Lemma 3.1.2 says that we can split them at i and paste the
results together to get a new string x0nyR that M accepts. This implies that
x = y, making Ci injective on S. So |Ci(S)| = |S| = 2n.

Because a crossing sequence is just a list of states, there are at most
|Q|t possible crossing sequences of length t, and at most |Q|

t−1−1
|Q|−1 ≤ |Q|t

crossing sequences of length strictly less than t. Let t = b n−1
log|Q|c = Ω(n).

Then |Q|t ≤ 2n−1, and at least half of the y in S give crossing sequences
Ci(y) that have length at least t = Ω(n). If we choose an element y of S
uniformly at random, the expected number of positions i ∈ {n . . . 2n− 1}

CHAPTER 3. MODELS OF COMPUTATION 19

for which Ci(y) ≥ t is at least n/2. It follows that there is some y such that
Ci(y) ≥ t for at least n/2 values if i, giving a total length over all i of at
least tn/2 = Ω(n2).

3.1.6 Universal Turing machines

One of Turing’s most striking observations about Turing machines was that
even though any particular Turing machine has a fixed transition table, you
can build a universal Turing machine U that simulates any other Turing
machine M , given a description xMy of that machine on its input tape. This
is true even if the simulated machine has a larger tape alphabet than U
(although the input will need to be encoded so that U can read it) or uses
more tapes.

Specifically, U is universal if U(xMy, xxy) = M(x) for any Turing
machine M and input x, where xMy and xxy are appropriate encodings of
M and x in U ’s input alphabet.

By an appropriate encoding of M , we want something that specifies:

1. The size of M ’s state space Q, tape alphabet Γ, and input alphabet Σ.

2. The number of work tapes available to M .

3. The transition table for M . To simplify things, it’s usually easiest to
assume a standardized form of the transition table, where the states
in Q are encoded as binary numbers in the range 0 . . . |Q| − 1, with 0
encoding the initial state q0, and the alphabet Γ is similarly encoded
as 0 . . . |Γ| − 1, with 0 representing the blank symbol, 0 . . . |Σ| − 1
representing the input alphabet.

Actually programming U is a bit of a nuisance, but if we are not too
worried about time complexity, we can store M ’s work tapes consecutively
on a single work tape, using the techniques from Lemma 3.1.1 to simulate
having a larger alphabet than U and separate heads for each simulated tape.
This may require copying large section of U ’s work tape from time to time
to expand the storage allocated to a particular simulated tape, but each of
these copying operations will only take time O(S log|Γ|) where S is the space
complexity of M ’s computation (which is bounded by the time complexity
T of this same computation). To execute a step of M , we gather up the
symbols under M ’s heads onto a second work tape (which we also use to
store M ’s state), and then look for a matching element of Q × Γk in M ’s
transition table. This requires scanning our entire storage tape, although for

CHAPTER 3. MODELS OF COMPUTATION 20

the input we can just use a copy of the original input tape.9 We then copy
the new state, cell contents, and head movements onto the second work tape,
and finally run up and down the first work tape to rewrite cells and move
the simulated heads. Any output is written directly to the output tape. All
of this takes O(|xMy|+ T log|Γ|) time assuming the simulated work tapes
are reasonably well packed together. The total time to simulate T steps of
M is thus O(CT 2) where C is a constant that depends M .

Using the clever amortized data structure of Hennie and Stearns (see
Lemma 3.1.1), we can replace the consecutive representations of M ’s work
tapes by interleaved representations and reduce the cost to O(CT log T),
where C is again a constant that depends on M . This improvement in
efficiency will turn out to be important when we look at the time hierarchy
theorem in §6.1.2.

3.2 Random access machines

A traditional C programmer, presented with the modified version of the
language from §3.1.3.1, might initially be overjoyed to realize that having
infinite arrays means no possibility of segmentation faults. But their joy
would turn to ashes quickly once we reveal that basic array operations like
a[i] are denied them. If we want to market our models to programmers, we
will need to give them more power. Typically this is done using some version
of a random access machine (RAM).

A RAM looks a lot like a typical modern computer in that it has a
controller with registers and a memory that looks like a giant unbounded
array, except that (as in a Turing machine) its program is encoded directly
into the transition table of its finite-state controller. Each register and
each memory location holds an integer. While different RAM models use
different instruction sets, the basic idea is that we can do arithmetic on
registers, compare registers, and load or store a value from a memory location
addressed by a particular register all as a single step. Each such step is
determined by the current state, and the transition function specifies the
next step (possibly based on the outcome of a test in the case of comparing
registers).

We can implement a RAM using a Turing machine by storing a binary
representation of the registers and memory on work tapes. The simplest way
to do this is probably to assign a separate work tape to each register (there

9Using a copy means that we don’t need to use the input head to mark where we are in
x, and can instead use it to scan through xMy.

CHAPTER 3. MODELS OF COMPUTATION 21

are only finitely many); if this is too profligate, we can use the simulation
from Lemma 3.1.1 to reduce to a single work tape. For the memory, we use
a single work tape organized as an association list: a non-empty memory
location i holding a value x is represented by a sequence xiy→xxy where xiy
and xxy are binary representations of i and x and → is a separator. The list
elements are themselves separated by a different separator.

Arithmetic operations on registers are implemented using standard Turing
machine programs (possibly using an extra work tape or two). For addition,
subtraction, and comparison, this will take O(logM) time when working on
values x with |x| ≤M .

Memory operations more painful. To read a memory cell i, we have to
scan the entire memory tape to find xiy, then copy the corresponding xxy to
the desired register tape. To write x to i, we must again scan for the current
value of i (if any) and remove it by copying any subsequent association-list
pairs down. We can then append the new pair xiy→xxy to the end of the
list. Both of these operations take time linear in the length of the memory,
which will be O(T logC) if C is an upper bound on the absolute value of
any register during the computation. For typical computations, C will be
polynomial in T , giving a slowdown of O(T log T).

The simulation in the other direction is trivial: given a Turing machine,
we can assume (based on the simulations in Lemma 3.1.1 that it has a single,
half-infinite tape. Store this in memory, one cell per memory location, and
use a register to track the position of the head.

Even though RAMs are more natural to program than Turing machines,
as a mathematical model they are a bit annoying. The big problem is that
the state of a RAM is complicated, which makes it tricky to simulate a
RAM using other models, and allowing unbounded values in the registers
and memory makes defining space complexity tricky as well. So we will
generally think of Turing machines as our fundamental model, and appeal to
simulations like the one above (or the extended Church-Turing thesis more
generally) to transform algorithms written for more powerful models into
something that can run on a TM.

A second objection to the RAM model is that the ability to access
arbitrary memory locations in O(1) steps is not physically realistic. Assuming
each bit of memory requires some minimum volume of space (a few thousand
cubic nanometers using current integrated circuit technology, or something
related to the Planck length based on quantum mechanics), we can only
pack O(1) bits of memory within any constant distance of the CPU, and
in general we can only pack O(`3) bits within distance `. This means that
accessing a memory of size S without faster-than-light communication will

CHAPTER 3. MODELS OF COMPUTATION 22

require Θ(S1/3) time in the worst case. Turing machines enforce a worse
restriction implicitly, since we have to run the head down the tape. This
makes a TM arguably a better representation of what a very large computer
could do than a RAM.

3.3 The extended Church-Turing thesis

There are many other models of computation we could consider, but with
the possible exception of quantum computers, all the ones we can currently
imagine implementing fall under the extended Church-Turing thesis,
which says that

Claim 3.3.1. Any language that can be decided by a physically realizable
computing device M in time T (n) can be decided by a Turing machine in
time O(T (n)k for some fixed k that depends only on M .

In other words, all physically realizable computing devices are equivalent
in power to a Turing machine, up to polynomial slowdown.

The argument for this is that we can imagine that any physically realizable
computing device can be simulated by a 1977 TRS-80 Model I home computer
equipped with an unboundedly large external storage device,10 and using a
construction similar to the one sketched for random access machines we can
imagine that the TRS-80 Model I can be simulated by a Turing machine.
So the original device can be simulated by a Turing machine. By itself this
claim is just the Church-Turing hypothesis; the extended version says
that this simulation involves only polynomial slowdown, which appears to
be true for everything we’ve managed to come up with so far.

Note that polynomial slowdown means that things like O(n) or O(n2)
time may depend on our choice of computational model. But if we just talk
about polynomial time, this is robust against changes in the model. This is
why we are so interested in classes like P (what we can decide in polynomial
time) as opposed to classes like TIME(n) (what we can decide in linear
time). But these less robust classes are still well-defined as long as we are
careful to specify our model.

10If this seems implausible, substitute one of the Zoo computers equipped with an
unboundedly large external storage device.

Chapter 4

Time and space complexity
classes

A complexity class is a set of languages that are similarly hard in some
sense. For example, the class P is the set of all languages that can be decided
by a Turing machine in polynomial time, that is, in O(nk) time for some
k.

To formalize the class of languages that can be decided within some
time bound, we need a technical definition to exclude time bounds that
produce weird results (say, by being themselves uncomputable). A function
f(n) is time-constructible if there is a Turing machine that, given input
1n, computes 1f(n) in O(f(n)) steps. Similarly, a function f(n) is space-
constructible if there is a Turing machine that, given input 1n, computes
1f(n) in O(f(n)) space. To avoid the issue of reading all the input, we
generally also require f(n) ≥ n in both cases.

Given a time-constructible function f(n), the complexity class TIME(f(n))
consists of all languages L for which there exists a Turing machine M that
decides L while always halting after at most O(f(n)) steps. Similarly, given
a space-constructible function f(n), the class SPACE(f(n)) consists of all
languages L for which there exits a Turing machine M that decides L while
always using at most O(f(n)) space.

As observed previously, both TIME(f(n)) and SPACE(f(n)) may de-
pend on the specific details of the computational model we are using. For
example, it is know that recognizing a palindrome can be done in O(n) time
on a Turing machine with a separate input and work tape (easy exercise)
but requires Ω(n2) time on a machine with just one tape. For this reason we
often work with more robust classes.

23

CHAPTER 4. TIME AND SPACE COMPLEXITY CLASSES 24

The most important class of all, which is generally taken to correspond
to what is computationally feasible, is the class

P =
∞⋃
k=1

TIME(nk).

This consists of all languages that are in TIME(nk) for some finite k.
The extended Church-Turing thesis says that P is robust in the sense

that it contains the same languages for any reasonable model of computation.
This is not a theorem (although it can be taken as a definition of a reasonable
model); instead, it is a hypothesis that follows from the fact that all of the
plausible-looking models of computation that have been invented over the
years all have the ability to simulate each other up to polynomial slowdown.

Chapter 5

Nonterminism and NP

Historically, a nondeterministic Turing machine has been defined as one
where the transition function is replaced a transition relation: instead of
each configuration leading directly to a unique successor configuration, a
configuration may have more than one successor configuration. In its simplest
form, this means that the next state q′ of the Turing machine controller is
replaced by two next states q′0 and q′1, and the Turing machine can choose
between them. In order to avoid having to think about how this choice is
made, we imagine that in fact the machine makes both choices: we give it
the magical ability to split into two copies, each with a different bit telling
it what to do next. These copies can then split further into exponentially
many copies, or branches. If any of the branches accepts, then we say the
machine as a whole accepts; if none do, the machine rejects.

This definition is a little awkward to work with, so nondeterminism is now
typically represented by giving a machine an extra input, the certificate or
witness. This corresponds to the original definition by having the witness
provide the sequence of choices that lead to the accepting branch (if there
is one). But instead of having to imagine a ghostly parade of branches, we
just think about a single computation that happens to get very lucky in the
choice of witness.

Formally, a language L is decided by a nondeterministic machine M if,
for every x ∈ L, there exists a witness w such that M(x,w) accepts, and for
every x 6∈ L, there does not exist a witness w such that M(x,w) accepts.

This definition is not quite as symmetric as it looks: saying that x 6∈ L
means there is no witness is the same as saying that all w cause M(x,w)
to reject. So for a “yes” instance of L, one good witness (equivalently, one
accepting branch) is enough, but for a “no” instance, all witnesses must be

25

CHAPTER 5. NONTERMINISM AND NP 26

bad (all branches must reject).
Analogous to TIME(f(n)) and SPACE(f(n)), we have have the non-

deterministic time complexity classes NTIME(f(n)) and nondeterministic
space complexity classes NSPACE(f(n)). These consist of all languages L
that are decided by a nondeterministic Turing machine in O(f(n)) time or
O(f(n)) space, respectively. Here the time or space complexity of machine
M on input x is defined as the maximum time or space, respectively, taken
by M over all choices of witness w. Note that |w| does not count toward n,
which is just |x|.

One complication with bounded space complexity is that the time com-
plexity (and thus the number of branchings represented by the witness string)
may be much larger than the space complexity (and thus how much of the
witness the machine can remember). If we supply the witness on a standard
two-way input tape, this allows the machine to go back and revisit its earlier
choices in a way that might not be possible in the original branching ver-
sion of nondeterminism. To avoid this, we supply the witness on a second
read-only input tape, whose head can only move right. This also justifies,
somewhat, not counting the length of the witness string as part of the input
size n.

Like the deterministic time and space complexity classes, nondeterministic
time and space complexity classes may depend on the specific details of the
model being used. For this reason, we are generally most interested in
nondeterministic classes that are more robust against changes in the model.
The most important of these is

NP =
⋃
k = 1∞NTIME(nk),

the set of all languages that can be decided in nondeterministic poly-
nomial time. As far as we know, this class may or may not be the same
as P, and the most important outstanding problem in complexity theory is
showing whether or not P = NP.

There’s an alternative definition of NP which puts the input and witness
on the same input tape. Here we have to put a bound on the size of the
witness to avoid, for example, ending up with a time complexity exponential
in |x| because an otherwise-useless w makes n too big. For this definition, we
let L ∈ NP if there is a polynomial p and a polynomial-time M such that
for all x, x ∈ L if an only if there exists w of length p(|x|) such that M(x,w)
accepts. Note that the running time of M is now polynomial in |x| + |w|,
but this is still polynomial in |x| because |w| is.

This approach doesn’t work as well for NTIME(f(n)) in general, because
the size of w would have to be both smaller than n (if it is counted in n)

CHAPTER 5. NONTERMINISM AND NP 27

and at least f(n) (if it represents nondeterministic choices that can occur at
each of f(n) steps.

5.1 Examples of problems in NP

It’s trivial to show that any language L in P is also in NP: take a poly-time
machine M(x) that decides x ∈ L, and convert it to a nondeterministic
poly-time machine M ′(x,w) that decides x ∈ L by the simple expedient of
ignoring w. But there are a large class of problems that can easily be shown
to be in NP that we don’t know how to solve in P.

Typically these are problems where we are asked if some solution exists,
and checking the solution (provided as the witness) can be done efficiently.
What makes this nice from the point of view of the programmer is that
finally we have a logical quantifier that is on our side. No longer must we
face the worst-case input, supplied by our adversary ∀x, alone. Instead, our
good friend ∃w comes to our aid after the adversary makes its play.

For example, suppose we want to solve GRAPH 3-COLORABILITY. On
an ordinary Turing machine, we could try out all possible colorings; but for
an n-node, m-edge graph, there are 3n of them. With a nondeterministic
Turing machine, we simply summon ∃w and demand it provide us with the
correct coloring. This is trivial to check in O(n+m) time, and if for some
reason the existential quantifier betrays us, we will be able to recognize in
that same time that w is no good. So the beauty of having a nondeterministic
machine is that all the hard work of designing an actual algorithm is taken
over by whoever provides w; we just need to be able to specify what a correct
solution would look like, and write an efficient program to verify candidate
solutions.

Many other problems have a similar structure. Want to know if a graph
has an INDEPENDENT SET of size k? Have ∃w guess the list of nodes
in the independent set. Can your TRAVELING SALESMAN visit every
node in a weight graph using a path of total weight W? Have ∃w guess the
path. Is your Boolean formula SATISFIABLE? Have ∃w guess the satisfying
assignment. In each case the problem of verifying that the guess is correct is
straightforward, and we can easily argue that it can be done in polynomial
(often only linear) time. So all of these problems are in NP. Which means
that if P = NP, and we interpret membership in P as meaning a problem is
easy, then all of these problems are easy. Sadly, there is a very strong chance
that they are not easy.

CHAPTER 5. NONTERMINISM AND NP 28

5.2 Reductions and NP-complete problems

A polynomial-time many-one reduction from a language L to a lan-
guage L′ is a deterministic polynomial-time computable function f such that
x ∈ L if and only if f(x) ∈ L′. If there exists a polynomial-time many-one
reduction from L to L′, we write L ≤P L′.

The idea behind writing a reduction as an inequality is that if we can
efficiently reduce L to L′, then L is no harder than L′, because, given an
efficient algorithmM that decides membership in L′, thenM ◦f is an efficient
algorithm that decides membership in L. The P subscript specifies what
complexity class the reduction f lives in; in some cases, we will replace this
with other classes to indicate different restrictions on f .

Proving a reduction L ≤P L′ generally involves 3 steps:

1. You have to come up with the mapping f and show that it runs in
polynomial time.

2. You have to show that if x ∈ L, then f(x) ∈ L′.

3. You have to show that if x 6∈ L, then f(x) 6∈ L′; or that if f(x) ∈ L′,
then x ∈ L. The second version is just the contrapositive of the
first, but is sometimes easier to see how to do, especially when f is a
one-to-one mapping that is easily inverted.

A language L is NP-hard if L′ ≤P L for any language L′ in NP. A
language L is NP-complete if it is both in NP and NP-hard. The NP-
complete languages are the hardest languages in NP, in the sense that if we
can recognize any NP-complete language in polynomial time, then P = NP.

If P 6= NP, then there are languages in NP that are not NP-complete
(for example, all the ones in P). Under this assumption, there are even
languages in NP − P that are not NP-complete, but they are not very
interesting languages.

The NP-complete languages, on the other hand, are very interesting:
given any NP-complete L, the P ?= NP question is equivalent to L

?
∈ NP.

So instead of having to consider all possible languages in NP, it’s enough to
pick one particular NP-complete languages, and show that it either does or
does not have a polynomial-time algorithm.

Alternatively, if we believe that P 6= NP, then this immediately tells us
that any NP-complete language (more generally, any NP-hard language)
will not have a polynomial-time algorithm. Even if we aren’t sure if P 6= NP,
we still know that we have no examples so far of a polynomial-time algorithm

CHAPTER 5. NONTERMINISM AND NP 29

for any problem that is NP-hard. So proving that a particular problem is
NP-hard means that we can be reasonably confident that we won’t find a
polynomial-time algorithm for it without some surprising breakthrough.

5.3 The Cook-Levin theorem

None of this is useful unless we can point to an example of an NP-complete
problem. The Cook-Levin theorem gives one such problem, called 3SAT.
This is the problem of testing whether there exists a satisfying assignment to
a Boolean formula in conjunctive normal form (CNF) where each clause
contains exactly three literals. A formula in this form is an AND of clauses,
each of which is an OR of three variables xi or their negations ¬xi. The
proof of the theorem is a construction that translates any problem in NP
into such a 3CNF formula.

Theorem 5.3.1. 3SAT is NP-complete.

Proof. The essential idea is that we can encode the entire computation of an
NP machine M on a given input x as a single gigantic (but polynomially
large) SAT formula.

We’ll start by setting up some variables:

Variable Interpretation
Qtq Finite-state controller is in state q at time t
Ht
ij Head i is in position j at time t

T tijs Tape i, cell j, holds symbol s at time t
If the machine runs for T time, we get O(T 3) variables total. For the

tapes, we are relying on the fact that the infinite parts more than T away
from the initial head positions don’t need to be represented.

We now add some consistency conditions to the SAT formula. For
example, to enforce that the machine is in exactly one state at any time, we
include the OR-clauses

∨
q Q

t
q and ¬Qtq ∨ ¬Qtq′ for each t, q, and q′. Similar

clauses enforce that each head is in exactly one position and each tape
cell contains exactly one symbol. The total size of these clauses is again
polynomial in T .

For the transition relation, we consider each combination of tape head
positions, cell symbols under those positions, and finite-state controller
state, and write a clause for each consequence of this combination. For
example, if the machine has a single tape, and changes from state 0 to
either state 1 or state 2 (it’s nondeterministic) when it sees a b at location 5
on this tape, we could write this condition at each time t as (Qt0 ∧Ht

1,5 ∧

CHAPTER 5. NONTERMINISM AND NP 30

T t1, 5, b)⇒ (Qt+1
1 ∨Qt+1

2), which conveniently transforms into the OR clause
¬Qt0 ∨ ¬Ht

1,5 ∨ ¬T t1, 5, b ∨Qt+1
1 ∨Qt+1

2 .
There are a lot of these clauses, but for a fixed number of tapes their

total size is still polynomial in T .
Finally, we need to assert that the final state accepts (an OR over all

accepting states q of QTq) and that the initial configuration of the machine is
correct (many one-variable clauses asserting Q0

0, H0
i0, S0

0jxj , S
0
ijb, etc.). The

intermediate states are left unconstrained, except by the sanity clauses and
transition-relation clauses already described.

If we can satisfy this enormous (but polynomial) formula, then there is a
nondeterministic computation by the original machine on the given input
that accepts. If we can’t, there isn’t. So we have successfully reduced the
question of whether M(x) accepts, and thus whether x ∈ L(M), to SAT.

The last step is to replace each clause with more than three literals with
a clause with three literals (or fewer, since we can always duplicate a literal
to get to exactly three). The trick is that x1 ∨ x2 ∨ . . . ∨ xk is satisfiable if
and only if both of z ∨ x1 ∨ x2 and ¬z ∨ x3 ∨ . . . ∨ xk are, where z is a new
variable introduced solely for the purpose of splitting up this clause. If z is
true, at least one of x3 through xk must also be true, making the original
clause true; if instead z is false, then at least one of x1 or x2 must be true.
When we do this split, we new clauses of size 3 and k − 1. Iterating until we
get k down to 3 gets us a 3CNF formula.

5.4 More NP-complete problems

Once we know that 3SAT is NP-complete, showing any other language L
is NP-complete requires only (a) showing that L ∈ NP and (b) showing
that there is a reduction 3SAT ≤P L. The reason why (b) is enough is that
≤P is transitive: given some language L′ ∈ NP, we take some candidate
member x of L′, run it through one polynomial-time function f to get and
instance f(x) of 3SAT, and then run f(x) through another polynomial-time
function g to get an instance g(f(x)) of L, and we will have x ∈ L if and
only if g(f(x)) ∈ L. The first function f exists because of Theorem 5.3.1.
The second function g exists because we showed 3SAT ≤P L.

We don’t have to reduce from 3SAT to show L is NP-hard. Starting
from any known NP-hard language L′ also works. So it’s helpful to have a
few known NP-hard languages around to get this process started.

Many of the problems below are from Karp’s 1972 paper [Kar72] extending
Cook’s result for SAT to a variety of other combinatorial problems. (Note

CHAPTER 5. NONTERMINISM AND NP 31

that the reductions may not be exactly the same.) A more extended source of
core NP-complete problems is the classic book of Garey and Johnson [GJ79].

5.4.1 1-IN-3 SAT

An unfortunate feature of 3SAT is that each satisfied clause can have any of
1, 2, or 3 true literals. This turns out to be awkward when we try to reduce
to problems that involve exact totals. Fortunately, we can show that 3SAT
reduces to its more restrictive cousin 1-OF-3 SAT, defined as the set of all
3CNF formulas that have a satisfying assignment that makes exactly one
literal in each clause true.

We do this by converting our original 3CNF formula one clause at a time.
This involves adding a few extra variables specific to the representation of
that clause.

To show how this works, let’s start with x1 ∨ x2 ∨ x3. We’ll replace this
clause with a new clause y1 ∨ y2 ∨ y3, where yi ⇒ xi but not necessarily
conversely. These yi variables are new, and we use a separate trio for each
original clause. This allows us to pick just one of the true xi literals to appear
in the y1 ∨ y2 ∨ y3 clause if there is more than one. To enforce that yi can be
true only if xi is also true, we add three new 1-in-3 clauses, with three new
variables: ¬x1 ∨ y1 ∨ z1, ¬x2 ∨ y2 ∨ z2, and ¬x3 ∨ y3 ∨ z3. If any xi is false,
this makes ¬xi in the corresponding clause true, so yi must also be false: so
we can only satisfy y1 ∨ y2 ∨ y3 if we satisfy x1 ∨ x2 ∨ x3. But if xi is true,
we have a choice between making yi true or zi true. The zi variables (which
appear nowhere else) act as a sink for excess truth that would otherwise
violate the 1-in-3 property.

Since this works for every clause, the output formula is in 1-IN-3 SAT if
and only if the input formula is in 3SAT. Since the reduction is obviously
polynomial (it’s linear), this gives 3SAT ≤P 1-IN-3 SAT, making 1-IN-3 SAT
NP-hard. But it’s also in NP, since in polynomial time we can easily guess
the satisfying assignment and check that it has the 1-in-3 property. So 1-IN-3
SAT is NP-complete.

5.4.2 SUBSET SUM and PARTITION

SUBSET SUM is the language
{
〈x1, x2, . . . , xm, k〉 ∈ Nm+1 ∣∣ ∃a ∈ {0, 1}m∑ aixi = k

}
.

This is trivially in NP since we can just guess the vector of coefficients a,
and add up the lucky values xi with ai = 1 to see if we get k.1 It turns out

1This is an O(n logn) operation if n is the total length of the xi in bits.

CHAPTER 5. NONTERMINISM AND NP 32

that it is also NP-hard, since we can reduce from 1-IN-3 SAT. This makes
SUBSET SUM NP-complete.

Suppose we are given an instance of 1-IN-3 SAT with n variables y1, . . . , yn
and m clauses C1, . . . , Cm. We will encode each variable yi with two natural
numbers xi and x′i written in base 4. The j-th digit of xi is 1 if yi appears
in Ci and 0 otherwise, and the j-th digit of x′i is 1 if ¬yi appears in Ci and
0 otherwise. We also set the (n+ j)-th digit of both xi and x′i to one, and
make k be the number written as n+m ones in base 4.

The idea is that the extra ones shared between each xi and x′i force us
to pick exactly one of them (corresponding to having to choose either yi or
¬yi to be true), while the ones mapping to clauses force us to choose exactly
one literal per clause to be true. This works because we never have more
than 3 ones added together in a single position, so we get no carries in base
4, essentially reducing addition to vector addition.

For example, the suspiciously symmetric formula (y1∨¬y2∨¬y3)∧(¬y1∨
y2 ∨ ¬y3) ∧ (¬y1 ∨ ¬y2 ∨ y3), which happens to be in 1-IN-3 SAT because
we can set all the yi to be true, would be represented by the SUBSET SUM
problem

x1 = 001001
x′1 = 001110
x2 = 010010
x′2 = 010101
x3 = 100100
x′3 = 100011
k = 111111

This SUBSET SUM problem has the solution x1 + x2 + x3 = 001001 +
010010 + 100100 = 111111 = k, from which we can even read off the solution
to the original 1-IN-3 SAT problem if we want to.

With a bit of tinkering, we can reduce SUBSET SUM to the even more
terrifying NP-complete problem PARTITION. This asks, given a sequence
of natural numbers 〈y1, . . . , yn〉, if it is possible to split the sequence into
two subsequences that add up to exactly the same total. Given an instance
〈x1, . . . , xn, k〉 of SUBSET SUM, let s =

∑
xi. If k ≤ s, construct the

sequence 〈x1, . . . , xn, 4s− k, 3s+ k〉. This forces PARTITION to put 4s− k
and 3s+ k on opposite sides, because if both are on the same side, it will be
at least 7s while the other side will be at most s even if we put all the xi

CHAPTER 5. NONTERMINISM AND NP 33

there. But then each side must sum to half of s+ (4s− k) + (3s+ k) = 8s.
We can only bring the side with 4s− k up to 4s by adding xi to it that sum
to k, which we can do if and only if the original SUBSET SUM problem has
a subsequence of the xi that sum to k.

I personally find this problem frightening because it seems like dividing a
pile of numbers into two equal-sum piles should not be all that hard. To be
fair, for reasonably-sized numbers, it isn’t.2 One of the things that happens
along this path of reductions is that the numbers involved get awfully big,
since each has a number of digits linear in the size of the output of the
Cook-Levin reduction. This is polynomial in the size of the original problem
input, but “I have a polynomial number of digits” is not something small
numbers tend to say.

5.4.3 Graph problems

Many (but not all!) graph problems that ask if a graph has a subgraph with
a particular property turn out to be NP-complete. It’s trivial to show that
such a problem is in NP as long as testing a subgraph for the property is
in P, since we can just guess the winning subgraph. Showing that these
problems are NP-hard usually requires an explicit reduction.

5.4.3.1 Reductions through INDEPENDENT SET

INDEPENDENT SET is the problem of determining, given G and k,
whether G contains an independent set of size k. An independent set is a
subset S of the vertices of G such that no edge has both endpoints in the
subset. We can show INDEPENDENT SET is NP-hard by reducing from
3SAT.

The idea is that any clique in G can’t contain more than one element
of S, so if we can partition G into k non-overlapping cliques, then each of
these cliques must contain exactly one element of S. We use this constraint
to encode variable settings as 2-cliques (also known as edges): for each xi,
create nodes representing xi and ¬xi, and put an edge between them. We’ll
call these the master copies of xi and ¬xi.

We can then represent a clause Cj = x ∨ y ∨ z as a 3-clique of copies
of x, y, and z (which may be negated variables). Here the member of S in
the representation of Cj indicates which of the three literals we are using to

2There is a simple dynamic-programming algorithm that solves SUBSET SUM in time
O(nk), which looks polynomial but isn’t, since the value of k can be exponentially large as
a function of its size in bits.

CHAPTER 5. NONTERMINISM AND NP 34

demonstrate that Cj is satisfiable. These are per-clause copies; we make a
separate vertex to represent x in each clause it appears in.

The remaining step for the graph is to make sure that whatever literal
we chose to satisfy in Cj is in fact assigned a true value in the 2-clique
representing the corresponding xi or ¬xi. We do this by adding an extra
edge from the per-clause copy in Cj to the master copy of the opposite value
in the 2-clique; for example, if we have a copy of xi in Cj , we link this copy
to the node representing ¬xi, and if we have a copy of ¬xi in Cj , we link
this copy to the node representing xi.3

Finally, we set k = n+m, where n is the number of variables (and thus
the number of master-copy 2-cliques) and m is the number of clauses (and
thus the number of clause 3-cliques). This enforces the one-element-per-clique
requirement.

It is easy to see that this reduction can be done in polynomial (probably
even linear) time. It remains to show that it maps satisfiable formulae to
graphs with independent sets of size k and vice versa.

Let’s start with a satisfiable formula. Put the master copy of xi in the
independent set if xi is true, otherwise put ¬xi in. This gets us one element
per 2-clique. For the clauses, pick some literal in each clause that is assigned
the value true and put its copy in the independent set. This gets us our one
element per 3-clique, putting us up to k.

However, we still have to worry about marking both endpoints of an edge
that crosses between cliques. For each such edge, one of its endpoints is a
copy of some xi, and the other of ¬xi, and we can only put these copies in
the independent set if the corresponding variable is true. Since xi and ¬xi
can’t both be true, we are fine.

In the other direction, suppose we have an independent set of size k. We
can read off the corresponding variable assignment directly from the 2-cliques.
For each clause Cj , there is an independent set element corresponding to
some literal in that clause. But we know that this literal is true because it is
linked to the master copy of its negation. So every clause is satisfied by at
least one literal and the formula is satisfiable.

Knowing that INDEPENDENT SET is NP-hard instantly gets us some
closely-related problems. These are CLIQUE, the problem of determining
given (G, k) whether G contains a clique of size k, which reduces from
INDEPENDENT SET by replacing the input graph by its complement; and

3Essentially the same construction works for SAT, since we just replace the 3-clique for
clause Cj with a |Cj |-clique, but it doesn’t change the ultimate result reducing from 3SAT
instead, and it saves worrying about the size of the clauses.

CHAPTER 5. NONTERMINISM AND NP 35

VERTEX COVER, the problem of determining given (G, k) whether G
contains a set of k vertices such that every edge is incident to at least one
vertex in the set, which is equivalent to asking G contains an independent set
of size n− k. In both cases the reduction is straightforward and obviously
polynomial.

5.4.3.2 GRAPH 3-COLORABILITY

The GRAPH 3-COLORABILITY language consists of all (undirected) graphs
that are 3-colorable: there exists an assignment of colors to vertices so that
only three colors are used and no edge has the same color on both endpoints.

It’s easy to see that GRAPH 3-COLORABILITY is in NP: just guess
the coloring. The tricky part as usual is finding a reduction from a known
NP-hard problem. We will use 3SAT for this.

The main technique is a widget that allows us to build logic gates out of
colorings. Consider this graph:

A--C
|\
| E
|/

B--D

Suppose that we want to color the graph using colors red, green, and
blue, and we happen to color both A and B red. Exactly one of C, D, and
E must be red, and since E is the only node not adjacent to the two red
nodes A and B, E must also be red.

Alternatively, if at least one of A or B is not red, then E doesn’t have to
be red either.

If we call red false, we’ve just built an OR gate.4 Make E one of the
inputs to a second copy of the widget, and we get an OR gate over three
inputs, enough to handle a single clause of a 3SAT formula.

Colorings are symmetric with respect to permutations of the colors, so we
can’t actually insist that red is false or green is true. But what we can do is
put in a triangle rgb somewhere that acts as a master color wheel, where we
just call the color applied to vertex r red, on vertex g green, and on vertex
b blue. We can then build variables that are guaranteed to have x be red

4Sort of. If red is false and green is true, having one false and one true input allows any
of the three possible colors on the output. But for 3SAT it will be enough to force the
output to be false if both inputs are false.

CHAPTER 5. NONTERMINISM AND NP 36

and ¬x green or vice versa by building a triangle x,¬x, b for each x in the
formula, where b is the ground vertex from the color wheel.

The last step is to hook up the variables to the OR gates. For each clause
x∨y∨z, build a 3-input OR widget and make its input vertices coincide with
vertices x, y, and z. To force the output not to be red, run an edge from the
output vertex to vertex r on the color wheel. Now there exists a coloring of
the graph if and only if we can assign colors red and green to each x and ¬x so
that no 3-input OR widget has all-red inputs. This translates back into being
able to assign values false and true to each x and ¬x so that no clause has all-
false inputs, which is equivalent to the original formula being satisfiable. We
have thus reduced 3SAT to GRAPH 3-COLORABILITY, which completes
the proof that GRAPH 3-COLORABILITY is NP-complete.

5.5 coNP and coNP-completeness

The class coNP consists of the complements L of all languages L in NP.
By complement we mean that x ∈ L if and only if x 6∈ L.5

We don’t know if coNP = NP or not. If coNP = P or NP = P, then
coNP = NP = P, since P is closed under complement. So for coNP 6= NP,
we do need P 6= coNP. However, it is possible for coNP = NP 6= P,
although this does collapse the polynomial-time hierarchy (see §8.1).

A language L is coNP-complete if L is in coNP and L′ ≤P L for
every L′ in coNP. It is not hard to show that L is coNP-complete if
and only if L is NP-complete. This instantly gives us many unnatural-
looking coNP-complete problems like GRAPH NON-3-COLORABILITY
and a few natural-looking ones like TAUTOLOGY (the complement of
SATISFIABILITY).

We can also characterize problems in coNP in terms of witnesses, but
the quantifier changes: L is in coNP if there is a polynomial-time M and a
polynomial p(|x|) such that x ∈ L if and only if ∀w ∈ {0, 1}p(|x|), M(x,w)
accepts. An equivalent definition in terms of a nondeterministic Turing
machine is L is in coNP if there is some nondeterministic Turing machine

5A technical issue here is what to do with “junk” inputs that don’t actually map to
an instance of L because of problem with the encoding. For any reasonable encoding, we
can detect a junk input in polynomial tie and reject them in our L machine, but it seems
wrong to then accept them with our L machine. So we will treat the complement as the
complement with respect to all correctly-encoded inputs. This won’t affect any results
about coNP, under the assumption that we can recognize junk inputs efficiently, since we
can always map junk inputs to L to some specific rejecting input to L.

CHAPTER 5. NONTERMINISM AND NP 37

for which every branch accepts an input x ∈ L and at least one branch
rejects an input x 6∈ L.

5.6 Relation to EXP

The class EXP =
⋃
k = 1∞TIME(2nk) consists of all languages decidable

in exponential time. Similarly, the class NEXP =
⋃
k = 1∞TIME(2nk)

consists of all languages decided by a nondeterministic Turing machine in
exponential time.

It’s easy to show that NP ⊆ EXP, since we can just try all 2nk witnesses.
A more indirect connection between the classes is that if EXP 6= NEXP,

then P 6= NP. This makes more sense if we consider the contrapositive: P =
NP implies EXP = NEXP. The reason is that we can take any language
L in NEXP, replace it with the padded language L′ =

{
x; 12|x|

∣∣∣ x ∈ L}.
So now if L can be decided by a nondeterministic Turing machine in time
O
(
2|x|k

)
, then L′ can be decided by a nondeterministic Turing machine in

time O
(
|x; 12|x| |k

)
, putting L′ in NP. Under the assumption P = NP, this

also makes L′ decidable by a deterministic Turing machine in time polynomial
in 2|x|, or exponential in |x|. But a machine in EXP can simulate such a
Turing machine running on just x by first copying x to a work tape and
then constructing the suffix 12|x| for itself. This puts L in EXP and shows
EXP = NEXP.

Note this doesn’t necessarily work in the other direction: for all we know,
P 6= NP but EXP = NEXP. The problem is that while we can always pad
a short input to make it a long one, we can’t “unpad” a long input to make
it a short one.

Chapter 6

Diagonalization

The basic idea of diagonalization goes back to Cantor’s argument that
there is no surjective map from any set S to its powerset P (S) [Can91]. The
proof is that, given any map f : S → P (S), the set T = {x ∈ S | x 6∈ f(x)}
cannot equal f(x) for any x without producing a contradiction. (If T = f(x),
and x ∈ T ↔ x 6∈ f(x), then x ∈ T ↔ x 6∈ T .) A similar trick was used
by Gödel to to prove his incompleteness theorems in logic [Gö31], and by
Turing to prove undecidability of the Halting Problem [Tur37]. In each case
the idea is to consider some infinite sequence of candidate objects alleged
to have some property, and then carefully construct a new infinite object
that shows that none of them in fact have that property. We’ll start with
Turing’s version and then show how to use a similar trick to get impossibility
results for various classes of resource-constrained Turing machines.

6.0.1 Undecidability of the Halting Problem

The Halting Problem asks whether it is possible to construct a Turing
Machine H that, given a representation xMy of a Turing machine M , and
an input x, accepts if M(x) halts and rejects if M(x) runs forever. Turing’s
argument involves constructing a machine that provably does the opposite
of what H predicts [Tur37].

This is the equivalent of demonstrating that your local fortune-teller
can’t really predict the future because they can’t tell whether the next thing
you say is going to be “yes” or “no.” In both cases, the trick only works if
you can wait for the predication before choosing what to do. But if H exists,
we can do this.

The bad machineM we are going to construct takes as input a description
xM ′y of some machine M ′, runs H(xM ′y, xM ′y, then halts if and only if

38

CHAPTER 6. DIAGONALIZATION 39

H(xM ′y, xM ′y rejects. It’s not hard to see that we can implement M given
H, since the extra work is just a matter of copying the input twice, and
instead of halting when H does, using the halting state of H to decide
whether to really halt (if H rejects) or not to halt at all (if H accepts),
perhaps by moving to a state that just moves one of the tape heads off to
the right forever.

So now what happens if we run H(xMy, xMy)? This should accept only
if and only ifM(xMy) halts. ButM(xMy) halts if and only if H(xMy, xMy)
rejects. So we’ve constructed a specific machine M and input xMy where H
gives the wrong answer. So we have:

Theorem 6.0.1 (Halting Problem). There does not exist a Turing machine
H that always halts, such that H(M,x) accepts if and only if M(x) halts.

In other words, the Halting Problem is undecidable—there is no Turing
machine that decides it.

This turns out to have consequences that go beyond just testing if a
machine halts or not. Just as polynomial-time reductions from know NP-
hard problems can show that other problems are NP-hard, computable
reductions from the Halting Problem can show that other problems are also
undecidable.

A very general result that follows from this is Rice’s Theorem. This
says that testing any non-trivial semantic property of a Turing machine
is also undecidable, where a semantic property depends only whether the
machine halts or produces a particular output for each input, and not on
the details of the computation, and a property is non-trivial if there is at
least one machine for which it holds and at least one for which it doesn’t.

Corollary 6.0.2 (Rice’s Theorem [Ric53]). Let P be a non-trivial semantic
property of Turing machines. Then P is undecidable.

Proof. Suppose P is true for a machine that never halts. LetM0 be a machine
for which P is false (such a machine exists because P is non-trivial). Suppose
there is a machine MP that decides P . We can use MP as a subroutine to
solve the halting problem.

Let 〈M,x〉 be a machine-input pair for which we want to know if M(x)
halts. Construct a machine M ′ that takes an input y and runs M on x. If
M doesn’t halt, neither does M ′, and so M ′ has property P . If M does halt,
M ′ switches to running M0 on y, producig the same output (or failing to
halt on the same inputs) as M0, giving M ′ property P . So to decide if M(x)
halts, construct M ′ and run MP on it. The Turing machine that does this
then solves the Halting Problem, contradicting Theorem 6.0.1.

CHAPTER 6. DIAGONALIZATION 40

If P is false for a machine that never halts, pick a machine M1 for which
P is true, and apply essentially the same construction.

Note that Rice’s Theorem is only about inputs and outputs. There are
non-semantic properties (like “does this machine run in polynomial time on
input x?”) that are easily decidable even though they are not non-trivial. It
also only works because we consider machines that might not halt.

6.1 Hierarchy theorems

In complexity theory we don’t care too much about machines that might
not halt, because all of our complexity classes only include machines that
always halt. But we can use the essentially the same proof as for the Halting
Problem to show that there are functions that cannot be computed within
a given space or time bound. The tricky part is showing that having a bit
more space or time makes these functions computable.

For both theorems the idea is to build a language L consisting of machines
with inputs reject within some resource constraint, show that deciding L in
less than the resource constraint gives a contradiction, then show that with
more resources we can use a universal TM to decide L. Since we didn’t do
universal machines yet, we’ll have to describe them now.

We’ll start with the Space Hierarchy Theorem, because the construction
is less fiddly.

6.1.1 The Space Hierarchy Theorem

The Space Hierarchy Theorem says that getting more than a constant
factor more space is enough to solve more problems:

Theorem 6.1.1. If g(n) is a space-constructible function that is Ω(logn),
and f(n) = o(g(n)), then SPACE(f(n)) (SPACE(g(n)).

To prove this, we need to find a language L that is in SPACE(g(n)) but
not SPACE(f(n)). The following language will have this property:

L = {〈xMy, x〉 |M rejects 〈xMy, x〉 using at most g(n) space, one work tape, and |Γ| = 2}

The restriction on M ’s work tape alphabet Γ avoids some annoyances in
trying to simulate machines with larger alphabets.

First we’ll show that L 6∈ SPACE(f(n)). Let R be a machine that
supposedly decides L using O(f(n)) space. From Lemma 3.1.1 there is

CHAPTER 6. DIAGONALIZATION 41

another machine R′ that produces the same output as R in O(f(n)) space
(with a bigger constant) using one work tape and a two-bit alphabet (not
counting the blank symbol). We’ll use R′ to get a contradiction.

Let x be any string long enough that the space complexity of the execution
of R′ on 〈xR′y, x〉 is less than g(n). We know that such a string exists, because
R′ takes O(f(n)) time, and whatever the constants hiding in the O this must
drop below g(n) for sufficiently large n. Now let us ask what R′(〈xR′y, x〉)
returns.

If it accepts, then R′(〈R′, x〉) does not reject and so 〈xR′y, x〉 is not in L:
R′ (and thus R) computes the wrong answer.

If it rejects, then R′(〈R′, x〉) rejects using at most g(n) space. By con-
struction, R′ also uses one work tape and two non-blank work tape symbols.
So 〈R′, x〉 is in L. Again, we get the wrong answer. It follows that R gives
the wrong answer for at least one input 〈M,x〉, and so R does not decided L.

Next, we’ll show that L ∈ SPACE(g(n)). This requires constructing a
universal Turing Machine to simulate M on x. We also need to be able
to detect if M uses more than g(n) space, or violates its parole in some other
way.

Our machine R∗ will use several work tapes:

1. A tape of size O(logn) to store a binary representation of M ’s state.
The argument for O(logn) being enough is that |xMy| will be at least
linear in the number of states, because of δ.

2. An input pointer tape of size O(logn). This will store a binary rep-
resentation of the offset into x corresponding to the position of the
simulated input tape head. We need this because we will be using our
real tape head to run back and forth between reading xMy and xxy,
and we can’t write to the input tape to mark our position.

3. A second pointer tape that remembers the index of the current head
position on the input, relative to the start of x. We need this to know
when we have reached the right position to match the first pointer.

4. A copy of M ’s work tape. We don’t have to do anything clever with
this, since we can just use our own head to keep track of M ’s head.

5. A tape of size g(n) holding (after an initial computation) the string
1g(n). Whenever we move the simulated work tape head, we’ll move
this tape’s head as well, so if it goes off the end of the string, we’ll
know that M is trying to use too much space. The very first thing our
simulation does before starting upM is to compute 1g(n), which we can

CHAPTER 6. DIAGONALIZATION 42

do (possibly using an addition g(n) space somewhere, although I think
we can borrow the work tape for this) since g(n) is space-constructible.

6. A binary counter of size g(n) + log|Q| + dlog g(n)e + dlogne + 1 =
O(g(n) + logn) initialized to all ones. We use this to avoid loops; if we
try to decrement the counter and find that it is

Everything else is constant size so we can store it in the finite-state
controller. Simulating a step of M consists of:

1. Moving the input head across x until the two input pointers match,
and collecting the input symbol.

2. Moving back to xMy and searching for an entry in xδy that matches
(a) the state xqy on the state tape, (b) the input symbol stored in the
finite-state controller, and (c) the work-tape symbol under the head on
the simulated work tape. Having found this entry, we copy the new
state q′ to the state tape, do a write and move on the work tape if we
need to, and increment or decrement the input-tape-head pointer as
needed to simulate moving the input tape.

3. Decrementing the binary counter. If the counter is already at 0 or the
head on the space-bound tape moves onto a blank, reject. In the first
case, the machine has run for at least 2 · 2g(n)g(n)n|Q| steps, meaning
that somewhere during its execution the contents of its work tape, the
position of its work tape head, the position of its input tape head, and
its state have repeated: it’s looping and will never reject. In the second
case, it used too much space.

4. If after many such steps the simulation rejects, accept. If it accepts,
reject.

This might take a while (I think we can get it each simulated step
down to O(g(n) logn) time if we are careful, and the initialization looks
like it takes O(g(n)) time altogether), but the important thing is that at
no time do we use more than O(g(n) + logn) space, and R∗ decides L. So
L ∈ SPACE(g(n) + logn) = SPACE(g(n) assuming g(n) = Ω(logn).

6.1.2 The Time Hierarchy Theorem

The Time Hierarchy Theorem is similar to the Space Hierarchy Theorem,
but the gap is wider:

CHAPTER 6. DIAGONALIZATION 43

Theorem 6.1.2. If g(n) is a time-constructible function, and f(n) = o(g(n)),
then TIME(f(n)) (TIME(g(n) log g(n)).

By analogy to the proof of the Space Hierarchy Theorem, a first try at a
language for this one would be

L = {〈xMy, x〉 |M rejects 〈xMy, x〉 using at most f(n) time and a tape alphabet of size 2} .

This will give us something to start with, but getting the full-blown
theorem will require some more tinkering. The main issue is that building
a time-efficient universal Turing machine is harder than building a space-
efficient one (this also accounts for the extra log g(n) factor), and we’ve
learned from the SHT proof that the diagonalization side of the argument
is pretty robust to small changes in L, so it will be helpful to adjust the
definition of L a bit after we see the hard parts of the upper bound part of
the argument in order to make that part easier.

First, though, the diagonalization part. Suppose R decides L, and R runs
in o(g(n)) time, then running R(〈xRy, x〉) gives a contradiction when x is
large enough that R′s running time drops below g(n) exactly. If R(〈xRy, x〉)
rejects in such a case, then 〈xRy, x〉 is in L (by the definition of L), meaning
that R just gave the wrong answer on this input. But the same thing happens
if it rejects. So we get a contradiction either way, and R either does not
decide L or it doesn’t run in o(g(n)) time.

But now we need to show that a machine that does decide L runs in a
reasonable amount of time. We’ll start with a simple, direct simulation of
the input machine M , and then worry about improving the running time
later.1

Here’s the easy approach: Build a machine R∗ that has:

1. A tape storing x. We’ll copy x to this tape at the start, costing time
O(n). This exists mostly so we can have one tape head pointing into
xMy and another (on a separate tape) into x, so we don’t have to
waste time moving back and forth between two simulated heads.

2. A tape storing M ’s k work tapes. As in the SHT proof, we’ll just store
these consecutively, with markers for the k heads.

3. A tape storing the input to δ. This will be a state of M expressed in
binary, plus one symbol for each of the k + 1 work and input tapes.
The total size will be O(log|QM |+ k).

1This approach is inspired by some lecture notes from Luca Trevisan.

CHAPTER 6. DIAGONALIZATION 44

4. A tape storing the output of δ. Pretty much the same as the previous
tape, but we also need k symbols from {L,S,R} to track how the heads
move.

5. A “fuse” tape that holds 01g(n). It costs O(g(n)) time to set this up,
leaving the head on the rightmost cell. Every time we simulate a step
of M , we move the head one cell to the left, and when it hits the 0, we
know that M took more than g(n) steps and we can reject.

A step of R∗ is also similar to a step in the SHT proof: we gather up
the input to δ (O(kg(n)) time), scan through xMy to find the matching
transition (O(|xMy|) = O(n) = O(g(n)) time), copy the output to the result
tape (O(n) time), and then scan through the work tape to update everything
(O(k2(g(n))2) time, including the cost of copying cells up to O(k) positions
to the right to make room for new cells). Somewhere in here we also check
the fuse (free, since we can move the fuse head in parallel with something
we are doing anyway).

The total cost per step is O(k2g(n)) = O(n2g(n)), using n as a very
crude upper bound on k. Since we have to simulate O(g(n)) steps, we’ve
shown that TIME(o(g(n))) (TIME(n2(g(n))). This is something, but we
can do better.

If we look at the expensive parts of the simulation, the big costs we need
to knock down are (a) the O(kg(n)) cost to traverse the work tape, and
(b) the O(n) cost to traverse δ. For (a), we will use a clever data structure
appearing in Hennie and Stearns original THT paper [HS66] to knock the
amortized cost per operation down to O(k log g(n), and make a small tweak
to L to get rid of the extra k. There’s not much we can do about (b), so
we will get around this by another tweak to L to insist that |xmy| is small
enough relative to n that the overhead is dominated by the O(log g(n)) per
step that we are already paying.

Here is the data structure. The description below follows the presentation
in [AB07, §1.A].

We’ll first map the k work tapes onto one tape by interleaving: for
example, with 3 tapes, we will store their cells as 123123 etc. This means
that if we park a head on the leftmost of k cells, we can reach any of the
other cells is O(k) time, assuming those tapes’ heads are also in the same
place. Unfortunately, they probably won’t be after the first step.

We deal with this by moving the contents of the tape instead of the head.
Doing this naively (for example, shifting every cell on tape 2 one position to
the left) will be expensive. So instead we use a representation with gaps in it
that we use to store values that we are pushing in one direction, empty out

CHAPTER 6. DIAGONALIZATION 45

increasingly large regions in bulk when we need more space. We’ll describe
how to do this for a single tape, and then apply the interleaving idea to the
representation to handle multiple tapes.

The central cell of the tape we will just store by itself. The right-hand side
we divide into zones R1, R2, . . . , where zone Ri contains 2i cells. Similarly,
the left-hand side is divided into . . . , L2, L1. Each zone is either empty (filled
with a special not-in-use symbol), half-full (half-filled with that symbol and
half with simulated tape symbols), or full (no not-in-use symbols at all). We
maintain the invariant that the j-th cell of the L side is full if and only if
the j-th cell of the R side is empty: this means that when Li is empty, Ri is
full, etc.

To pop a symbol from R, we look for the leftmost zone Ri that is not
empty. This will either contain 2i symbols, in which case we pop one of them
and use the remaining 2i − 1 symbols to make all of R1 through Ri half-full;
or it will contain 2i−1 symbols, in which case we pop one, use the remaining
2i−1 − 1 symbols to make Ri through Ri−1 half-full and leave Ri empty. In
either case we can do the copying (using an extra work tape) in O(2i) time.
A push is symmetric (and must be because of our invariant): we look for the
first non-full zone, fill it either all the way to full or to half-full as needed to
clear out earlier zones to half-full, and then add the symbol to R1.

The important thing is that once we fill in or clean out Ri, we don’t do
anything to it again until we either fill up or completely empty all zones R1
through Ri−1. So our O(2i)-cost operations on Ri can only happen every
O(2i) steps, giving an amortized cost O(1) per step per zone. We have
O(log g(n)) zones, so the cost per step of simulating one tape is O(log g(n))
and of simulating k tapes is O(k log g(n)), giving a total cost across the entire
computation of O(kg(n) log g(n)).

If we add in the cost of scanning xMy, we get a total cost ofO(kg(n)(logn+
|xMy|)).

We’ll now adjust L to get rid of all the extra junk in this expression. Our
new L′ will be the set of all inputs 〈xMy, x〉 where

1. M rejects 〈xMy, x〉 in time at most g(n)/k, where k is the number of
work tapes used by M ;

2. M has |Γ| = 2; and

3. |xMy| < logn.

Since the extra conditions can be checked in O(n) = O(g(n)) time, and we
can compute 1g(n)/k in time g(n) without being especially clever, we can easily

CHAPTER 6. DIAGONALIZATION 46

decide L′ using the above construction in O(k(g(n)/k)(logn+logn)+g(n)) =
O(g(n) log g(n)) time. The only thing left is to show we didn’t break the
diagonalization argument.

Suppose R is a machine that decides L in f(n) = o(g(n)) time. Then
there is also machine R′ that decides L in o(g(n)) time with a restricted
work-tape alphabet. For any fixed k (for example, the number of work tapes
possessed by R′), there is some n0 so that R′ decides L in no more than
g(n)/k time for all n ≥ n0 (this just falls out of the definition of o(g(n)). So
now we just make |x| ≥ max(n0, 2|xMy|), and get R′ to accept 〈xR′y, x〉 if
and only if 〈xR′y, x〉 6∈ L′. So L′ 6∈ TIME(f(n)).

6.2 Hierarchy theorems for nondeterminism

So far, we have only considered deterministic computation. We can also ask
if there are corresponding space and time hierarchy theorems for nondeter-
ministic computation.

For space, a result very similar to Theorem 6.1.1 holds: NSPACE(f(n)) (
NSPACE(g(n)) whenever f(n) = o(g(n)), g(n) is space-constructible, and
g(n) = Ω(logn). Pretty much the same proof works, with one complication:
to get the upper bound, we need to build contradiction, we have to build
a nondeterministic machine that accepts if and only if the nondeterminis-
tic machine it is simulating rejects, and doing this directly by just using
the simulated machine’s hint doesn’t work. Fortunately, the Immerman-
Szelepcsényi Theorem 9.4 says that NSPACE(g(n)) = coNSPACE(g(n))
when g(n) = Ω(logn), so we can just build a simulator that accepts 〈M,x〉
if M accepts 〈M,x〉, and appeal to Immerman-Szelepcsényi to reverse the
output.

For NTIME we can’t do this, since we don’t think NTIME is closed un-
der complement. Instead, we need to use a different technique, called lazy di-
agonalization due to Cook [Coo73]. This gives the result NTIME(f(n)) (
NTIME(g(n)) whenever f and g are both time-constructible and f(n+1) =
o(g(n)). We won’t prove this here. See see [AB07, §3.3.3] if you want to
know how it works.

6.3 Ladner’s Theorem

Ladner’s Theorem shows that if P 6= NP, there are sets in NP that
are neither polynomial-time computable nor NP-complete. The proof is
essentially a diagonalization argument, where we construct a single bad

CHAPTER 6. DIAGONALIZATION 47

set A by alternating between making it disagree with the output of the
next polynomial-time machine Mi and making it fail to decide SAT after
running SAT instances through the next polynomial-time function fi. Some
additional trickery puts the set in NP, giving the full result.

Theorem 6.3.1. If P 6= NP, then there is a set A ∈ NP \ P that is not
NP-complete.

Proof. This particular proof is similar to Ladner’s original proof [Lad75], but
the presentation below follows a later paper by Downey and Fortnow [DF03],
although we change the definition of A slightly to avoid a possible bug in
that paper.2

Let M ′1,M ′2, . . . enumerate all Turing machines. Let Mi be the machine
that first computes 1ni on an extra work tape, then runs M ′i for ni steps,
rejecting if it does not terminate in this time. Since ni is time-constructible,
Mi runs in O(ni) time, and since every Turing machine appears infinitely
often in the M ′i list (because we can always pad with extra unused states),
every polynomial-time Turing machine appears as some Mi.

Similarly let f1, f2, . . . enumerate all polynomial-time computable func-
tions.

The language A is given by {x | x ∈ SAT and g(|x|) is even}, where g
(which tells us where to put the gaps) is a function to be determined. The
idea is that the layers of A corresponding g enforce that some Mi can’t
compute A (because otherwise we could use a modified version of Mi to
decide SAT in P), while the empty odd layers enforce that some fi can’t
reduce SAT to A (because otherwise we could use a modified version of fi
to decide SAT in NP). We switch to the next layer once we detect that we
have knocked out a particular Mi or fi, which may require waiting until n is
big enough that we can test all inputs up to the first bad one using brute

2The issue is that when testing fi to see if g(n) = 2i+ 1 should be increased, Downey
and Fortnow check all inputs x with |x| < logn and wait until logg(n) n < n to ensure that
the computation of fi(x) on each of these inputs is O(n). But it is still necessary to test
if fi(x), which may have size as much as logi|x|, is in A, which may require testing if it
is in SAT. Even taking into account the difference between i and g(n) = 2i+ 1, we still
get outputs from fi that are of size polynomial in n, so we can’t just test for membership
in SAT by checking all the assignments. We also can’t appeal to the fact that we are
ultimately computing g using a nondeterministic machine, because we need to know both
when g is positive and when it isn’t. The proof given here avoids the issue entirely by
putting a time bound on the testing procedure and arguing that n will eventually get big
enough that Mi or fi fails within the time bound, without attempting to compute the
bound explicitly. This idea is pretty much the same as the approach used in Ladner’s
original paper.

CHAPTER 6. DIAGONALIZATION 48

force in polynomial time. But since n keeps growing forever, we can do this
eventually for any fixed Mi or fi if we wait long enough.

We’ll define g recursively, and show that it is computable in deterministic
polynomial time by induction on n. Because this construction depends on
the running time of some of its own components, it may be easiest to think
of it as defining a particular polynomial-time machine and defining g to be
whatever that machine outputs.

Start with g(0) = g(1) = 2. We then compute g(n+1) by first computing
g(n), and then branching based on whether it is odd or even:

1. If g(n) = 2i, lazily generate a list of all inputs x with |x| < n in
increasing order by x. For each x, simulate Mi(x), and compare the
output to whether or not x is in A, which we can test in time exponential
in |x| just by brute-forcing the solution to SAT if g(|x|) is even.
This procedure is not polynomial-time, but we can truncate it after n
steps. If we find a bad x for which Mi gives the wrong answer during
those n steps, then we set g(n + 1) = g(n) + 1 and move on to the
next machine. If not, we let g(n+ 1) = g(n) and figure that we will
catch Mi eventually when n is large enough. This works because no
matter how long it takes to check each x, as long as that time is finite,
eventually n exceeds whatever time is needed to check all the x up to
the first bad one.

2. If g(n) = 2i+ 1, do the same thing to fi. Enumerate all x, run each
through fi, and test if |fi(x)| ≤ n (so we don’t create a cycle trying to
compute g(|fi(x)|)) and x ∈ SAT 6↔ g(xi) ∈ A. As before we truncate
after n steps.
If we find such and x, fi doesn’t reduce SAT to A, so we can set
g(n+ 1) = g(n) and keep going. If we dont, we set g(n+ 1) = g(n) and
take solace in the notion that fi’s foot shall slide in due time [Edw41].

Since we bound the testing cost for each n by O(n), the total cost of
computing g(n) is bounded by the recurrence the form g(n+1) = g(n)+O(n),
which gives g(n) = O(n2). So A is in NP, because a non-deterministic
machine can, in polynomial time, compute g(|x|) deterministically, and then
either reject (if g(|x|) is odd) or run SAT on x (if g(|x|) is even).

We now argue that one of three things happens:

1. If g(n) = 2i for all n greater than some n0, then Mi correctly computes
SAT in polynomial time for all but a finite number of x with |x| ≤ 0.
Add these cases to Mi using a lookup table to put SAT in P.

CHAPTER 6. DIAGONALIZATION 49

2. If g(n) = 2i+ 1 for all n greater than some n0, then fi(x) ∈ A↔ x ∈
SAT for all x, and A is finite. So make a new machine that runs fi(x)
and looks up the result in a table of all members of A to put SAT in P.

3. The remaining case is when g is unbounded. Then

(a) No polynomial-time Mi decides A, so A 6∈ P,
(b) No polynomial-time fi reduces SAT to A, so A is not NP-complete,

and
(c) Some polynomial-time nondeterministic Turing machine decides

A, so A ∈ NP.

Since the third case is the only one consistent with P 6= NP, the theorem
holds.

If P 6= NP, Ladner’s Theorem demonstrates the existence of NP-
intermediate sets, ones that lie strictly between P and the NP-complete
sets. Indeed, by applying the construction in the proof iteratively, it is
possible to show that there is an entire infinite chain of NP-intermediate
sets, each irreducible to the next, yet all in NP \ P. But these sets are
not especially natural, and it is reasonable to ask if we can point to any
practically-motivated sets that might be NP-complete.

Ladner [Lad75], citing Karp [Kar72], mentions three sets that were
candidates for being NP-intermediate at the time he proved his theorem:
PRIME (is x prime?), LINEAR INEQUALITIES (is a given linear program
feasible?), and GRAPH ISOMORPHISM (can we turn G into H just by
relabeling the vertices?). All of these were known to be in NP \P as of 1975,
and none of them were known to be NP-complete, but there was no argument
that any of them in particular were NP-intermediate if P 6= NP. As of
2017, two of them (PRIME [AKS04] and LINEAR INEQUALITIES [Kha80])
are known to be in P. The status of GRAPH ISOMORPHISM is still
open, with the best known algorithm running in quasi-polynomial time
(O(nlogc n)) [Bab15].

Whether there are other potentially NP-intermediate problems that are
natural depends somewhat on one’s definition of “natural.” See http://
cstheory.stackexchange.com/questions/20930/why-are-so-few-natural-candidates-for-np-intermediate-status
for an example of how different people can have very different perspectives
on this question.

http://cstheory.stackexchange.com/questions/20930/why-are-so-few-natural-candidates-for-np-intermediate-status
http://cstheory.stackexchange.com/questions/20930/why-are-so-few-natural-candidates-for-np-intermediate-status

Chapter 7

Oracles and relativization

Complexity theory is unusual in having a rich collection of barrier results that
show that certain proof techniques cannot be use to solve core problems like
P ?= NP. One of the most important is relativization, where we consider
extending our machine model by adding extra information on the side. In
some cases, this extra information can make the relativized version of P
provably equal to, or provably not equal to, the similarly relativized verson
of NP. If this is the case, then we are in trouble if we try to resolve P ?= NP
using any technique that doesn’t manage to exclude the extra stuff.

We can formalize this idea in terms of oracle machines, which we
define in the next section.

7.1 Oracle machines

Given a machineM in some model, the machineMA is obtained by takingM
and adding a write-only oracle tape that gives M the ability to determine
in a single tape if the string x written to the oracle tape is in A. When X
and Y are complexity classes, we also write XY for the class of languages
computable by a machine in class X using an oracle from class Y .

This definition makes XY at least as powerful as the stronger of X and
Y , and may give it even more power: for example, if NP 6= coNP, then
NP (PNP since in PNP we can solve any problem in NP just by asking
the oracle for its opinion, but we can also solve any problem in coNP by
asking the oracle for its opinion and giving the opposite answer. And this is
all without even taking advantage of the ability to ask multiple questions
and have the later questions depend on the outome of earlier ones.

50

CHAPTER 7. ORACLES AND RELATIVIZATION 51

7.2 Relativization

We say that a proof relativizes if it is not affected by adding an oracle, and
that a hypothesis relativizes if there is an oracle that makes it true and
another oracle that makes it false. If a hypothesis relativizes, it can only be
proved or disproved using a technique that doesn’t relativize.

All of the techniques we have seen so far relativize, because if we only use
the fact that we can simulate a machine M using some machine U , then it
also holds that we can simulate MA using UA. This is bad news for resolving
P ?= NP, because that hypothesis also relativizes.

7.2.1 The Baker-Gill-Solovay Theorem

The Baker-Gill-Solovay Theorem [BGS75] says that there exist oracles
A and B such that PA = NPA but PB 6= NPB. This means that P ?= NP
cannot be resolved by any technique that relativizes.

Let EXPCOM = {〈M,x, 1n〉 |M outputs 1 on x within 2n steps}. This
gives an oracle A = EXPCOM for which PA = NPA. To prove this, observe
that a nondeterministic machine that runs in O(nk) steps with an EXPCOM
oracle can be simulated deterministically by iterating through all possible
witness strings (there are at most 2O(nk) of them and simulating each call
to the oracle by performing the requested computation directly (there are
O(nk) such calls and each takes O(2O(nk)) time, since we can’t write a
string of ones longer than O(nk) on the oracle tape. The total time for this
simulation is O(2O(nk) ·O(nk) ·O(2O(nk))) = O(2On

k

). So we can do a single
call to EXPCOM on our PEXPCOM machine to determine the output of this
simulation, making NPEXPCOM ⊆ PEXPCOM.

For the other direction, we construct an oracle for which the language
LB = {1n | ∃x ∈ B, |x| = n} is in NPB \ PB. It is easy to show that this
language is in NPB is in NPB for any B, since we can just have our
nondeterministic machine guess x and check it using an oracle call. To find
a B for which the language is not in PB, we use diagonalization.

Call the set of all x with |x| = n level n of the oracle. We will set up
a sequence of increasing levels n1, n2, . . . such that each polynomial-time
machine Mi, where i = 1, 2, . . . , gives the wrong answer on 1ni . Formally,
this construction will involve building an increasing sequence of oracles
B1 ⊆ B2 ⊆ . . . with B =

⋃∞
i=1Bi, where each Bi causes Mi(1ni) to return

the wrong value, but at the same time does not change the result of running
Mj(1nj) against oracle Bj for j < i. We will maintain the invariant that Bi

CHAPTER 7. ORACLES AND RELATIVIZATION 52

does not include any x with |x| > i, and that x ∈ Bi if and only if x ∈ Bi−1
when |x| < i. We start with B0 = ∅ and n0 = 0.

Let ni be the smallest value of n such that (a) for every j < i, Mj(1nj)
running with Bj does not query the oracle on any string x with |x| ≥ n; and
(b) Mi(1ni) running with Bi−1 does fewer than 2n queries x with |x| = n.
If Mi(1ni) accepts when running with Bi−1, then let Bi = Bi−1; from the
invariant, there is not x ∈ Bi−1 = Bi with |x| = ni, so Mi gives the wrong
answer. If instead Mi(1ni) rejects when running with Bi−1, pick some y with
cardy = ni such that Mi(1ni) doesn’t query y, and let Bi = Bi−1∪{y}. Now
Mi again gives the wrong answer. Since we don’t change any values observed
by machine Mj for j < i, changing from Bi−1 to Bi doesn’t make any of
them start working, and when we take the limit B we will have successfully
caused every polynomial-time MB

i to fail on at least one input. It follows
that for this particular B, we have LB 6∈ PB, which gives LB ∈ NPB \PB.

7.3 The oracle polynomial-time hierarchy

Oracles give us one of several definitions of the polynomial-time hierarchy.
Let ∆p

0 = Σp
0 = Πp

0 = P. Then define

∆p
k+1 = PΣp

k

Σp
k+1 = NPΣp

k

Πp
k+1 = coNPΣp

k

This gives what we believe to be an infinite tower of complexity classes,
with each ∆p

k contained in Σp
k and Πp

k, and Σp
k and Πp

k contained in ∆p
k+1.

The union of all of these classes is PH, the polynomial-time hierarchy.
For the moment, we will refer to this version specifically as the oracle
polynomial-time hierarchy , to distinguish from some other definitions,
but these definitions will turn out to be equivalent in the end.

Chapter 8

Alternation

In a NP computation, the computation tree contains only OR branches. In
a coNP computation, the computation tree contains only AND branches.
We can define still more powerful (we think) classes by allowing both OR
and AND branches. We specify how tough a class is by how many times
we switch back and forth between OR and AND, that is, by the number of
alternationsalternation between OR and AND.

There are two ways to define the resulting hierarchy: one in terms
of alternating quantifiers (corresponding to allowing both OR and AND
branches) and one in terms of oracles. These turn out to be equivalent, but
the equivalence is not completely trivial. We’ll start with the alternating
version, which itself splits into two versions, one involving quantifies, and
one involving alternating Turing machines.

8.1 The alternating polynomial-time hierarchy

The alternating polynomial-time hierarchy is defined by extending
the certificate version of the definition of NP. In this definition (see
[AB07, Definition 5.4], a language L is in Σp

k if there is a polynomial
p and a polynomial-time machine M such that x ∈ L if and only if
∃w1∀w2∃w3 . . . QwkM((x,w1, w2, . . . , wk accepts, where Q represents either
a ∃ or a ∀ quantifier as appropriate and each wi has |wi| ≤ p(|x|).

A language is in Πp
k if its complement is in Σp

k, or equivalently if there is
an alternating formula for membership in L using k quantifiers starting with
∀. Unlike the oracle definition, there does not seem to be a natural way to
define ∆p

k in terms of alternating formulas.

53

CHAPTER 8. ALTERNATION 54

8.2 Equivalence to alternating Turing machines

So far we have defined the alternating hierarchy in terms of logical formulas,
but our original claim was that this had something to do with alternating
Turing machines.

An alternating Turing machine generalizes a nondeterministic Turing
machine by allowing both OR and AND nondeterministic transitions. This
produces a branching tree of computations, just as in a nondeterministic
machine, but instead of applying the rule that the machine accepts if any
branch accepts, we apply a more complicated rule that essentially corresponds
to evaluating a game tree.

Each leaf node of the tree, corresponding to a halting configuration of
the machine, is assigned a value true or false depending on whether that
configuration accepts or rejects. A deterministic node (with exactly one
successor) gets the same value as its successor. Nondeterministic OR nodes
get the OR if their successors’ values, while nondeterministic AND nodes
get the AND of their successors’ values. The machine as a whole accepts if
and only if the root node gets the value true.

An alternating Turing machine can easily implement a sequence of quanti-
fiers, by representing each ∃ quantifier as a sequence of OR branches and each
∀ quantifier as a sequence of AND branches, where following each branch
the machine writes the next bit of the appropriate variable to a work tape.
Given a ΣP

k language, this requires k layers of alternating OR and AND
branches, followed by a deterministic polynomial-time computation. So we
can represent Σp

k languages (and similarly Πp
k languages) using alternating

Turing machines with this restriction on the branching.
In the other direction, suppose that we have an alternating Turing

machine, where on each branch of the computation we have a sequence of
OR branches, followed by AND branches, followed by OR branches, with
at most k such subsequences of branches of the same type and at most
polynomially-many steps altogether on each branch. We would like to argue
that the language decided by this machine is in Σp

k. This is not completely
trivial because there might be computation interspersed with the branching.
However, we can reorganize the machine so that it starts by generating the
choices for all the branches ahead of time, writing them to a work tape,
and then simulates the original machine by reading the next choice off the
work tape as needed. So in fact we get the same class of languages out of
alternating formulas as alternating TMs.

CHAPTER 8. ALTERNATION 55

8.3 Complete problems

Define Σk-SAT to be the language consisting of all true Σk Boolean formulas,
and similarly define Πk-SAT to be the language of all true Πk Boolean
formulas. Then Σk-SAT is complete for Σp

k, and Πk-SAT is complete for
Πp
k.
The proof of this is essentially the same as for the Cook-Levin theorem,

which we can think of as showing that Σ1-SAT (otherwise known as SAT) is
complete for Σp

1 (otherwise known as NP). We need to be a little bit careful
because the Cook-Levin proof uses the ∃ quantifier for two purposes: when
converting the Σp

1 formula ∃wM(x,w) accepts to a Σ1-SAT instance, we
introduce extra variables representing the state of M during its computation,
and we effectively construct a Σ1 Boolean formula ∃w∃cφ(x,w, c). Exactly
the same approach works for Σp

k formulas when k is odd, because we can
combine the new existential quantifier introducing the tableau variables with
the last existential quantifier in the Σp

k formula; but we can’t do this if k is
even. Fortunately, for even k we can apply the construction to Πp

k formulas,
and in general we can use the fact that the complement of a Πp

k-complete
language is Σp

k-complete and vice versa to cover all the cases we missed.

8.4 Equivalence to oracle definition

We generally don’t distinguish between the alternating and oracle versions
of the polynomial-time hierarchy, because they give the same classes.

Theorem 8.4.1. For all k, Σp,oracle
k = Σp,alternating

k .

Proof. By induction on k. When k = 0, both are P.
For larger k, suppose that the theorem holds for Σp

k−1.
The easy direction is Σp,oracle

k ⊇ Σp,alternating
k . Recall that L is in

Σp,alternating
k if there is a formula ∃wP (x,w) that is true when x ∈ L, where

w has size polynomial in x and P is computable in Πp,alternating
k−1 . By the

induction hypothesis, P is also computable by some machine in Πp,oracle
k−1 .

But then a NPM machine can decide L, by guessing w and verifying it using
M . This puts L in NPΠp

k−1 = NPΣp
k−1 = Σp,oracle

k .
The other direction requires some trickery, because a NPΣp

k−1 machine
can base later oracle calls on the outcome of earlier ones, and can use the
result of the oracle calls however it likes. To turn a computation by such
a machine into a Σp

k formula, we start by guessing, using an existential

CHAPTER 8. ALTERNATION 56

quantifier, the entire tableau describing the machine’s execution, including
guesses for the results of the oracle calls. Verifying that this tableau is
consistent requires only a Σp

0 formula, but we need a Σp
k−1 formula to

check each oracle call that returns 1 and a Πp
k−1 formula to check each

oracle call that returns 0. Fortunately both of these formulas fit in Σp
k,

and taking the AND of all of these formulas is still in Σp
k. Tacking the

guess for the tableau on the front still leaves the formula in Σp
k. So we have

Σp,oracle
k = NPΣp

k−1 ∈ Σp,alternating
k .

8.5 PH ⊆ PSPACE

Problems in the polynomial-time hierarchy can be powerful, but any of them
can be solved in polynomial space.

In fact, we can encode any problem in PH by reduction to a problem called
TRUE QUANTIFIED BOOLEAN FORMULA or TQBF. TQBF
consists of all true formulas of the form Q1x1Q2x2 . . . QnxnΦ(x1, . . . , xn)
where each Qi is either ∀ or ∃ and each xi represents a Boolean value.

For example, any problem in Σp
1 = NP can be encoded as a for-

mula of the form ∃x1 . . . ∃xnΦ(x1, . . . , xn), where Φ is the SAT formula
produced by the Cook-Levin Theorem. More generally, a Σp

k+1 problem
∃yM(x, y), where M is in Πp

k, can be encoded as a formula of the form
∃y1 . . . ∃ynΦ(y1, . . . , yn)Φ(x, y), where Φ encodes M ; the same thing works
for Πp

k+1 formulas except we get universal quantifiers instead of existential
quantifiers. In either case we can recurse within Φ until we get down to no
quantifiers at all. This makes TQBF hard for any Σp

k, and thus for all of
PH.

It can’t be PH-complete unless the hierarchy collapses. The reason
it doesn’t immediately collapse is that TQBF allows unbounded layers of
alternation.

TQBF is computable in AP, alternating polynomial time, which is
what we get when we have no restriction on an alternating Turing machine
except that each branch must run in polynomial time. It is also computable
in PSPACE, since we can build a recursive procedure that given a formula
Q1x1Q2x2 . . . QnxnΦ(x1, . . . , xn) checks if both assignments to x1 (if Q1 = ∀)
or at least one assignment to x2 (if Q1 = ∃) makes the rest of the formula
true. So we can decided any language in PH by reducing to TQBF and then
solving TQBF in PSPACE, which shows PH ⊆ PSPACE.

In fact, TQBF is PSPACE-complete, but we will defer the proof of this
to §9.2. A consequence of this is that AP = PSPACE, which will save us

CHAPTER 8. ALTERNATION 57

from having to think about AP as a separate class.

Chapter 9

Space complexity

Understanding space complexity requires giving up some preconceptions
about time efficiency, since space complexity classes don’t care about time
efficiency, and indeed many of the known results on space complexity involve
spending time like water. On the other hand, if the space complexity is low
enough, this puts a bound on time complexity even if our use of time is
stupidly inefficient.

Important space complexity classes:

• PSPACE =
⋃∞
c=1 SPACE(nc). Contains the entire polynomial-time

hierarchy and then some.

• L = SPACE(logn). The class of problems solvable in log-space.
Largest practically-implementable space complexity class (it’s contained
in P). Popular with theoreticians who think about databases. Might
be equal to:

• NL = NSPACE(logn). . . Like P ?= NP, L ?= NL is open. log-space
hierarchy collapse to this class, which is equal to coNL (§9.4).

Other noteworthy space complexity classes:

• SC =
⋃∞
c=1 SPACE(logc n). “Steve’s class”, named for Steve Cook.

The class of problems solvable in polylog space.

• RL (randomized log-space). log-space version of RP, which we’ll
see more of in Chapter 12. A language is in RL if a randomized
log-space machine accepts positive instances with constant probability
and rejects all negative instances. May be equal to L.

58

CHAPTER 9. SPACE COMPLEXITY 59

• SL (symmetric log-space). Languages accepted by a reversible log-
space machine, which has the property that for any transition C → C ′

there is also a reverse transition C ′ → C. Proposed by Lewis and
Papadimitriou [LP82] as an intermediate class between L and NL.
Now known to be equal to L. [Rei08]

9.1 Space and time

Claim: TIME(f(n)) ⊆ SPACE(f(n)). Proof: Can’t use more than O(1)
new tape cells per step.

Claim: SPACE(f(n)) ⊆ TIME(2O(f(n))). Proof: A SPACE(f(n))
machine has only 2O(f(n)) distinct configurations, so if it runs for longer, it’s
looping and will never halt.

Application: L ⊆ P, PSPACE ⊆ EXP. For all we know, equality might
hold in both cases. (Current consensus is that it doesn’t.)

9.2 PSPACE and TQBF

Main result: TQBF is PSPACE-complete. This implies PH ⊆ SPACE. If
they are equal, existence of a PSPACE-complete language means that PH
collapses to a finite level.

Claim: TQBF ∈ PSPACE. Proof: game-tree search.
Claim: TQBF is PSPACE-hard. Proof: given a language in PSPACE,

reduce to TQBF.
Idea: Space complexity is all about reachability in the graph of configu-

rations. If L = L(M) for some PSPACE machine M , we can test if x ∈ L
by testing if there is a path from the initial configuration of M(x) to some
accepting configuration. To make our life easier later, we will assume that M
cleans up on the way out (erasing all the work tapes, moving the heads back
to their starting positions) so that the accepting configuration is unique.

The formula, naive version: C →∗ C ′ expands to ∃C ′′ : C →∗ C ′′∧C ′′ →∗
C ′. This is too big, so instead we use ∀ to test both branches with one
formula:

C →∗ C ′ ≡ ∃C ′′∀C1, C2 :
(
(C1 = C ∧ C2 = C ′′) ∨ (C1 = C ′′ ∧ C2 = C ′)

)
∧C1 →∗ C2.

At the bottom we use Cook-Levin to test if C1 → C2 in a single step.
This requires depth logarithmic in the length of the execution, and the length
is at most exponential, giving depth at most polynomial. Each stage adds a

CHAPTER 9. SPACE COMPLEXITY 60

polynomial size to the formula (those configurations are big, but they are
only polynomial), so total size of the formula is polynomial.

9.3 Savitch’s Theorem

Savitch’s Theorem: If f(n) = logn), then SPACE(f(n)) ⊆ NSPACE((f(n))2).
The proof is similar to the proof of SPACE-hardness of TQBF. If

C0 →≤T (n) Caccept, then there is some intermediate configuration C ′ such
that C0 →≤T (n)/2 C ′ →≤T (n)/2 Caccept. For each possible C ′, test the left
side recursively first, then the right side if the left side worked.

We have to store C ′ in between these tests, but we can re-use the space we
used for the left-side test for the right-side test. So this gives space complexity
S(T (n)) = O(f(n)) +S(T (n/2)) = O(f(n) log T (n)) = O(f(n) log 2O(f(n)) =
O((f(n)2).

Consequences: NPSPACE = PSPACE, and in fact the entire poly-
space hierarchy collapses to PSPACE. (Unbounded alternation, which
boosts APSPACE up to EXP (see §9.6.2) may give more power.)

9.4 The Immerman-Szelepcsényi Theorem

Says NL = coNL. Proof by “inductive counting”: Let Ai be set of all
configurations reachable in i steps. Given |Ai|, we’ll compute |Ai+1| by
enumerating all configurations C that might be in Ai, and for each C try
all possible configurations C ′ that might be predecessors. For each C ′, we
guess and check a path. If we come up with fewer than |Ai| predecessors
with paths, we screwed up: reject this computation path and hope one of
the other lemmings does better.

The last step is the same but we only look if Caccept has no path.
Easy consequence: the alternating log-space hierarchy collapses. Use

NL = coNL to replace last ∀ or ∃ quantifier with its predecessor and
combine them, same as in the proof that Σp

k = Πp
k implies PH collapses.

Harder consequence: the oracle log-space hierarchy collapses. This
requires some careful looking at how to define oracle access in NL, which we
will do in the next section.

9.5 Oracles and space complexity

Just as we have to be careful to restrict the input and output tapes of a space-
bounded computation to prevent them from doing double duty as work tapes,

CHAPTER 9. SPACE COMPLEXITY 61

we also have to be careful how we define an oracle computation involving a
space-bounded machine, particularly if that machine uses nondeterminism.
The now-standard definition first appeared in a paper by Ruzzo, Simon, and
Tompa [RST84].

The idea is that we have an oracle tape as usual, which we make write-only
like the output tape. But we put some restrictions on how a nondeterministic
machine can use this tape. These are:

1. Once the controller writes to the oracle tape, it cannot execute any
nondeterministic transitions until after it completes and oracle call.

2. An oracle call erases the oracle tape.

Without these restrictions, we would get bizarre results like NLL being
able to solve SAT even if NL couldn’t on its own: an unrestricted NLL oracle
machine could write the problem and a guess at a satisfying assignment
on the oracle tape and ask the L oracle to verify it [RST84, Example 1].
The Ruzzo-Simon-Tompa definition prevents this, and has the additional
advantage of making the contents of the oracle tape, for a SPACE(f(n)) or
NSPACE(f(n)) machine, encodable in O(f(n)) space provided the decoder
has access to the original input.

We illustrate this by showing that NLNL = NL when the oracle calls
are subject to the Ruzzo-Simon-Tompa restrictions. Let M be the nondeter-
ministic log-space oracle machine (which is to say the machine that calls the
oracle), and let M ′ be a nondeterministic log-space machine implementing
the oracle. We want to build a combined machine N that simulates MM ′ .

The idea is that when N simulates an oracle call, instead of writing
to an oracle tape that it doesn’t have, it saves a copy of the state of M
at the start of the oracle-tape write. This copy now gets called as a kind
of co-routine whenever M ′ looks at a cell on the simulated oracle tape: if
M ′ looks at position i in the oracle tape, N will simulate a fresh copy M
starting from its saved state, recording whatever symbols it writes to position
i, until simulated-M makes an oracle call. Then N can throw away this
copy and continuing simulating M ′ until the next time it looks at the oracle
tape. This is, as usual, tremendously wasteful of time, but it still fits in
NSPACE(f(n)).

For the specific case of NLNL = NL, we need the additional trick of
guessing in advance which way the oracle will answer. If the oracle is expected
to answer yes, we just run the straight NL computation, and give up if the
answer is no (as usual). If the oracle is expected to answer no, we instead run
a coNL computation converted into NL using the Immerman-Szelepcsényi

CHAPTER 9. SPACE COMPLEXITY 62

Theorem. Again we give up if the answer is wrong. Since N can do this
for each of M ’s oracle calls and stay in NL, we get NLNL = NL and the
log-space oracle hierarchy collapses to NL.

Some similar issues come up with PSPACE. Here to prevent cheating
we restrict the oracle tape to have polynomial size. With this restriction in
place, NPSPACENPSPACE = NPSPACE = PSPACE by applying the
preceding construction and Savitch’s Theorem.

9.6 L ?= NL ?= AL = P

So far we have seen that L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. We
know from the Space Hierarchy and Time Hierarchy theorems that some of
these inclusions must be strict, since L 6= PSPACE and P 6= EXP. But
we don’t know which, and given that L, NL, and P are all in some sense
“easy” classes, it is not completely ridiculous to ask if L ?= NL or L ?= P.

9.6.1 Complete problems with respect to log-space reduc-
tions

As with P ?= NP, we can make these problems more concrete by concentrat-
ing on specific problems that are complete for NL or P. This notion of
completeness will be slightly different from the usual notion of completeness
used for NP, since poly-time reductions from problems in P work for just
about any target problem: have the reduction do the computation. So
instead we will consider log-space reductions.1

We write L′ ≤L L if there is a log-space reduction from L′ to L, meaning
that there is a log-space Turing machine M that transforms instances x of
L′ to instances M(x) of L, such that x ∈ L′ if and only if M(x) ∈ L.

A language L is NL-complete if L is in NL and for every L′ in NL,
L′ ≤L L. Similarly, a language L is P-complete if L is in P and for every
L′ in P, L′ ≤L L.

In some contexts, it makes sense to consider different restrictions on the
reductions, and we will say things like “L is P-complete with respect to
log-space reductions” or “L is P-complete with respect to NC1 reductions.”
But for now we will stick with log-space reductions when working with NL-
or P-completeness.

1These also work for most NP-completeness reductions. For example, the reduction in
the Cook-Levin Theorem can easily be made to run in log space, making every language
L ∈ NP log-space reducible to 3SAT.

CHAPTER 9. SPACE COMPLEXITY 63

9.6.1.1 Complete problems for NL

The classic NL-complete problem is s–t connectivity, abbreviated as
STCON. The input to STCON is a triple 〈G, s, t〉 where G is a directed
graph and s and t are vertices, and 〈G, s, t〉 is in STCON if there is a directed
path from s to t in G.

STCON is in NL because we can just guess each step of the path. To show
that any language L ∈ NL reduces to STCON, start with a non-deterministic
log-space machine ML that decides L with a unique accepting state, and
build a log-space machine that enumerates all possible pairs of states of ML

(there are only polynomially many, so we can do this in log space), and writes
out an edge uv for each pair of states u and v such that v can follow from u
given the contents of the input tape (also pretty straightforward to test in
log space). Then ask if there is a path from the initial state to the accepting
state.2 This gives L ≤L STCON, and STCON is NL-complete.

We can further reduce STCON to 2SAT to show that 2SAT is NL-
complete, which gives a nice symmetry with 3SAT being NP-complete. An
instance of 2SAT is a collection of two-literal OR clauses x ∨ y and we want
to know if there is a truth assignment that makes all the clauses true.

The idea here is that we can encode an edge uv in our input graph G as
an implication u⇒ v, which is logically equivalent to the OR clause ¬u ∨ v.
We do this for every edge in G, and add clauses asserting s (s ∨ s if we are
being picky about exactly two literals per clause) and ¬t. It’s not too hard
to see that we can do this in log space.

If there is no path from s to t in G, then there is a satisfying assignment
that sets s true, that sets every vertex reachable from s also true, and sets
every vertex not reachable from s (including t false. But if there is a path
from s to t, we are in trouble. We have to set s true, but then the implications
for the edges mean that we also have to set every literal reachable from s,
including t true. But then we can’t satisfy the ¬t clause.

If you look closely at this argument, you may have noticed that we didn’t
reduce STCON to 2SAT. Instead we reduced s–t non-connectivity to 2SAT,
or equivalently we reduced STCON to 2CNF non-satisfiability. This means
that we showed 2SAT is coNL-hard. But coNL = NL, so it’s OK.

To put 2SAT in NL, we reverse this construction and translate a 2SAT
problem into its implication graph, where the implication graph contains
nodes for every literal (so both x and ¬x for each variable x), and there is

2If we don’t want to insist on a unique accepting state, which doesn’t really constraint
ML because it can do the usual trick of erasing its work tapes and parking its heads, we
can add an extra state t and run an edge from every accepting state to t.

CHAPTER 9. SPACE COMPLEXITY 64

an edge uv for every pair of literals such that (¬u ∨ v) ≡ (u⇒ v) appears
in the 2CNF formula. Now there is a satisfying assignment if and only if
there is no path from any x to ¬x or vice versa. This is easily testable in
NLNL = NL, since we can just query an STCON oracle for each pair.

9.6.1.2 Complete problems for P

P-complete problems are similar to NP-complete problems in that they tend
to involve encoding a poly-time computation in some other process. The
difference is that with P, there is no nondeterminism, which means that the
problem we are reducing to generally won’t have many choices left open.

A trivially P-complete language is PCOM = {〈M,x, 1n〉 |M accepts x in n steps}.
This is in P because a universal Turing machine can check if M does in fact
accept x in n steps, using time poly in n (and thus the size of the input,
since we are expressing n in unary). m It’s P-complete, because given any
particular language L in P recognized by a machine ML that runs in nc

steps, we can reduce L to PCOM using a log space machine that writes out
M , copies x, and then computes 1|x|c .

Somewhat more interesting is CVP, the circuit value problem. This
is defined by given a Boolean circuit C and its input x, and asking whether
the circuit outputs 1. (Formally, a Boolean circuit is a directed acyclic graph
where nodes are labeled with either an input bit or with a function, the
value of each node is the value of the function applied to the values of its
predecessors, and the value of the circuit is the value of a designated output
node.) This is in P because we can easily write a poly-time program to solve
it. It’s P-complete because we can take any fixed poly-time M and translate
its execution into a circuit that calculates the contents of each tape cell, etc.,
at each time, and set the output to whether M accepts.

For more elaborate examples, we need to find some clever way to encode
circuit gates in whatever problem we are looking at. One cute example is
LINEAR INEQUALITIES, where we are given a matrix A and vector b, and
want to know if there is a vector x such that Ax ≤ b. This corresponds to
feasibility of a linear program, which is known to be solvable in polynomial
time. To show that it is P-complete, take CVP for a circuit built from
AND and NOT gates, and translate y = ¬x as y = 1 − x and z = x ∧ y
as z ≤ x, z ≤ y, z ≥ x + y. Then if we peg all inputs at 0 or 1, and put
a 0 ≤ x ≤ 1 constraint on any variable representing a gate, the unique
satisfying variable assignment will set the output variable C equal to the
output of the circuit. One more constraint C ≥ 1 makes the system of linear
inequalities feasible if and only if the output is 1.

CHAPTER 9. SPACE COMPLEXITY 65

Many more examples of P-complete problems can be found in a classic
survey of Greenlaw, Hoover, and Ruzzo [GHR91].

9.6.2 AL = P

With bounded alternation, the log-space hierarchy collapses to NL, which
we suspect is properly contained in P. But unbounded alternation gets us
to P.

Proof: Let M be a single-tape Turing machine that runs in time nc for
some fixed c. We will show that L(M) ∈ AL. Define a tableau consisting
of cells Cij where each Cij describes the state at time i of position j of the
tape, including whether the head is at position j and its state if it is there.

Observe that Cij is completely determined by Ci−1,j−1, Ci−1,j , and
Ci−1,j+1. We’ll assume that M is polite and parks the head on the starting
tape position 0 at time nc, so we can check if M accepts by checking if Cnc,0
is in an accepting state.

We do this by building a recursive procedure that checks if a given Cij
is in a particular state xij . For i = 0 we can just check xij against the
input tape. To test if Cij is in state xij when i > 0, we first guess (using
∃) states xi−1,j−1, xi−1,j , and xi−1,j+1 for Ci−1,j−1, Ci−1,j , and Ci−1,j+1. If
these states are not consistent with xij , we halt and reject. This leaves only
branches with consistent predecessor states. We want to verify that all three
of these states are correct. We do this recursively, inside a ∀ quantifier that
picks one of the three states to check. Only if all three checks succeed do we
accept.

This fits in log space because when we do the recursive check, we only
need to store i− 1, the appropriate tape position, and the value xij . Since
i− 1 and the tape position are bounded (in absolute value) by nc, we can
do this with O(c logn) = O(logn) bits. Checking the predecessor states for
consistency doesn’t require much additional storage, since we can bake M ’s
transition table into the AL machine’s finite-state controller and each xij
has constant size. The result is an alternating log-space machine that accepts
an input x if and only if M does.

Since we can do this for any language in P, we get AL ⊆ P. In the other
direction, a P machine can compute the entire state graph for a AL machine
(it has only polynomially many states), and evaluate whether to accept or
reject at each branching node based on whether the successor nodes accept
or reject.

This result generalizes. What we’ve really shown is that ASPACE(f(n)) =
TIME(2O(f(n))), at least for f(n) = Ω(logn). (For smaller f we run into

CHAPTER 9. SPACE COMPLEXITY 66

issues keeping track of the position of the input head.) So in addition to
AL = P, we also get APSPACE = EXP. In both cases, unbounded
alternation is necessary unless something surprising happens, since bounded
alternation gives us either NL or PSPACE, which we suspect are different
from P and EXP.

Chapter 10

Circuit complexity

Circuit complexity models computation in terms of Boolean circuits,
which are formally represented as directed acyclic graphs where each node is
either an input (with no incoming edges) gate (with at least one incoming
edge). We think of the edges as wires carrying bits, and typically assume
that each input is a bit and each gate computes some Boolean function
f : {0, 1}k → {0, 1}. If a Boolean circuit has maximum out-degree 1, it
is a Boolean formula. In both cases, we will often just remember that
we are sending bits around everywhere and drop the “Boolean” qualifier.
The difference between circuits and formulas is that circuits can share
computation.

The in-degree of a gate is called its fan-in, and similarly the out-degree
is called its fan-out. We will often talk about the fan-in or fan-out of a
circuit as a whole, meaning the maximum fan-in or fan-out of any gate. For
example, formulas have fan-out 1.

Typically, a single gate will be designated the output of a circuit. A
circuit computes a function by setting the inputs to the circuit to the inputs
to the function, computing the output of each gate based on its inputs and
the function it implements, and taking the output of the output gate as the
value of the function.

The depth of the circuit is the length of the longest path from an input
to the output. The size of a circuit is the number of gates.

Circuits are attractive as a model of computation because they are in
a sense more concrete that Turing machines. They also allow us to model
parallel computation, since a low-depth circuit corresponds in a natural way
to a highly-parallel computation.

Because each circuit has a fixed number of inputs, circuits can’t generally

67

CHAPTER 10. CIRCUIT COMPLEXITY 68

compute languages of the sort we are used to studying in complexity theory.
So we instead consider circuit families {Cn}, where each circuit Cn is
used for inputs of size n. The language decided by a circuit family is{
x
∣∣∣ C|x|(x) = 1

}
. Using this approach, we can define complexity classes

based on what can be computed by circuit families subject to various size,
depth, and fan-in restrictions.

Some of these complexity classes are weak enough that we can prove that
actual, non-contrived functions don’t live in them, often using techniques
that don’t relativize.1 Unfortunately, other obstacles come into play when
we try to get lower bound results for stronger circuit complexity classes, such
as those corresponding to P.

10.1 Polynomial-size circuits

We’ve seen before when looking at P-complete problems (§9.6.1.2) that any
computation by a Turing machine can be encoded by a circuit made up of
basic Boolean logic gates like AND, OR, and NOT. For a computation that
takes T (n) time and uses S(n) space, the circuit will have size O(T (n) ·S(n))
and depth O(T (n)). Both of these quantities will be polynomial if T (n) is
polynomial.

This suggests that we can think of P as a circuit-complexity class by
restricting our attention to families of polynomial-size circuits. This almost
works, but as often happens, the simplest definition gives a class that is too
powerful.

The reason is that when using a family {Cn} of circuits, we have to
ask where these circuits come from. If they are arbitrary, even though
each Cn may be restricted to size O(nc), it still may be that Cn encodes
a lot of information about n. For example, there is a family of circuits of
size 1 where each Cn is a constant circuit, and Cn happens to output 1 if
and only if the i-th Turing machine Mi halts on an empty input tape. So
polynomial-size circuits by themselves are not restricted enough to avoid
computing undecidable predicates, but they do give us a starting point for
representing P.

1There might not seem like there is much room to sneak an oracle into a circuit, but
unless we are very careful to specify exactly what gates we allow (and use this restriction in
our proofs), individual gates or small groups of gates working together could do all sorts of
tricksy things, including making oracle calls. This is why any technique for proving lower
bounds on circuits that relativizes won’t help with P ?= NP, because there are oracles A
and B that separate small circuits from NPA and that supercharge them so that they can
easily solve the wimpy problems in NPB [Wil85].

CHAPTER 10. CIRCUIT COMPLEXITY 69

10.1.1 P/poly

Polynomial-size circuit families decide languages in a complexity class called
P/poly, the class of languages that can be computing in polynomial time
with polynomial advice. Advice is a little bit like the certificates or hints
given to nondeterministic Turing machines, with the differences that (a)
the advice string can only depend on the size of the input n = |x|, and (b)
the advice string is trustworthy, in the sense that the Turing machine that
handles the advice is not required to do anything sensible if it gets the wrong
advice.

We could provide the advice on a separate read-only input tape, but
instead we typically just append it to the input. Formally, a language L is
in TIME(f(n))/g(n) if there is machine M and a function α : N→ {0, 1}∗
where |α(n)| ≤ g(n) and M(x, α(n)) accepts in O(f(n)) steps when x ∈ L
and rejects in O(f(n)) steps when x 6∈ L. The class P/poly can then be
defined as

⋃
a,b TIME(na)/nb.

Given a family {Cn} of polynomial-size circuits, the language decided
by this family is in P/poly: let α(n) be a description of Cn. In the other
direction, if M is a poly-time Turing machine that uses advice, we can
simulate it by constructing a family of circuits where each Cn has α(n) baked
into it. This shows that P/poly captures exactly the languages computable
by a family of poly-size circuits.

Note that we can always make the advice empty: this gives P ⊆ P/poly.
In §10.2 we will show how to put some constraints on the advice to get a
class of polynomial-size circuits that decide exactly the languages in P.

10.1.2 Information-theoretic bounds

P/poly is pretty powerful, but it’s not all-powerful: almost all functions
can’t be computed by polynomial-size circuits.

To keep things simple, let’s assume that our circuits consist only of
2-input AND gates and NOT gates, since we can simulate AND and OR
gates with polynomial fan-in using O(logn) of these gates and still have
a polynomial-size circuit. We can reduce further to 2-input NAND gates
(which compute ¬(x ∧ y)) since we can build a NOT out of a NAND by
wiring both inputs together and build an AND out of two NANDs by using
the second one as a NOT to invert the output of the first.

We can specify an all-NAND circuit of size f(n) by listing which gates or
inputs supply the input to each gate. This gives us (f(n) + n)2 choices per

CHAPTER 10. CIRCUIT COMPLEXITY 70

gate, or (f(n) + n)2f(n) choices total.2 The number of Boolean functions on
n inputs is 22n . Taking logs of both quantities gives us O(f(n) log f(n)) bits
to represent a circuit of size f(n) (assuming f(n) = Ω(n)) and 2n bits to
represent a function on n inputs. For f(n) = nc, we get O(nc logn) = o(2n)
circuits, so most Boolean functions have no circuits of this size.

In fact, this is true for any size bound that is subexponential. On the
other hand, at O(n·2n) size, we can build a circuit that consists of 2n separate
circuits that each recognize one input using O(n) gates, and a gigantic OR
that combines the outputs of all the circuits that recognize a positive input.
So exponentially-large circuits can do anything, making EXP/exp equal to
the set of all functions. For this reason, we will not study EXP/exp much.

10.1.3 The Karp-Lipton Theorem

The lower bound in the preceding section is not as exciting as it could be,
since it just says that there are many bad languages out there for P/poly,
but it doesn’t say which. The Karp-Lipton Theorem gives evidence that SAT
is one of these functions, assuming we don’t believe the poly-time hierarchy
collapses.

Theorem 10.1.1 (Karp-Lipton [KL80]). If NP ⊆ P/poly, then PH = Σp
2.

Proof. The idea is to show that Π2 SAT, the problem of testing if a formula
of the form ∀x∃yΦ(x, y) is true, is in Σp

2.
We do this by guessing a circuit Cn that solves SAT for n big enough

to encode Φ(x, y) for any fixed x and possibly partially-fixed y. Given a
polynomial-size circuit Cn that claims to solve SAT, and a circuit Φ(x,−)
it says yes to, we can extract the y that makes Φ(x, y) true by testing each
possible bit one at a time, and then verify for ourselves that the resulting
y actually works in Φ(x, y) (given a fixed x). 3 On the other hand, if Cn
doesn’t actually work for some particular Φ(x,−) or its specialization, we
can detect this in deterministic polynomial time and refuse to accept.

So now we construct the Σp
2 machine ∃Cn∀x[Cn yields a satisfying y for Φ(x, y)].

If ∀x∃yΦ(x, y) is true, then when we guess Cn correctly (which we will
do on at least one branch under the assumption NP ⊆ P/poly), we
will get ∀x[Cn yields a satisfying y for Φ(x, y)] true, and the machine will

2We are overcounting a bit here, but it won’t matter.
3The property of SAT used to extract a satisfying assignment is know as self-

reducibility. This means that a formula Φ(x1, x2, . . . , xn) is satisfiable if and only
if at least one of the simpler formulas Φ(0, x2, . . . , xn) or Φ(1, x2, . . . , xn) is, meaning we
can reduce an instance of SAT to smaller instances of the same problem.

CHAPTER 10. CIRCUIT COMPLEXITY 71

accept. If ∀x∃yΦ(x, y) is false, then no matter what we guess for Cn,
∀x[Cn yields a satisfying y for Φ(x, y)] will be false, and the machine will
reject.

This gives Πp
2 ⊆ Σp

2, which also means Πp
2 = Σp

2. So now given any class
above Πp

2 = Σp
2 in the polynomial-time hierarchy, we can reverse the last two

quantifiers using this equivalence, and then drop its number of quantifiers by
one by combining the third- and second-to-last quantifiers. So the hierarchy
collapses to Σp

2.

The Karp-Lipton Theorem suggests that even though P/poly is in a
sense too powerful a class to use in real life, it might still be possible to show
P 6= NP by proving the just as plausible P/poly 6= NP. This approach
was pretty popular in the late 1980s, in part because of a proof by Razborov
that poly-size monotone circuits could solve CLIQUE [Raz85]. These
are circuits with AND and OR gates, but no NOT gates, and (unlike, say,
SAT), it is possible to solve CLIQUE using a big enough monotone circuit
(take an OR of ANDs over all sets of edges that might be cliques). So the
hope was that some sort of clever non-relativizing circuit sneakery could
prove a similar result for general circuits. This hope was ultimately dashed
by the Razborov-Rudich natural proofs result [RR97], which ruled out a
large class of lower bound arguments based on finding testable properties of
functions that would imply hardness. (We’ll come back to this in Chapter 11.)

On the other hand, Karp-Lipton gives some interesting conditional results.
One of these, which Karp and Lipton attribute to Albert Meyer in their
paper, is that if EXP ⊆ P/poly, then EXP = Σp

2. But then P 6= Σp
2

(Time Hierarchy Theorem), which implies P 6= NP. So we have the unlikely
possibility of being able to prove P 6= NP by showing that P/poly is much
more powerful than it has any right to be.

10.2 Uniformity

The reason we get P/poly instead of P out of poly-size circuits is that our
circuit families are non-uniform: we get to pick a different circuit Cn for
each input n, and this choice is arbitrary. If we have to actually compute Cn
from n, we can restore some sanity.

A circuit family {Cn} is logspace-uniform or just uniform if there is
a Turing machine M that computes a description of Cn from 1n in time
logarithmic in n. The description will be a labeled graph, so M needs
to output (1) a count of the number of gates in the circuit, equivalent to
counting the number of vertices in the graph; (2) an adjacency list that gives

CHAPTER 10. CIRCUIT COMPLEXITY 72

the wires in the circuit; and (3) a label for each gate saying which function
(AND, OR, NOT) it computes.4 As with other computations by log-space
machines, we can assume either that the machine is explicitly writing the
entire description to a write-only output tape or implicitly providing the
description as a Boolean function f(n, i) that gives the i-th bit of the output
on input 1n.

If we consider only logspace-uniform families of circuits, then the families
of polynomial size give exactly the class P. The reason is that (a) we can
simulate any such circuit in P, by performing a L ⊆ P computation to
generate a description of the appropriate Cn, and then evaluating it in the
usual way; and (b) we can simulate a poly-time Turing machine M by a
family of polynomial-size circuits generated in log space, since each circuit
just computes the value of the tape cells, head state, and so forth as in
Cook’s theorem, and writing out such a circuit will only require logarithmic
space to keep track of the loop indices for times and positions.

10.3 Bounded-depth circuits

In addition to restricting the size of a circuit, we can also restrict its depth,
the maximum length of any path in the circuit. This gives rise to two
important families of complexity classes:

1. ACi is the class of languages computed by polynomial-size circuits
with depth O(logi n).

2. NCi is the class of languages computed by polynomial-size circuits
with constant fan-in and depth O(logi n).

The names AC and NC are short for alternating class and Nick’s
class, respectively.

The intent of these classes is to model problems that can be computed
quickly in parallel: a low-depth circuit corresponds to a computation where
many activities may be going on at the same time, but the path from any
input to an output is short.

Often we will insist that these circuits are log-space uniform, but this
requirement is not part of the standard definitions, and many results about
circuit complexity don’t require uniformity.

4If we are willing to limit ourselves to NAND gates, we can compute anything we can
compute with AND, OR, and NOT, and skip the labeling. But having explicit AND
and OR gates will turn out to be convenient when we look at various restricted circuit
complexity classes.

CHAPTER 10. CIRCUIT COMPLEXITY 73

A common convention is to use De Morgan’s Laws to push all NOT gates
to the inputs, and insist on alternating layers of AND and OR gates. This
can be done to either ACi or NCi circuits, and at most doubles the depth
(since we may have to stick a layer of dummy 1-input AND or OR gates in
between layers of gates of the same type).

It holds trivially that NCi ⊆ ACi, since any polynomial-size circuit
of depth O(logi n) with bounded fan-in is also a polynomial-size circuit of
depth O(logi n) with unbounded fan-in. It is also not hard to show that
ACi ⊆ NCi+1: replace each AND or OR gate with fan-in k by a tree of
AND or OR gates of depth O(log k).

10.3.1 Parallel computation and NC

The union
⋃∞
i=1 NCi of these classes is called NC, and is generally taken to

be the class of problems that can be computed efficiently in parallel. Note
that NC is the same as

⋃∞
i=0 AC0.

The P-complete languages (§9.6.1.2) have roughly the same relation
to NC as the NP-complete languages have to P: while a NP-complete
problem is one that we don’t expect to be able to compute efficiently at all, a
P-complete language is one that we expect to be able to compute efficiently,
but not in parallel.

10.3.2 Relation to L and NL

A logspace-uniform family of circuits in NC1 can be simulated in L. The
basic idea is to use game-tree search, where we are careful about storage.
There are basically three things we need to keep track of:

1. An index of the current gate we are working on. This takes O(logn)
bits.

2. A stack describing what path we are currently evaluating. Each edge
takes O(1) bits to specify (because we know the parent gate, and this
gate has only O(1) inputs) and we have O(logn) edges per path. So
another O(logn) bits.

3. Storage for communicating with and executing the logspace subroutine
for generating the circuit. Also O(logn) bits, where we use the usual
trick of not storing the entire output but only the bits we need.

This doesn’t show all of NC1 is in L, but it does show that logspace-
uniform NC1 is in L. It also doesn’t generalize to AC1: for AC1, our stack

CHAPTER 10. CIRCUIT COMPLEXITY 74

would need O(log2 n) space, since we have polynomially many possible inputs
at each level.

In the other direction, we can show that NL ⊆ AC1, and indeed any NL
function can be computed by a logspace-uniform AC1 circuit. The idea is to
first reduce any problem in NL to STCON and then solve STCON in AC1

by repeated matrix squaring, a technique developed for transitive closure by
Fischer and Meyer [FM71].

Let Atij be a Boolean variable representing whether there is a sequence
of t transitions that take us from configuration i to configuration j. Suppose
that our logspace machine always finishes in nc steps. For convenience, let
us also structure it so that it has a single accepting configuration a that
persists in the sense that a → a is the only transition leaving a. Then we
can determine if the machine accepts by building a circuit to Atij for some
t ≥ nc.

To generate the circuit, we construct a sequence of O(logn) layers com-
puting A2k

ij for each k, i, and j. The bottom layer (k = 0) just computes if
i→ j is a transition that is consistent with the input, and we can generate
this layer by enumerating all i and j (O(logn) space for each), and deter-
mining which input value if any is necessary to have an i → j transition.
(The subcircuit emitted for A1

ij will in fact always be one of a constant 0, a
constant 1, or x` or ¬x` for some input bit x`.) For higher layers, we use the
rule

A2k+1
ij =

∨
`

(
A2k
i` ∧A2k

`j

)
.

This is a depth-2 circuit using a linear-fanin OR over a bounded-fanin AND,
so we can build O(logn) layers like this and stay in AC1. This shows that
NL ⊆ AC1, and if we are careful about checking that the circuit construction
can in fact be done in log space, we have NL is contained in logspace-uniform
AC1.

10.3.3 Barrington’s Theorem

Barrington’s Theorem [Bar89] shows that the Boolean functions computable
in NC1 are precisely the functions that can be computed by branching
programs of width 5.

A branching program is a directed acyclic graph where each non-terminal
vertex is labeled by an input bit position, and has exactly two outgoing edges
labeled 0 and 1. We execute a branching program by starting at an initial
vertex, and at each step we (a) look at the input bit xi given by the label on
the current vertex, and then (b) move to the successor pointed to by the 0

CHAPTER 10. CIRCUIT COMPLEXITY 75

or 1 edge, depending on the value of xi. When we reach a terminal vertex,
we take the label on that vertex (0 or 1) as the output of the program.

A bounded-width branching program is one in which the vertices
can be arranged into layers, so that each vertex in layer i has successors in
layer i + 1, and there are at most k vertices in each layer. Here k is the
widthwidth!of a branching program of the branching program.

We can think of a bounded-width branching program as a little like a
finite-state machine where the transition function changes at each step. In
this view, the k nodes that the program might be in at layer t are treated as
k states that the machine might be in at time t, and we think of the labeled
outgoing edges as representing functions f t0 and f t1 that map the state qt at
time t to the new state qt+1 at time t+ 1. So we can program these things
by choosing a sequence of inputs xt and functions f t0 and f t1, and then just
iterate applying f txt to the state each each time t starting with some initial
state.

Taking one more step down the rabbit hole, we can choose to make
these functions invertible, which makes f t0 and f t1 both elements of Sk,
the symmetric group on k elements. Composition of these functions
corresponds to multiplication of the group elements, so we can think of
the entire computation as evaluating a gigantic word f1

x1f
2
x2 . . . f

T (n)
xT (n) in Sk.

So now our programming problem is one of choosing the individual group
elements f t0 and f t1 and inputs xt so that this multiplication does what we
want.

We will specifically use S5, and use words that evaluate either to cycles
or to the identity. A standard convention in group theory writes an element
of Sk as a product of cycles, where each cycle is given by a list of its
elements in order in parentheses. For example, (12345) represents the cycle
1 → 2 → 3 → 4 → 5 → 1, while (1)(2)(3)(4)(5) represents the identity e
(which sends each position back to itself; it’s worth mentioning that usually
we would omit trivial cycles with just one element). We can multiply group
elements by chasing individual position around the cycles. So, for example,
the product (12345)(13542) = (1)(253)(4) = (253), since 1 → 2 → 1,
2→ 3→ 5, and so on.

Each input bit xi will be represented by a choice of two group elements
ξi0 and ξi1, depending on its value. For a function f(x1, . . . , xn) of the input
bits, we will say that a word w = ξ1ξ2 . . . ξm α-represents f if w = α when
f = 1 and w = e when f = 0. In this representation, we use xi to refer to
the i-th bit examined by the branching program rather than the i-th bit in
the actual input; this saves some extra subscripts and allows us to use a

CHAPTER 10. CIRCUIT COMPLEXITY 76

different representation for different occurrences of a particular input bit.
If α and β are cycles, we can convert an α representation to a β represen-

tation by conjugation; there is a group element γ such that γαγ−1 = β, and
when w = α we get γwγ−1 = β and when w = e we get γwγ−1 = γγ−1 = e.
Note that this doesn’t actually increase the length of w, since we can bake γ
and γ−1 into the representations of the first and last bits examined by w.

Now we want to represent the gates in our circuit by products of words.
Negation is easy: if w α-represents some sub-circuit C, then wα−1 α−1-
represents ¬C. For AND, we take advantage of the fact that there exist cycles
ρ = (12345) and σ = (13542) in S5 whose commutator τ = ρσρ−1σ−1 =
(12345)(13542)(54321)(24531) = (13254) is also a cycle. So now to compute
C ∧ D, we let u ρ-represent C, v σ-represent D, and then w = uvu−1u−1

τ -represents C ∧D, since if C = 0 we get w = evev−1 = vv−1 = e, if D = 0
we get w = ueu−1e = uu−1 = e, and if both are 1 we get w = ρσρ−1σ−1 = τ .

To convert an entire depth d circuit, first convert it to a depth-d formula,
then apply the above construction to each subcircuit, adjusting the repre-
sentation as needed using conjugations. This gives a word w of length 4d
over S5 that α-represents the computation of the original circuit for some α,
and we can compute this using a width-5 branching program by taking any
initial state and seeing if it gets mapped elsewhere or not by w.

In the other direction, given a branching program of width k, we can
represent it as a word over the semigroup of functions from {1 . . . k} to
{1 . . . k}, and use a circuit of depth O(log|w|) to compute its value by
splitting w in half, computing the mapping corresponding to each half, then
composing the mappings together (which we can do in constant additional
depth). This shows that O(logn) depth circuits are exactly equivalent in
power to polynomial-length width-5 branching programs.

I find this result horrifying. In both directions of the construction, the
thing we build has no obvious connection to the thing we started with, and if
asked after seeing the state of the branching program coming out of uv what
that state means, we would have to admit that we have no ability whatsoever
to decode it without running it back through u−1v−1. So the answer to pretty
much any attempted proof of anything in complexity theory that starts with
“I understand how programs work, and at this stage of the program the state
must mean this” is “Oh yeah? And what about Barrington’s Theorem?”5

5In fact, applying Barrington’s Theorem is a critical step in many known cryptographic
techniques for obfuscating code, although in fairness the real obfuscation comes from
disguising the S5 elements as more complicated algebraic objects. [GGH+16]

CHAPTER 10. CIRCUIT COMPLEXITY 77

10.3.4 PARITY 6∈ AC0

Want to show AC0 6= NC1 by showing PARITY (odd number of inputs are
1) is not in AC0. This also shows MAJORITY (more than half the inputs
are 1) is not in AC0, since we can use pairs of MAJORITY gates to test if∑
xi = k for any fixed k and use an OR of n/2 of these equality testers to

compute PARITY [FSS84].
The first proofs that PARITY 6∈ AC0 were given by Furst, Saxe, and

Sipser [FSS84] and Ajtai [Ajt83]. We’ll give two proofs of this fact, one
(§10.3.4.1) based on Håstad’s Switching Lemma [Has86], which simplifies cir-
cuits by fixing some of their inputs; and one (§10.3.4.3) based on Razborov’s
approximation of AC0 circuits by low-degree polynomials over a finite
field [Raz87] together with Smolensky’s proof that such polynomials can’t
approximate parity [Smo87].

10.3.4.1 Håstad’s Switching Lemma

First, let’s start with an easy warm-up: A depth-2 circuit can only compute
parity if it has at least 2n−1 gates. Proof: If it’s an OR of ANDs, any AND
with fewer that n inputs gives a false positive on some input, and we need at
least 2n−1 ANDs on n inputs to cover all odd-parity inputs. If it’s an AND
of ORs, then do the same thing with false negatives.

Håstad’s Switching Lemma uses a random restriction to convert
an OR of small ANDs into an AND of small ORs. A random restriction
fixes a random subset of the inputs to the circuit to random values. By
repeatedly switching ANDs with ORs, we can flatten an AC0 circuit down to
something that obviously can’t compute parity on the surviving unrestricted
variables. This will be be a problem because a random restriction of parity
is still parity, and we won’t knock out everything.

Håstad’s Switching Lemma actually shows something stronger. Given a
DNF formula of width!of a DNF formula w, meaning an OR of ANDs
where each AND has at most w literals, hitting it with a random restriction
gives us a decision tree of low depth with high probability. This can then
be converted into a low-width CNF formula if needed.

Define a random s-restriction as a choice of random values for a random
subset of n− s variables, where each of the

(n
s

)
2n−s possible restrictions are

equally likely. (Note that s indicates how many variables survive.) The
restriction f |α of f to α is the function on s variables given by fixing the
other inputs to f according to α.

CHAPTER 10. CIRCUIT COMPLEXITY 78

Lemma 10.3.1 (Håstad’s Switching Lemma). If f is computed by a w-DNF,
and α is a random s-restriction with s = σn ≤ n/5, then for any d ≥ 0, the
probability that f |α has no decision tree of depth d or less is at most (10σw)d.

Proof. The proof is by showing that the set of bad restrictions β that require
depth more than d is small. This is done by encoding each such β using an
(s−d)-restriction supplemented by a small number of extra bits of information.
Since the number

(n
s−d
)
2n−s+d of (s− d)-restrictions is much small than the

number
(n
s

)
2n−s of s-restrictions, and the extra bits don’t add much to the

total count, this will show that the proportion of bad restrictions is small.
Given f and a bad β, we’ll define a canonical decision tree that may

or may not be the best possible decision tree for f |β , but that is certainly no
better than the best possible tree. In particular, the canonical description
tree will contain a path of length d+ 1 or more, and we’ll use this path to
extract our succinct description of β.

Order the terms T1 ∨ . . . T` in the w-DNF representation of f in some
standard way. We say that β kills Ti if β forces Ti to 0. It fixes Ti if it
instead forces Ti to 1. Since β is bad, it can’t fix any term or kill all the
terms, because then f |β would be constant and computable by a depth-0
tree.

The canonical decision tree is generated recursively. Start with first term
Ti not killed by β, and let Ti have di free variables. Build a complete depth-di
tree that has 2di leaves corresponding to each assignment of these variables.
Give the leaf of the tree corresponding to a true assignment to Ti the value 1,
and recurse on the terms after Ti to get subtrees for each of the other leaves.
Note that in this recursion, we restrict the variables we’ve already examined,
so we may kill (or fix) many of the terms after Ti depending on which values
we saw. But at the end we get a decision tree that computes f |β.

Somewhere in this tree is a path of length d+ 1 or more. Let P be the
prefix of this path of length d, and construct a new (s− d)-restriction π by
adding to β the values of the variables on P .

For the last step, we’ll show how to recover β from a different (s− d)-
restriction γ without too much extra information. What γ does is fix all the
terms Tii , Ti2 , . . . whose subtrees are traversed by π, by setting the variables
in each Tij to whatever will make Tij true. To be able to recover π and β
from this, we also write down for each term the set of variables we fixed and
what values they have in π: this requires no more than di(lgw + 2) bits if
we are careful, for a total of d(lgw + 2) extra bits over all terms. The extra
information lets us reconstruct π from γ.

To recover β, we walk through f |γ looking for clauses fixed by γ. For

CHAPTER 10. CIRCUIT COMPLEXITY 79

each such clause, the extra bits tell us which variables to remove from γ
to get β. This shows that the number of bad restrictions is bounded by(n
s−d
)
2n−s+d2d(lgw+2) =

(n
s−d
)
2n−s+d(4w)d.

Dividing by the total number of restrictions gives a probability of a bad
restriction bounded by(n

s−d
)
2n−s+d(4w)d(n
s

)
2n−s =

n!
(s−d)!(n−s+d)!)
n!
s! (s− d)!

(8w)d

= (s)d
(n− s+ d)d

(8w)d

≤
(

s

n− s+ d

)d
(8w)d

≤
(

s

n− s+ d

)d
(8w)d

≤
(

σ

1− σ

)d
(8w)d

≤
(5

4σ
)d

(8w)d

≤ (10σw)d.

This shows that an OR of small ANDs usually turns into an AND of small
ORs when hit by a random restriction. By negating outputs and inputs, we
can apply the same technique to turn an AND of small ORs into an OR
of small ANDs. We’ll alternate between these to flatten AC0 circuits, as
explained below.

10.3.4.2 Application to PARITY

Now we want to use the lemma to beat up an AC0 circuit C that claims to
compute PARITY.

To get the process off the ground, we need to restrict the fan-in of our
circuit to 1 at the bottom level.6 We can trivially do this by adding an extra
layer of 1-input gates. We will also assume for simplicity that the circuit is a
tree, and that we strictly alternate OR and AND levels, with all negations
pushed to the inputs, and AND at the bottom. Let nb bound the size of the
resulting circuit.

6Which I didn’t do in class on 2017-03-1, leading to much embarrassment.

CHAPTER 10. CIRCUIT COMPLEXITY 80

We now hit the circuit with a random
√
n-restriction, meaning that we

set σ = n−1/2 (this will let us use a union bound over all gates in C later).
We’ll choose d so that (10σw)d = (10n−1/2)d = o(n−b); d = 4b works, giving
a probability of getting depth greater than 4b bounded by 104bn−2b = o(n−b)
since the extra n−b factor starts eating up the constant around n = 10000 or
so.

If we look at one OR gate at the second level of the circuit and its pile of
feeder 1-input AND gates, after applying the restriction we can, with high
probability, replace it with an AND of 4b-input OR gates. All of these ANDs
feed into ANDs that used to be at the third level of the circuit, and we can
absorb them into their successors without changing the width of the new
bottom layer of OR gates. We have just shortened the circuit by one level, at
the cost of increasing the width of the input level from 1 to 4b and reducing
the number of free inputs from n0 = n to n1 = n1/2.

In general, we’ll do the square-root trick whenever we knock out the
bottom level. This gives ni = n2−i as the number of surviving inputs after
each level. For the width, let wi = 4ib. We’ve already shown that w0 = b
and w1 = 4b are high-probability bounds on the width after 0 and 1 layers
are removed. More generally, the probability that we get more than wi+1
width after removing i layers is bounded by(

10n−1/2
i wi

)wi+1 =
(
10n−2−i−14ib

)4i+1b

= (10b)4i+1b22i(i+1)bn−2−i−14i+1b

≤ (10b)4i+122i(i+1)n−2i+1b

= (10b)4i+122i(i+1)n−2i+1b

Since everything up to the n term is a constant, for sufficiently large n it
happens that n−2i+1b not only blows it away but puts what’s left well under
n−b.7

Let h be the height of the original circuit. After h− 2 restrictions, we
get, with nonzero probability, a depth-2 circuit with its first layer width
bounded by 4hb, a constant. Such a circuit must have size at most 1 +
(2n + 1)4hb, a polynomial in n, since with bounded width we can only get
so many combinations of inputs before we start getting duplicate gates we
can remove. So if PARITY is in AC0, this construction gives us circuits
for computing parity on arbitrarily large numbers of inputs that have depth
2 and polynomial size. But we’ve already shown this to be impossible. It
follows that PARITY 6∈ AC0.

7We probably could have used a tighter bound on wi, but 4ib is easy to write down.

CHAPTER 10. CIRCUIT COMPLEXITY 81

For the last step, we can encode the argument that a constant-width
depth-2 circuit doesn’t compute parity as a further restriction: if we restrict
the inputs to the depth-2 circuit to ones that fix one of the bottom-layer
gates, we get a constant function. So what we are really showing is that for
sufficiently large n, any AC0 function is constant over some reasonably large
subcube of the hypercube of all possible inputs of size n.

This is an example of a proof that doesn’t relativize. The reason is that
random restrictions don’t do anything sensible to arbitrary oracle gates, so
we really are using the fact that our original AC0 circuit is built from AND
and OR gates. In the following section, we will see a different proof that
also doesn’t relativize, because again we are looking at specific properties of
AND and OR gates.

10.3.4.3 Low-degree polynomials

A different proof, due to Razborov and Smolensky, shows that PARITY 6∈
AC0 based on approximating constant-depth circuits by low-degree polyno-
mials over Zp for some prime p 6= 2.8

The nice thing about this proof is that it (a) gives a lower bound on
approximating parity as well as computing parity, and (b) works even if we
throw in mod-p gates (that return 0 if the sum of their inputs is a multiple
of p and 1 otherwise), for any single prime p 6= 2. Throwing in mod-p gates
gives us the class AC0[p], which is a bit stronger than AC0 for prime p (for
example, AC0[2] can compute parity), but probably not by much.

We are going to start by approximating our depth-h circuit by a polyno-
mial that computes a function {0, 1}n → {0, 1}. This 0–1 basis is convenient
for constructing the approximation, although when we want to show that
the polynomial doesn’t approximate parity it will be handy to switch to a
±1 basis, which will involve a change of variables to turn the polynomial
into a function {−1,+1}n → {−1,+1}.

Over the 0–1 basis, here is how to encode a depth-h, size N circuit as a
degree ((p− 1)`)h polynomial that computes the right answer on any fixed
input with probability at least 1−N · 2−`:

1. Encode an input xi as the variable xi.
8The proof has two parts: Razborov [Raz87] showed that low-degree polynomials over

Zp can approximate low-depth circuits, and Smolensky [Smo87] shows that low-degree
polynomials over Zp couldn’t approximate PARITY, which implies that constant-depth
circuits can’t either. Both parts are needed to show PARITY 6∈ AC0[p], so it has become
conventional just to refer to the full result as the Razborov-Smolensky Theorem.

CHAPTER 10. CIRCUIT COMPLEXITY 82

2. Encode ¬p as 1− p. This does not change the degree.

3. For OR, we will do something sneaky to avoid blowing up the degree
too much.
Supposing we are computing

∨k
j=1 pij , where each pij has degree d.

Take a random subset S of the ij , and compute
∑
ij∈S pij . This has

degree d as well, and if all pij are 0, it is 0, and if at least one pij is
not zero, then including the last nonzero pij or not in S changes the
value of the sum, meaning that there is at least a 1/2 chance that the
sum is nonzero. We can convert this nonzero sum back to 1 using
Fermat’s Little Theorem:

(∑
ij∈S pij

)p−1
= 1 (mod p) if and only if∑

ij∈S pij 6= 0 (mod p). This gives us a polynomial that is 0 for the
all-0 input and 1 with probability at least 1/2 for any nonzero input.

Now blow this up by choosing ` random Si and let p = 1−
∏
i=1 `

((
1−

∑
ij∈S pij

)p−1
)
.

This has degree d(p− 1)` and computes OR with probability at least
1− 2−`.

4. For AND, use De Morgan’s Laws and NOT to reduce to OR; the degree
is again d(p− 1)` with probability of error at most 2−`.

5. For mod-p, use (
∑
pi)p−1. Degree is d(p− 1) ≤ d(p− 1)` and there is

no error.

Applying this over depth h gives a degree bound of ((p− 1)`)h, since we
go up by at most a factor of (p− 1)` at each level. Taking a union bound
over all gates gives the N · 2−` bound on error. This means that each of the
2n possible inputs contributes N · 2−` bad outputs on average, for a total of
2n ·N · 2−` bad outputs on average. Since this is an average, some specific
choice of random subsets must do no worse, showing that there exists a
polynomial of degree ((p− 1)`)h over Zp that computes the same function as
the original circuit on all but 2n ·N · 2−` inputs.

Now we need to show that this polynomial can’t approximate parity
very well. To do so, it is helpful to switch to a ±1 basis by replacing each
occurrence of xi with −(yi + 1) · 2−1 = −(yi + 1) · p+1

2 and similarly adjusting
the output of the resulting polynomial q′ by changing it to q = 1− 2q′; this
effectively sends every bit b to (−1)b, making parity just the product of all
the inputs. Note that neither step affects the degree of the polynomial: we
still have a degree ((p− 1)`)h polynomial that is a good approximation to
the circuit.

CHAPTER 10. CIRCUIT COMPLEXITY 83

Now to show that such a polynomial can’t be a good approximation to
parity, which will show that the circuit doesn’t compute parity. Let G be the
set of inputs y in {−1,+1}n on which our degree-d polynomial q computes
parity. Consider the set of all functions f : G → {−1,+1}. For each such
f , there is a polynomial fp(y) (of degree n) over that computes f exactly.
Because the inputs to f are all ±1, we can assume that each monomial in
fp is of the form

∏
i∈S yi, since any y2

i that appears can be replaced by 1.
Assuming we only care about inputs in g, we can make the same assumption
about q. We will now use q to smash down fp to have degree close to n/2,
and argue that there aren’t enough of these lower-degree polynomials to
cover all possible f : G→ Zp.

Take any monomial
∏
i∈S yi where |S| > n/2. This is equal to

∏
i 6∈S yi

∏n
i=1 yi =(∏

i 6∈S yi
)
q(y) for any y ∈ G. By applying this transformation to all the

high-degree monomials in fp, we get a new polynomial that computes the
same function on G and has degree at most n/2 + ((p− 1)`)h.

Let d = ((p−1)`)h and ε = N ·2−`. Then we have at least p2n(1−ε) possible
f (p choices for each element of G) and only p

∑d

i=0 (ni) possible degree-(n+d)
polynomials. Let ` = n1/(2h

p−1 , so that d =
√
n and ε = N · 2n1/(2h)/(p−1) ≤

nb−n
1/(2h)/(p−1) = o(1) (assuming N ≤ nb for some constant b). Then

|{f}| = p2n(1−ε) = p2n(1−o(1)) but |{fp}| = pc·2
n for a constant c < 1 (since

we are only going out one standard deviation).
At some point the 1 − o(1) gets bigger than the c, and we can’t cover

all functions f with degree n/2 +
√
n polynomials any more. This implies

that q′ does not in fact work as well as advertised, meaning that our original
circuit fails to compute parity for some input.

With some tinkering, essentially the same argument shows that a AC0[p]
circuit family can’t compute MOD-q when p 6= q and both are prime (or
prime powers). We don’t know much about what happens with circuits with
MOD-m gates where m is not a prime power; polynomials over even Z6 turn
out to be surprisingly powerful. citeBarringtonBR1994.

Chapter 11

Natural proofs

The circuit lower bounds in Chapter 10 generally don’t relativize, since
oracle gates don’t do anything sensible when hit with random restrictions or
reduced to polynomials. But they still are unlikely to generalize to produce
stronger results, at least if we believe in cryptography. This follows from the
natural proofs theorem of Razborov and Rudich [RR97].1

The idea is to rule out certain “natural” classes of proof strategies, which
involve showing that there is a property Φ such that (a) any Boolean function
that has this property is hard for some class, and (b) a particular Boolean
function has this property. An example would be PARITY’s property of not
becoming the constant function under a large enough restriction, which is
not true of functions in AC0. The argument is that if we have such a proof
strategy that works and satisfies certain technical requirements, then we can
use it to break cryptographic primitives. This means that showing that one
thing we think is hard is hard, in this particular way, will involve showing
that something else we think is hard is easy.

11.1 Natural properties

A property Φ is just a set of Boolean functions. We will use Φn for the
restriction of Φ to functions on n inputs and use fn to refer to the restriction
of a function f to n inputs. A property is constructive if the problem
fn

?
∈ Φn is in P, where the input to the tester is a string of length 2n giving

the entire truth table for fn and the time to test is thus polynomial in 2n;
1The presentation in this chapter is very, very sketchy, and the presentation in [AB07,

Chapter 22] is not much better. I recommend if you are interested in this to look at the
original Razborov-Rudich paper [RR97].

84

CHAPTER 11. NATURAL PROOFS 85

large if at least a 2−O(n) fraction of functions on n inputs are in Φn; and
useful against P/poly if f ∈ Φ implies f 6∈ P/poly.

If Φ is both constructive and large, we say that it is natural2 The
Razborov-Rudich theorem says a natural property useful against P/poly
breaks certain pseudorandom function generators, which we now take a brief
detour to define.

11.2 Pseudorandom function generators

For the purposes of the Razborov-Rudich Theorem, we will consider a class of
pseudorandom function generators that are indistinguishable from a random
function by a Turing machine running in time 2O(n) with oracle access to
the function. In this definition, a family of functions {fn} is pseudorandom
if, for any machine M running in time 2O(n), and n sufficiently large,

|Pr [M(fn(x) = 1)]− Pr [M(R) = 1]| ≤ 2−n2
,

where x is chosen uniformly from {0, 1}n and R is a random function. A
pseudorandom function generator is a machine M(s, x) that given any
polynomial-size seed s becomes a pseudorandom function fsn on x.

What is interesting about these generators is that is possible to show
that they exist unless problems like FACTORING or DISCRETE LOG can
be solved in O

(
2nε
)
time for any ε > 0.

11.3 The Razborov-Rudich Theorem

Here we give a formal statement of the Razbov-Rudich theorem. This
version is adapted form [AB07, Theorem 22.9]; the original version in the
Razbov-Rudich paper [RR97] is stated more generally.

Theorem 11.3.1 (Razbov-Rudich [RR97]). If there is a P-natural property
Φ that is useful against P/poly, then there are no strong pseudorandom
function generators as defined in the preceding section.

Proof. We’ll use Φ to distinguish a pseudorandom function generator from a
random function R.

First observe that for any fixed seed s, the function fsn is computable
in P/poly. So pseudorandom functions do not have property Φ (because
of usefulness). On the other hand, a random function does have property

2More generally, we say that it is C-natural if it is testable in class C and large.

CHAPTER 11. NATURAL PROOFS 86

Φ with probability at least 1− 2−O(n), since Φ is large. So the probability
that Φ distinguishes fsn from R is at least 2−O(n) > 2−n2 . This is a problem
because Φ is constructible, so we can use it to distinguish f sn from R.

If we replace P/poly with some other class (like AC0), then we get a
similar result for pseudorandom function generators that fool the other class
instead of P/poly.

11.4 Examples of natural proofs

The random restriction lower bound for PARITY given in §10.3.4.2 can
be described by a property Φ where Φ(f) = 1 if f cannot be reduced to a
constant function via restricting n− nc inputs, where c < 1. This is large
since almost all functions have this property, and constructive since we can
check all restrictions from the truth table in time polynomial in 2n. It is
also useful against AC0 because AC0 functions don’t have the property.
But because Φ is large and P-constructible, Theorem 11.3.1 implies that
random restrictions won’t be useful against P/poly unless there are no
strong pseudorandom function generators.

An example that requires a little more pushing and shoving is Razborov-
Smolensky (see §10.3.4.3. The main property used in that proof is that any
function f : {−1, 1} → Zp can be written as (

∏n
i=1)`1 +`2 where `1 and `2 are

degree-(n/2) polynomials and the product is the encoding of parity when each
bit is represented by an element of {+1,−1} This property is unfortunately
unique to parity, which would make it not large. So Razborov and Rudich sug-
gest looking at the set of all functions {+1,−1}n → Z−P as a 2n-dimensional
vector space and instead using the property Φ(g) that the dimension of the
set of functions {g · `1 + `2 | `1 and `2 have degree at most n/2} is at least
(3/4)2n. This property does not hold for functions approximated by low-
degree polynomials (pretty much the same counting argument for the parity
case), so it’s useful against AC0[p]. At the same time it is large (shown in
the paper) and constructible (build a m× n matrix whose m ≤ 22n rows are
all functions in the set and check its dimension using Gaussian elimination
in time polynomial in 2n). So if strong pseudorandom function generators
exist, it can’t be useful against P/poly.

This second example shows that even proofs that look unnatural might
have a natural proof buried inside them. One of the things that Razborov and
Rudich do in their paper is go through a catalog of then-known lower bound
results, mostly in circuit complexity, and demonstrate that each argument
can be interpreted to give a natural property useful against some class. This

CHAPTER 11. NATURAL PROOFS 87

means that it is not enough to structure a proof that P 6= NP (for example)
based on a property only applies to a non-large class of functions or is not
obviously constructible: it must also be the case that the proof technique
used to show this property is hard can’t generalize to some other property
that is both large and constructible. So far we have not had much luck
finding such properties, and the Razborov-Rudich paper itself pretty much
put an end to most work on circuit complexity lower bounds.3

3Curiously, the field of circuit complexity lower bounds can in some sense be traced
back to a proof by Minsky and Papert [MP69] that certain classes of depth-2 circuits based
on majority gates (perceptrons, a kind of neural network) couldn’t compute PARITY.
This put a serious damper on neural network research for a generation and was part of
what led to the widespread belief in the “AI winter” era of the late 1980s that artificial
intelligence as a field was basically doomed. Nowadays more sophisticated neural networks
are the basis of the deep learning methods that have had significant success in solving
previously-intractable pattern recognition problems.
And yet these fancier neural networks still can’t compute PARITY. It’s fortunate in

retrospect that the problem of recognizing speech or driving a car doesn’t seem to depend
on calculating whether the number of one bits in the input is odd or even. Perhaps we can
be hopeful that something similar will happen with circuit complexity.

Chapter 12

Randomized classes

In this chapter we look at classes corresponding to randomized computa-
tion , where we are not guaranteed to get the right answer for all inputs,
but instead get the right answer with reasonably high probability assuming
we have a source of random bits.

The basic idea of these classes is similar to the certificate or witness
version of NP: a randomized Turing machine is a machineM(x, r) that
takes an input x and a string of independent fair random bits r. Typically we
assume that M runs in polynomial time and that r has length p(|x|) where
p is some polynomial. Alternatively, we can assume that r is unbounded
but provided on a one-way input tape. Either way, we get a collection of
randomized complexity classes depending on the probability that M(x, r)
accepts given that x is or is not in a language L.

12.1 One-sided error: RP, coRP, and ZPP

The simplest randomized complexity class is RP (sometimes called R. This
consists of all languages L such that there exists a polynomial-time random-
ized machine M that never accepts any x that is not in L, and accepts any
x that is in L with probability at least 1/2.

Such a machine is said to exhibit one-sided error. Languages in RP
have the same asymmetry as languages in NP: we can never be tricked into
accepting an x we shouldn’t, but we might or might not accept an x we
should. The difference is that the probability of accepting x ∈ L is negligible
if we feed a random witness string to an NP machine.

The complement of a RP language is in coRP: this means that L is in
coRP if there is a machine that never rejects x ∈ L, but only rejects x 6∈ L

88

CHAPTER 12. RANDOMIZED CLASSES 89

with probability 1/2 or greater.

12.1.1 P ⊆ RP ⊆ NP

It is trivially the case the P ⊆ RP, since we can ignore the random bits and
just run the P computation; it also holds that RP ⊆ NP, since we can use
any sequence of random bits that causes the RP machine to accept as a
certificate for the NP machine. Similarly, we also have P ⊆ coRP ⊆ coNP.

12.1.2 Amplification of RP and coRP

The choice of 1/2 for the probability of success of a RP or coRP computation
is arbitrary: in fact, it’s enough to have a probability of accepting x ∈ L that
is polynomial in n. The reason (for RP) is that if we accept with probability
at least ε > 0, then the probability that we fail to accept at least once in k
consecutive computations using independent strings r1, r2, . . . , rk is at most
(1 − ε)k < e−εk ≤ 1/e < 1/2 for k ≥ 1/ε. In other words, we can amplify
polynomially-small probabilities of success up to constant probabilities of
success. If we like, we can continue the process to make failure exponentially
improbable: if we have a machine that accepts with probability at least 1/2,
the probability that it fails to accept in k independent runs is at most 2−k.
(For coRP machines, the same thing works, except now we are looking at
the probability of failing to reject some x 6∈ L.)

12.1.3 Las Vegas algorithms and ZPP

The classes RP, coRP, and BPP all represent Monte Carlo algorithms.
These are algorithms that produce the right answer with some reasonably
high probability, but we can’t tell when they produce the right answer.

The other main class of randomized algorithms are known as Las Vegas
algorithms. In a Las Vegas algorithm, the machine returns the correct
answer with probability 1, but there is no fixed bound on its running time.
Instead, we ask that the randomized Turing machine accept or reject in
polynomial time on average.1 The class of languages that are decided by
a randomized Turing machine in polynomial expected time is called ZPP,
short for zero-error probabilistic polynomial time.

1This requires some adjustment to the model, since the machine may consume an
unbounded number of random bits. Typically we either assume that the machine executes
probabilistic transitions (it flips its own coins) or that it is provided with an infinite
sequence of random bits on a one-way input tape.

CHAPTER 12. RANDOMIZED CLASSES 90

The class ZPP has an alternative definition that avoids unbounded
executions:

Theorem 12.1.1. ZPP = RP ∩ coRP.

Proof. First let us show that any language in ZPP is in both of RP and
coRP. LetM be a machine that decides L in expected T (n) time. Construct
a new machine M+ that runs M for at most 2T (n), returning the same value
as M if M finishes within this bound and returning accept if it does not.
Similarly let M− act like M+, except that it returns reject if M runs over
time.

By Markov’s inequality, the probability that M runs overtime is at most
1/2. So if x 6∈ L, the probability that M+ rejects x is at least 1/2. If instead
x ∈ L, the probability that M+ rejects x is 0. So M+ puts L in coRP.
Similarly, M− puts L in RP. This establishes ZPP ⊆ RP ∩ coRP.

In the other direction, suppose M+ demonstrates L is in coRP and M−
demonstrates L is in RP. Given an input x, alternate between running
M+ and M− on x until either M+ rejects (which always means x 6∈ L)
or M− accepts (which always means x ∈ L). Accept or reject based on
which happens. Since each iteration of this loop has at least a 1/2 chance
of producing an answer, we run 2 iterations on average, giving polynomial
expected time since both M+ and M− are polynomial-time. This establishes
RP ∩ coRP ⊆ ZPP.

12.2 Two-sided error: BPP

For some problems, we may have an algorithm that produces both false
positives (accepting strings not in L) and false negatives (rejecting strings in
L). The class of languages that can be computed with constant two-sided
error is called BPP (short for “bounded-probability probabilistic polynomial
time”), and is defined as the set of all L for which there exists a randomized
machine M that accepts with probability at most 1/3 for inputs not in L
and accepts with probability at least 2/3 for inputs in L.

As with RP and coRP, the constants 1/3 and 2/3 are arbitrary, and
can be replaced by 1/2± ε for any polynomial ε > 0 without changing the
class. Here the amplification process is a little more subtle: instead of taking
an OR (RP) or AND (coRP) of the results of k independent computations,
we have to take a majority. This can be shown to give the right answer with
high probability for sufficiently large but still polynomial k using Chernoff

CHAPTER 12. RANDOMIZED CLASSES 91

bounds.2
What does not work is to make ε = 0. If we do this naively, we can

have a machine that accepts exactly 1/2 the time on all inputs, which tells
us nothing. If we insist on some difference in the probability of accepting
depending on whether x ∈ L, however small, this gives a different class,
known as PP. For L to be in PP, there must exist a randomized Turing
machine that accepts x ∈ L with probability at least 1/2 and accepts x 6∈ L
with probability less than 1/2, leaving a gap that is generally too small
to amplify. We’ll come back to PP when we look at counting classes in
Chapter 13.

We generally think of BPP as the class of functions that can be efficiently
solved using randomization. We also tend to guess that BPP is the same as P,
which would follow from the existence of sufficiently powerful pseudorandom
number generators, but we can’t prove this. The following sections give two
results that show what we can prove about the strength of BPP.

12.2.1 Adleman’s Theorem

This says that polynomial advice is enough to derandomize BPP, and is one
of the reasons to suspect that BPP might in fact be equal to P, since there
doesn’t seem to be anything magical about BPP that would let it solve the
obvious examples of problems in P/poly \P.

Theorem 12.2.1 (Adleman [Adl78]). BPP ⊆ P/poly.

Proof. Given a randomized machineM(x, r) that decides some language L in
BPP, first assume that we’ve amplifiedM so that, for each x, Prr [M(x, r) 6= [x ∈ L]] <
2−|x|. Now suppose we try the same r on all x of a given length n: the
expected number of such x for which M(x, r) gives the wrong answers is
strictly less than 2n2−n = 1, meaning that there is a nonzero probability
that we pick an r that works for every x of length n. So such an r exists:
make it the advice string αn.

2The version we want here says that if X1, . . . , Xn are 0–1 random variables with
E [Xi] ≤ pi for each i, and µ =

∑n

i=1 pi, then Pr
[∑n

i=1 Xi ≥ (1 + δ)µ
]
≤ e−µδ

2/3 for any
0 < δ < 1.81. In particular, if pi = 1/2− ε is an upper bound on the probability of getting
a false positive, then the chance that we get a majority of false positives in k trials is
equal to Pr

[∑
Xi ≥ 1/2

]
= Pr

[∑
Xi ≥ 1/2

1/2−εµ
]
which gives δ = 1

1−2ε − 1 < 2ε. So for
k = Ω(n/ε) (polynomial in n) we get a probability of getting a false majority value less
than e−Ω(n2), which is pretty small.

CHAPTER 12. RANDOMIZED CLASSES 92

12.3 The Sipser-Gács-Lautemann Theorem

This avoids using advice to derandomized BPP, but instead uses alternation.
The intuition is that we can test if the set A of r that make M(x, r) accept
is large or small by testing if it is possible to cover all possible r by taking
the union of a polynomial number of appropriately shifted copies of A.

Theorem 12.3.1 (Sipser-Gács-Lautemann). BPP ⊆ Σp
2 ∩Πp

2.

Proof. We’ll show BPP ⊆ Σp
2; that BPP ⊆ Πp

2 will then follow from the
fact that BPP is closed under complement.

Suppose L ∈ BPP, and that we have a machine M(x, r) that decides
if x ∈ L with probability of error at most 2−|x|. For each x, let Ax be
the set of random bit-vectors R such that M(x, r) = 1. Then if x is in
L, |Ax| ≥ (1 − 2−|x|)2|r|, while if x is not in L, |Ax| ≤ 2−|x|2|r|. We will
distinguish these two cases by testing if we can cover all r with

⋃k
i=1(Ax⊕ ti)

for some t1, . . . , tk, where Ax ⊕ ti = {r ⊕ ti | r ∈ Ax}.
First let’s suppose x ∈ L. Fix some r, and choose t1, . . . , tk independently

at random. Then Pr [r 6∈ Ax ⊕ ti] = Pr [r ⊕ ti 6∈ Ax] = |Ax|2−|r| ≤ 2−|x|.
Since the ti are chosen independently, Pr [r 6∈

⋃
(Ax ⊕ ti)] ≤

(
2−|x|

)k
= 2−k|x|.

The expected number of r that are not in
⋃

(Ax ⊕ ti) is then bounded by
2|r|2−k|x| = 2|r|−k|x|. If this is less than 1 for some polynomial k (and it
is), then there exists some sequence of bit-vectors t1, . . . , tk that leave no r
uncovered, meaning that the Σp

2 formula ∃t1, . . . , tk∀r
∧k
i=1M(x, r ⊕ ti) = 1

is true.
On the other hand, if x 6∈ L, then |Ax| ≤ 2|r|−|x| and, for any t1, . . . , tk,

|
⋃k
i=1(Ax ⊕ ti)| ≤

∑k
i=1|Ax ⊕ ti| ≤ k2|r|−|x| = 2|r| · k2−|k|. For polynomial k,

this is strictly less than |r|, meaning that no matter what t1, . . . , tk we pick, we
can’t cover all possible r. In other worse, the formula ∃t1, . . . , tk∀r

∧k
i=1M(x, r⊕

ti) = 1 is now false.
Since we have a Σp

2 formula that decides L for sufficiently large n, this
puts L in Σp

2, and thus BPP ⊆ Σp
2.

Chapter 13

Counting classes

A function is in FP (“functional P”) if and only if there is a polynomial-time
Turing machine that, given x on its input tape, writes f(x) to its output
tape and halts. The class FP is in a sense a functional analog of P.

The class of functions #P (“sharp P”) is the functional version of
NP: A function f is in #P if and only if there is a polynomial p and
polynomial-time Turing machine M(x, r) such that, for each x, f(x) =
|{r | |r| = p(|x|),M(x, r) = 1)}|. In other words, f counts the number of ac-
cepting branches of some polynomial-time nondeterministic Turing machine.

13.1 Search problems and counting problems

Formally, the classNP consists of decision problems. However, most of these
decision problems are the decision version of search problems , where we
have some relation R(x, y), and given x, we want to find y with length p(|x|),
where p is some fixed polynomial, that makes R(x, y) true; or determine
that there is no such y. The canonical example is SAT, which in search
problem form is a relation SAT(φ, x) where φ is a CNF formula and x is
an assignment that makes φ true. But we can similarly define problems
like GRAPH 3-COLORABILITY, VERTEX COVER, or HAMILTONIAN
CIRCUIT as search problems: in each case, we are given a graph, and want
to find some structure within the graph that satisfies a particular predicate.

For any search problem R(x, y), there is a corresponding decision problem
given by {x | ∃yR(x, y)}. Similarly, every search problem gives rise to a
counting problem, to compute the function #R(x) = |{y | R(x, y)}|. So from
SAT we get #SAT (how many satisfying assignment does this formula have?),
from GRAPH 3-COLORABILITY we get #GRAPH 3-COLORABILITY

93

CHAPTER 13. COUNTING CLASSES 94

(how many 3-colorings does this graph have?), and so on. We can think of
#P as the class of counting problems corresponding to the search problems
in NP.

Because every language L in NP has a polynomial-time verifier M(x, y)
that checks if x ∈ L based on the existence of a corresponding y, we can in
principle turn every decision problem in NP into a search problem. This
may not always give a search problem that is very interesting, and we usually
have to exercise some judgment about which verifier we are willing to apply
this transformation to. A SAT verifier that takes as input a CNF formula
and a variable assignment gives the obvious search version of SAT; but a SAT
verifier that takes as input a CNF formula and a graph coloring for a graph
that the CNF formula reduces to defines a different search problem, one that
we probably would not think of as the search version of SAT. Hypothetically,
we could even imagine problems in NP for which there is no reasonable
description as a search problem; an example would be every problem in P,
for which the certificate is useless.

These same considerations apply to counting problems. In defining #SAT,
we have to be careful to make sure that we are looking at a reasonable search
version of SAT to begin with. And as with search problems, we can imagine
decision problems in NP that have no reasonable corresponding counting
problems.

13.1.1 Reductions

For decision problems, our primary notion of reduction is the many-one
reduction orKarp reduction, where A ≤P B if there is a polynomial-time
computable f such that x ∈ A if and only if f(x) ∈ B.1

For search problems, the corresponding class of reductions are known
as Levin reductions. If R and S are search problems, a Levin reduction
from R to S is a pair of polynomial-time computable functions f and g
such that 〈x, g(x, y)〉 ∈ R if and only if 〈f(x), y〉 ∈ S. The idea here is
that f translates the problem from R to S, and g translates the solution
back from S to R (which is why g needs to know the problem x). An
example of a Levin reduction is provided by the Cook-Levin theorem: given a
polynomial-time verifier for R, this constructs a translation from inputs x to
3SAT formulas f(x), and from each satisfying assignment we can extract the

1There is also the stronger notion of a Cook reduction, where x ∈ A is decided by a
polynomial-time Turing machine with oracle access to B. Cook reductions have a role in
complexity theory, but they most often come up in introductory complexity theory courses
when somebody tries to pass off a Cook reduction as a Karp reduction without realizing it.

CHAPTER 13. COUNTING CLASSES 95

relevant variables corresponding to the witness to get a solution g(x, y) to
the original problem. So SAT is not only NP-complete for decision problems
in NP (with respect to Karp reductions), but it is also NP-complete for
search problems in NP (with respect to Levin reductions). Many other
standard Karp reductions turn out to also be Levin reductions with a tiny
bit of additional work.

For counting problems, the corresponding class of reductions are known as
parsimonious reductions. A parsimonious reduction from a counting prob-
lem R to another counting problem S again consists of a pair of polynomial-
time computing functions f and g, where #R(x) = g(x,#S(f(x))). The
simplest parsimonious reductions are those for which each solution to R(x,−)
maps to exactly one solution to S(f(x),−) (one-to-one reductions). But
in general we are happy as long as we can recover #R(x) from #S(f(x))
efficiently. The general definition allows us, for example, to parsimoniously
reduce #SAT to #UNSAT: if we can count the number of assignments that
don’t satisfy a formula φ with n variables, we can compute the number
that do satisfy φ by subtracting from 2n. This example also shows that
parsimonious reductions don’t need to correspond to Levin reductions, since
we generally don’t expect to be able to recover a satisfying assignment from
a non-satisfying assignment, and if NP 6= coNP we won’t be able to find a
Levin reduction from SAT to UNSAT.

13.1.2 Self-reducibility

SAT has the desirable property of being self-reducible: If we can test for
membership in SAT, we can reduce the problem of computing a satisfying
assignment to some satisfiable formula φ to the smaller problem of computing
a satisfying assignment to whichever of φ[x = 0] or φ[x = 1] is satisfiable,
where x is some variable in φ. This means that the search problem version
of SAT is solvable by a polynomial-time Turing machine with access to a
(decision) SAT oracle: SATsearch ∈ FPSATdecision This fact extends to any
other problem R that is complete for NP (with respect to Levin reductions),
because we can use SAT ≤P R to transform an oracle for the decision version
of R to an oracle for the decision version of SAT, and use the Cook-Levin
Theorem to transform R into SAT. However, for problems R that are not
NP-complete, we cannot guarantee that they are self-reducible; it may be
that the decision version of R is easier than the search version.

Because the counting version of a problem allows us to solve the decision
version, we can also use the counting version of NP-complete problems
to solve their search versions. Indeed, with some tinkering, we can even

CHAPTER 13. COUNTING CLASSES 96

unrank solutions using binary search (for example, find the 937-th satisfying
assignment to φ). I don’t actually know of any good applications for this,
but it seems like it ought to be useful for something.

13.2 FP vs #P

It is an open question whether #P ⊆ FP. The converse holds, for functions
{0, 1}∗ → N that do not get too big. The idea is that if f : {0, 1}∗ → N is
in FP, then the machine M(x, r) that accepts if and only if r < f(x) shows
that f is in #P as well.

An example of a problem that is likely to be in #P \FP is #SAT, which
outputs for any 3CNF formula φ the number of assignments that satisfy φ.
It’s easy to see that #SAT ∈ #P, since we can build a machine M(φ, r) that
tests if r is a satisfying assignment for φ. The reason we don’t think it’s in
FP is because

Theorem 13.2.1. If #SAT ∈ FP, then P = NP.

Proof. Suppose #SAT ∈ FP. Given a formula φ, compute, in polynomial
time, the number of satisfying assignments to φ. Accept if this number is
not zero. We have just solved SAT in P.

More generally, we can show that #SAT is #P-complete in the sense
that any problem in #P can be parsimoniously reduced to #SAT. This is
an immediate consequence of the Cook-Levin Theorem.

Not all #P-complete problems arise as the counting versions of NP-
complete search problems. For example, the #CYCLE problem asks how
many simple cycles can be found in a directed graph. This turns out to be
#P-complete, because we can take a directed graph G for which we want to
compute the number of Hamiltonian cycles (#HAMILTONIAN-CYCLE),
and reduce this problem to #CYCLE by replacing each edge in G with a
widget that allows 2m possible paths between its endpoints. Each n-node
cycle in G will give 2mn cycles in this new graph G′, while smaller cycles
(of which there are at most nn−1 will give at most 2m(n−1). By choosing m
so that 2mn > nn−12m(n−1) (m > n lgn works), we can divide the output
of #CYCLE by 2mn, discarding the remainder, and get the number of
Hamiltonian cycles.2 But even though counting cycles is hard, finding a
cycle can be done in linear time.

2For #CYCLE to be #P-complete, we also need to know that #HAMILTONIAN-
CYCLE is #P-complete. This is not entirely obvious, but a parsimonious reduction from
#SAT is given by Liśkiewicz, Ogihara, and Toda [LOT03].

CHAPTER 13. COUNTING CLASSES 97

13.3 Arithmetic in #P

If f and g are functions in #P, so are f + g and f · g. This is easiest to see
if we think of f and g as #SAT(φ) and #SAT(γ) for appropriate formulas
φ and γ. Then

1. f · g = #SAT(φ ∧ γ) where φ and γ have distinct variables. The
argument is that if S is the set of satisfying assignments for φ, and T
the set of satisfying assignments for γ, then S×T is the set of satisfying
assignments for φ ∧ γ.

2. f + g = #SAT((x ∧ φ) ∨ (¬x ∧ γ)), where x is a variable that does not
appear in φ or γ. Here the OR gives us a union of sets of satisfying
assignments, and x guarantees that the union is disjoint.

We can also implement constants. For example, 1 ∈ #P because it is
#SAT(x), 2k ∈ #P because it is #SAT

(∧k
i=1(xi ∨ ¬xi)

)
, and in general

we can implement an arbitrary constant ` using a formula of size O(log2 `)
by applying the f + g rule to the powers of two that appear in the binary
expansion of `. Similar tinkering lets us implement polynomials over #P
functions as well.

13.4 Counting classes for decision problems

In a sense, the randomized classes of Chapter 12 are already decision versions
of counting problems, since RP (for example) asks if some machine M(x, y)
either never says yes to x or says yes for at least half the possible y. But
this doesn’t work for an arbitrary M : we need M to promise us that one
or the other of these two outcomes occurs (this is an example of a promise
problem, which we can think of as a search problems with extra constraints
on M). For proper counting classes, we’d like to have definitions that work
for any polynomial-time verifier M(x, y).

13.4.1 PP

The class PP (probabilistic P) is the simplest of these. It consists of all
languages L of the form

{
x
∣∣∣ #R(x) ≥ 1

2 · 2
|x|
}
, where R(x, y) is a polynomial-

time computable predicate. In effect, PP transforms counting problems in
#P into decision problems by returning only the first bit of the output. We
can also think of PP as what happens when we start with BPP and reduce

CHAPTER 13. COUNTING CLASSES 98

the gap between negative and positive instances to be as small as possible.
Note that unlike BPP, PP is not entirely symmetric, since we had to make
a decision about what to do with an input with exactly 1

22n witness.3

13.4.2 ⊕P

If instead we return the last bit of the output, we get the class ⊕P (parity
P), the set of languages L of the form {x | #R(x) mod 2 = 1}, where as
usual R(x, y) is a polynomial-time predicate. The nice thing about ⊕P is
that it retains the arithmetic character of #P: we can represent a function f
in ⊕P as ⊕SAT(φ) for some formula φ, where ⊕SAT(φ) = #SAT(φ) mod 2
is the standard ⊕P-complete language, and the same operations on formulas
that let us represent f · g, f + g, etc. using #SAT work for ⊕SAT as well.

13.4.3 UP and the Valiant-Vazirani Theorem

The class UP (unique P) consists of all languages L of the form {x | #R(x) = 1}.
The idea is to restrict NP so we are not confused by extraneous solutions:
we only consider some x to be in L if there is a unique y such that R(x, y) is
true. However, if we are willing to do randomized reductions, we can reduce
any problem in NP to a problem in UP, by randomly restricting the set of
solutions until we get 1. This is the Valiant-Vazirani Theorem:

Theorem 13.4.1 (Valiant-Vazirani [VV86]). NP ⊆ RPUP.

Proof. The idea is to reduce SAT to its unique version USAT by adding
some random clauses that knock out the extra solutions. This doesn’t always
work, but it works with high enough probability that if we try it enough
times we will get lucky.

The trick is to use a pairwise-independent random hash function from
the set of assignments {0, 1}n to {0, 1}k for some k, and throw away any
solutions that don’t hash to zero. If we think of each assignment as a column
vector x over Z2, then we can compute a hash using the matrix formula
Ax+ b, where A is a random k × n matrix and b is a random k-dimensional
column vector. We keep any solutions x for which Ax+ b = 0, or equivalently
for which Ax = b.

Expanding (Ax)i =
∑n
j=1Aijxj =

⊕n
j=1(Aij∧xj) gives a Boolean formula

for (Ax)i = bi that (with a few extra variables and some trickery) we can
express in CNF form with a formula of length O(n). Appending one of these

3But in fact it is not too hard to show that we get the same class if we made the other
decision; this follows from the arithmetic tricks in §13.3.

CHAPTER 13. COUNTING CLASSES 99

for each i gives a restriction ρ with O(kn) length; if φ is our original SAT
formula, we take ρ ∧ φ as our candidate USAT formula.

Because b is chosen uniformly at random, any particular x has exactly a
2−k chance of satisfying ρ. We also have pairwise independence: if x 6= y,
then Pr [Ay = b | Ax = b] = Pr [A(x+ y) = 0] = 2−k, since this is just the
probability that the sum of the (random) columns corresponding to the bits
where x and y differ is exactly 0.

If φ has s solutions, then the chance that any particular solution x is
the unique solution to ρ ∧ φ is the probability that (a) x satisfies ρ; and
(b) no solution y 6= x satisfies ρ. The probability that x satisfies ρ is
exactly 2−k; the probability that at one or more y 6= x satisfies ρ is at most
(s−1)2−k. So this gives a probability that x is the unique solution of at least
2−k(1− (s− 1)2−k). If we let Ax be the event that x satisifes ρ, then these
events are disjoint for distinct x, so the union of these events has probability
at least s2−k(1− (s− 1)2−k) > s2−k(1− s2−k).

Now suppose 2k−2 ≤ s ≤ 2k−1. Then the probability that we get a
unique survivig solution is at least 2k−22−k(1−2k−12−k) = 2−2(1−2−1) = 1

8 .
So if we are very lucky in our choice of k, we get a 1

8 chance of a unique
solution. But for any particular s, because 20 ≤ s ≤ 2n, there is some
k ∈ {2, . . . , n+ 1} that works. So we can pick one of these n possible values
uniformly at random, and get at least a 1

8n chance that ρ restricts to a unique
solution.

We now ask our UP oracle about ρ ∧ φ. If it says that it has a unique
solution, we can accept, secure in the knowledge that φ must have at least
one solution to begin with. If it says no, we reject. This gives a 1

8n chance of
accepting φ if it has a solution, and no chance of accepting φ if it doesn’t,
putting SAT in RPUP once we do a little amplification to get the acceptance
probability up.

13.5 Toda’s Theorem

Here we want to show that PPP can compute any language in the polynomial-
time hierarchy PH, a result due to Toda [Tod91]. An immediate consequence
of this is that if PP ⊆ PH, then PH collapses.4

4Toda’s paper is worth reading, but it’s pretty long, and depends on introducing some
notation that, while useful, can be confusing. The presentation I will give here is based
in part on some lecture notes of Andrej Bogdanov that I found at http://www.cse.cuhk.
edu.hk/~andrejb/courses/s07-198538/lec8.pdf while looking for a simpler version.

http://www.cse.cuhk.edu.hk/~andrejb/courses/s07-198538/lec8.pdf
http://www.cse.cuhk.edu.hk/~andrejb/courses/s07-198538/lec8.pdf

CHAPTER 13. COUNTING CLASSES 100

13.5.1 Reducing from Σk to BPP⊕P

The first step is to show that PH ⊆ BPP⊕P. This is done by extending
the Valiant-Vazirani proof from §13.4.3. Specifically, we are going to argue
that if φ is a Σk formula, then there is a randomized reduction from φ to a
formula ψ with no quantifiers, such that if φ is satisfiable, then ⊕SAT(ψ is
true with probability at least 2/3, and if φ is not satisfiable, then ⊕SAT(ψ)
is false always.

It is helpful to define a quantifier for keeping track of parity. Let ⊕x : φ(x)
be true if and only if |{x | φ(x)}| mod 2 = 1. Then ⊕SAT(φ(x)) is true if
and only if ⊕x : φ(x) is true. More generally, if φ is a Σk formula with a
free variable x, we can define

⊕
ΣkSAT(φ(x)) to be true if ⊕x : φ(x) is true.

Our strategy for randomly reducing ΣkSAT to ⊕SAT will be to first treat a
ΣkSAT problem as a

⊕
ΣkSAT problem (we can just add a dummy ⊕x at

the front), and show how to peel off the non-parity quantifiers one at a time.
Let’s start with Σ1SAT. Here we have a formula of the form ⊕x∃yφ(x, y),

and we want to get rid of the ∃y. Looking at just the ∃yφ(x, y) part,
we know from the proof of Theorem 13.4.1 that there is a randomized
restriction ρ such that ⊕y(ρ(y) ∧ φ(x, y)) is true with probability at least
1

8n if ∃yφ(x, y) is true, and with probability 0 otherwise. To amplify this
probability, we want to compute

∨`
i=1⊕y(ρi(y) ∧ φ(x, y)) for some large `,

where the ρi are chosen independently at random. But we can do this using
the formula φ′(x, y) = ⊕y

(
1 +

∏`
i=1(1 + (ρi(y) ∧ φ(x, y)))

)
, where addition

and subtraction of formulas are defined as in §13.3. This formula will
have polynomial size (possibly after applying Cook-Levin to rewrite the
unquantified part in CNF, if we insist on this) so long as ` is polynomial.

The probability of error for φ′(x, y) is bounded by
(
1− 1

8n

)`
≤ e−`/8n.

We can make this exponentially small by setting ` = Θ(n2). This allows us
to argue that the total error over the at most 2n possible x assignments is
still constant, which gives

Pr
[
⊕x⊕ yφ′(x, y) = 1

]
≥ 2/3 when ⊕x∃yφ(x, y) = 1, and

Pr
[
⊕x⊕ yφ′(x, y) = 1

]
= 0 when ⊕x∃yφ(x, y) = 0.

Since we can combine ⊕x⊕ y into a single quantifier ⊕(x, y), this gives
a randomized reduction from

⊕
Σ1SAT to

⊕
Σ0SAT = ⊕SAT. This shows

that
⊕

Σ1SAT can be decided by a RP or BPP machine that is allowed
one call to a ⊕P oracle.

For larger k, we can do the same thing to the outermost ∃ to reduce⊕
ΣkSAT to

⊕
Πk−1SAT, and then complement the resulting formula (by

CHAPTER 13. COUNTING CLASSES 101

throwing in a +1) to get to
⊕

Σk−1SAT. By iterating this process (after
adjusting ` to keep the error at each stage down to something � 1/k), we
get a randomized reduction from

⊕
ΣkSAT to ⊕SAT.

13.5.2 Reducing from BPP⊕P to P#P

The second step is to use the extra power in #P to get rid of the need for
randomness.

We will use the following number-theoretic fact:

Lemma 13.5.1. Given a formula φ, let ψ = φ6 + 2φ3. Then #SAT(φ) = 0
(mod N) implies #SAT(ψ) = 0 (mod N2) and #SAT(φ) = −1 (mod N)
implies #SATφ = −1 (mod N2).5

Proof. For the first part, factor φ6 + 2φ3 = φ2(φ4 + 2φ); so if φ is a multiple
of N , φ2 and thus ψ is a multiple of N2.

For the second part, expand φ6 as (φ3 +1)2−1. Then if φ = −1 (mod N),
φ3 + 1 = 0 (mod N), so (φ3 + 1)2 = 0 (mod N2), and subtracting 1 gets us
to −1 mod N2.

Now run this O(logn) times to get a formula ψ(x) such that #SATψ(x) is
always 0 or −1 mod 2n, where n = |x|, meaning that it always returns either
0 or 2n−1. We now recall that ψ(x) is really ψ(x, r), where r is the sequence
of random bits used to construct our original φ. Each expansion multiplies
the size of the original formula by a constant (we need to AND together six
copies to do φ6 and three for φ3, and do some disjoint ORs for the addition),
so all O(logn) stages increase the size by a factor of O(1)O(logn), which is
polynomial.

Using a single call to #SAT, we can compute #(x, r) : ψ(x, r) =
∑
r #x :

ψ(x, r). Divide this by (2n− 1)2|r| to get the probability that ⊕SAT(φ(x, r))
accepts, which decides our original ΣkSAT problem. This puts ΣkSAT in
P#P, which because it works for each k, shows PH ⊆ P#P = PPP.

5Other polynomials work as well.

Chapter 14

Descriptive complexity

Descriptive complexity is an approach to defining completely classes in terms
of classes of logical formulas. From a programmer’s perspective, this is a
bit like trying to define a programming language that can only be used to
write programs that solve problems in NL, P, NP, etc. The idea is to avoid
talking specifically about resources like time and space and instead restrict
the kinds of formulas we can write so that the resource constraints occur as
a consequence of these restrictions. By fixing a particular logic, we can give
a characterization of precisely those predicates that are decidable in many
standard complexity classes.

The hope is that with such classifications, we can (a) easily determine
that particular problems can be solved within a given class, and (b) maybe
gain some understanding about why certain classes might or might not be
equal to each other. So far descriptive complexity has not had any more luck
separating classes than the usual resource-based approach, but it gives an
alternative perspective that might be useful for something. (But as with any
unfinished branch of mathematics, it is hard to tell when using a different
formalism is genuinely going to lead us out of the wilderness or is just a way
of complicating our ignorance.)

Our main goal in this chapter is to prove Fagin’s Theorem, which
characterizes the languages in NP as precisely those expressible in a partic-
ular logic known as existential second-order existential logic or ESO
(sometimes ∃SO for people who like typesetting, or SO∃ if you think the
second-order part should come first).

To explain ESO, we need to start by explaining second-order logic,
and it will help to start by reviewing first-order logic.

102

CHAPTER 14. DESCRIPTIVE COMPLEXITY 103

14.1 First-order logic

First-order logic is what you have probably seen before. A first-order sen-
tence consists of a quantified Boolean formula over some built-in predicates
plus equality, where the quantifiers take on values in the universe under
consideration. For example, we can express things like “for every number,
there is a bigger number” when the universe is N and we have the predicate
< by writing ∀x : ∃y : y > x.

Some languages that we normally think of as computational can be
expressed in first-order logic, where we take the universe as consisting of the
elements of some structure that is the input to our program. For example,
we can describe simple properties of bit-strings using the predicates x < y,
indicating that x is a smaller index than y in the string, and the function
P (x), giving the value of the bit at position x. An example would be the
first-order formula

∀x : ∃y : (P (x) = 0)⇒ (P (y) = 1),

which says that if there is a 0 in the string, it is followed by at least on 1
later in the string.

Computationally, everything we can write in first-order logic without any
extra features fits comfortably inside AC0: whenever we have a ∀, we replace
it with an ∧ with fan-in n, and similarly whenever we have a ∃, we replace
it with a ∨. This gives us a tree of constant depth (since the formula is fixed
and doesn’t depend on the size of the input) and n-bounded fan-in, giving
polynomial size. The < or P predicates just turn into constants or inputs.

We can also express properties of ordered graphs (where the order is just
some arbitrary ordering of the vertices). For example, if we have a directed
graph represented as a collection of vertices ordered by < and a predicate
s→ t if there is an edge from s to t, then we can write

∀x : ∀y : ∀z : (x→ y ∧ x→ z)⇒ (y = z)

This formula recognizes graphs where every node has out-degree at most one,
also known as directed forests. Or we could write

∀x : ∀y : (x→ y)⇒ (x < y)

to recognize a directed acyclic graph that has been topologically sorted.
These are both properties that can in a sense be verified locally, which
is about all that first-order logic can do, since we only have a constant
number of variables to work with. Other examples of locally-verifiable graph

CHAPTER 14. DESCRIPTIVE COMPLEXITY 104

properties are being a tree (exactly one vertex has out-degree 0, the rest
have out-degree 1) or a path (every vertex has both in-degree and out-degree
1, except for a source with in-degree 0 and out-degree 1 and a sink with
in-degree 1 and out-degree 0). But more complicated properties are harder
for first-order logic.

14.2 Second-order logic

What if we want to recognize a directed acyclic graph that has not already
been sorted for us? It is tempting to say that there exists a partial ordering
R of the nodes such that the endpoints of each edge are ordered consistently
with R, but we can’t say ∃R in first-order logic: the universe consists only
of vertices, and doesn’t include hypothetical orderings. To say that such
an order exists, we need second-order logic, which allows both first-order
quantifiers over objects in our universe and second-order quantifiers
over relations (each of a given arity, or number of argument). In second-order
logic, we can write a formula for a directed acyclic graph as

∃R : (∀x∀y∀z(¬xRx)∧(xRy ⇒ ¬yRx)∧(xRy∧yRz ⇒ xRz))∧((x→ y)⇒ xRy).

Here most of the formula expresses that R is in fact irreflexive, antisymmetric,
and transitive—that is, strict partial order—while the last part says that
edges only go in increasing direction of R.1

This formula is in fact an example of a formula in existential second-
order logic, because we only use existential second-order quantifiers. By just
looking at the structure of the formula, and applying Fagin’s Theorem, we
will see immediately that recognizing a directed acyclic graph is in NP. This
is true for many graph languages in NP (some of which, unlike DAG, are even
NP-complete). An example would be this ESO formula for HAMILTONIAN
PATH:

∃R : ∀x∀y∀z(xRy∨yRx)∧((xRy∧x 6= y)⇒ ¬yRx)∧(xRy∧yRz ⇒ xRz)∧((xRy∧(¬∃q : xRq∧qRy))⇒ (x→ y)).

This formula says that there is a total order R on all vertices such that
whenever x is the immediate predecessor of y in R, there is an edge from x
to y. In other worse, there is a path that includes all vertices. So Fagin’s
Theorem will tell us that HAMILTONIAN PATH is also in NP.

Typically, whenever we would want to store something on our Turing
machine, we will instead represent it by some predicate whose existence

1It’s tempting to leave R out of this and just declare that → is a partial order, but for
a general DAG it isn’t, because most DAGs aren’t transitive.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 105

we assert with a second-order existential quantifier and whose properties
we enforce using the first-order formula. For example, here’s GRAPH 3-
COLORABILITY:

∃R∃G∃B∀x∀y(Rx∨Gx∨Bx)∧((x→ y)⇒ (¬(Rx ∧Ry) ∧ ¬(Gx ∧Gy) ∧ ¬(Bx ∧By))).

This is a little sloppy, since it allows a vertex to have more than one
color, but if there exist predicates R, G, and B telling us which vertices are
red, green, and blue, we can always prune any multi-coloring we get back to
a legal coloring. (If we really cared about avoiding this we could add a few
extra clauses to enforce exactly one color per vertex.)

14.3 Counting with first-order logic

Many results in descriptive complexity require the ability to do some sort
of counting; a typical application is building indices into some predicate
provided to us by a second-order quantifier, where we are interpreting the
indices numerically rather than as specific combinations of elements. The
trick is to represent numbers as collections of elements, and then show that
we can (a) do basic arithmetic on these numbers (mostly limited to adding
or subtracting 1); and (b) represent values that are polynomial in the size of
the structure n.

Given an ordered structure of size n, we can easily express numbers up
to n− 1 by representing the number i by whichever element x has i smaller
elements. This gives us the ability, without any extra magic, to represent
predicates like:

x = 0 ≡ ∀y¬(y < x)
x = n− 1 ≡ ∀y¬(x < y)
y = x+ 1 ≡ (x < y) ∧ (∀z¬(x < z ∧ z < uy))
y = x− 1 ≡ x = y + 1

This gives us the ability to use values as indices into {0, . . . , n− 1} for
which we can express the successors and predecessors. (More sophisticated
arithmetic operations will require more power in our logic.)

If we want larger values, we can encode them as vectors of elements. With
a vector of length k, we can represent elements in the range 0 . . . nk − 1. The
method is to define a comparison predicate < on vectors (reusing notation
here) by the rule

〈x1, . . . , xk〉 < 〈y1, . . . , yk〉 ≡
∨
i = 1k

((∧
j = 1i− 1xj < yj

)
∧ xi = yi

)
.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 106

This definition orders tuples lexicographically, and the order is total. So
we can use the same construction as for single elements to represent a number
i as whatever sequence of k elements has i smaller sequences, and define
〈x1, . . . , xk〉 = 0, etc., as above.

Where this is useful is that if we feed one of these k-tuple numbers to
a k-ary relation R, we can treat R as a bit-vector of length nk. When k is
large, this does require the arity or number of arguments to R is equally
large, but we are fine as long as neither depends on n.

14.4 Fagin’s Theorem: ESO = NP

We’ll prove Fagin’s Theorem for strings, since that simplifies translating
between TM inputs and ordered structures. It’s not hard to generalize this
to any ordered structure (like ordered graphs), but we will omit the details.

Theorem 14.4.1. Let L be a set of ordered strings. Then L is in NP if
and only if membership in L is expressible by an existential second-order
formula.

Proof. The ESO ⊆ NP direction is easy: given a formula ∃R1∃R2 . . . ∃Rkφ,
where φ is a first-order formula, an NP machine can (a) guess the truth
tables for R1 . . . Rk (they have polynomial size); then (b) evaluate Φ in
deterministic polynomial time (there are only polynomially many choices for
the constant number of first-order quantifiers that might appear in φ, so we
can just enumerate all of them).

For the NP ⊆ ESO direction, we build a single ESO formula that
encodes all possible computations of a given NP machine M as a gigantic
nk × nk table C where C[s, t] is the value of tape cell s (possibly including
the state of the controller, if it is parked on cell s) at time t. As usual we will
simplify our life by restricting M to use only a single tape, not move off the
left end of the tape, and clean up to get some convenient final configuration
if it accepts.

The formula will look a little bit like the SAT formula constructed in the
Cook-Levin proof, but the difference is that our formula will have fixed size
and have to work for all input sizes and all inputs. To build this formula, we
will use the following main ideas:

1. For a machine that runs in nk − 1 steps, we can represent times t and
positions on s as k-tuples using the technique described in §14.3.

2. Using second-order existential quantifiers, we can guess relations C1, C2, . . . , Cq,
where Ci(s, t) is true if C[s, t] = i.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 107

3. Using first-order universal quantifiers, we can enumerate all positions s
and times t, and then write a first-order formula for each C[s, t] saying
that it is consistent with C[s− 1, t− 1], C[s, t− 1], and C[s+ 1, t− 1].

4. Finally, we do the usual thing of demanding that the input match
C[0, 0] through C[n − 1, 0] and that the final state C[0, nk − 1] is
accepting.

The resulting formula will look something like this:

∃C1∃C2 . . . ∃Ck∀s∀t∃s−1∃s+1∃t−1 :
[exactly one of Ci[s, t] is true]
∧(s = 0 ∨ s = s−1 + 1)
∧(s = nk − 1 ∨ s+1 = s+ 1
∧(t = 0 ∨ t = t−1 + 1)
∧[C[s, t] is consistent with C[s− 1, t− 1], C[s, t− 1], and C[s+ 1, t− 1]].

We leave filling out the details of the various pieces of this formula and
showing that they can in fact be expressed in first-order logic as an exercise
that we don’t actually expected anybody to do. The messy bit is expressing
consistency, but this is basically just a gigantic first-order formula with no
quantifiers, which we could easily derive from the transition function for M
if we actually had to.

14.5 Descriptive characterization of PH

We can use Fagin’s Theorem to get a descriptive-complexity version of
the polynomial-time hierarchy. Recall that L is in PH if there is a for-
mula of the form ∀w1∃w2∀w3 . . . ∃wkP (x,w1, . . . , wk) such that each string
wi has length polynomial in |x| and P is polynomial-time computable.
Given such a language, we can represent it as a second-order formula
∀W1∃W2∀W3 . . . ∃Wk∃C1 . . . ∃Cqφ whereW1 . . .Wk are encodings of w1 . . . wk
as relations over an appropriate number of variables and the remainder of
the formula is as in the proof of Fagin’s Theorem. Conversely, if we have a
second-order formula, we can use an alternating Turing machine to fill in
the polynomial-size truth tables for each quantified relation and check the
value of the first-order part, all in polynomial time.

This shows that second-order logic expresses precisely the predicates
computable in PH, or SO = PH.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 108

If we look at the construction in more detail, we can actually say some-
thing stronger. What we’ve really shown is that, for odd k, the languages
in Σp

k are precisely those expressible using a ΣkSO formula, one that has k
alternating second-order ∃ and ∀ quantifiers starting with ∃. This is because
we can combine the last ∃ quantifier with the ∃ quantifier for ESO. Similarly,
for even k, Σp

k = ΠkSO. But now we can take complements to cover the
missing cases. The final result is that Σp

k = ΣkSO and Πp
k = ΠkSO for all

k.

14.6 Descriptive characterization of NL and L

The idea behind Fagin’s theorem is that there is a one-to-one correspondence
between relations defined over tuples of elements of a finite structure and bit-
vectors of polynomial size. We also used the lemma that we could represent
numbers of polynomial size as tuples of elements of the structure. We know
that polynomial-size numbers correspond to logarithmic-size bit vectors. So
in principle it seems like we ought to be able to encode the state of, say, a
log-space machine as a tuple of elements representing a number.

To turn this into a representation of log-space computation, we need
two additional pieces of machinery. The first is a predicate BIT(x, i) that
extracts the i-th bit of a number x (represented as a tuple of elements). This
is not something we can define in standard first-order logic, since it would
allow us to compute parity. However, we can do it using the second piece
of machinery, which is an extra operator DTC (deterministic transitive
closure) or TC (transitive closure) that allows us to iterate a formula.

14.6.1 Transitive closure operators

Suppose φ(x, y) is a formula defined over some logic, where x and y are
k-tuples of variables. Then we define TC(φ, s, t) to be true if and only if
there is a sequence of tuples of variables s = x0, x1, . . . , xm = t such that
φ(xi, xi+1) holds for every i. We similarly define DTC(φ, s, t) to be true if
there is exactly one such sequence, or equivalently if for each xi there is
exactly one xi+1 such that φ(xi, xi+1) is true.

We can now define the class of FO(TC) formulas recursively, as including
all statements that we can construct by either applying a built-in predicate
like < or P to variables; by taking the negation, AND, or OR of FO(TC)
formulas; by applying ∃x or ∀x to an FO(TC) formula; or by applying TC
to an FO(TC) formula. The class FO(DTC) is defined the same way, except
using DTC instead of TC.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 109

14.6.2 Arithmetic in FO(DTC)
We want to show that we can implement BIT in FO(TC) (and thus also
in FO(DTC). We’ve already shown how to implement 0 and successor over
tuples of elements using just FO. The next step is to implement addition:

x+ y = z ≡ DTC(φ(〈x, y〉 ,
〈
x′, y′

〉
), 〈x, y〉 , 〈0, z〉)

where

φ(〈x, y〉 ,
〈
x′, y′

〉
) ≡ (x = x′ + 1) ∧ (y′ = y + 1)

Note that, as with successor, we are really implementing a predicate +(x, y, z)
that is true whenever x+y happens to be equal to z. That the above definition
works is easily shown by induction, using the hypothesis each tuple 〈x, y〉 in
the sequence has the same sum.

Now we can use addition to implement parity:

(x mod 2) = 1 ≡ ∃y : y + y = x

and division by 2

: bx/2c = y ≡ ∃r : (r = 0 ∨ ∃z : (z = 0 ∧ z + 1 = r)) ∧ ∃y2(y + y = y2 ∧ x = y2 + r),

and, as originally promised, BIT:

BIT(x, i) ≡ ∃y : DTC(φ, 〈x, i〉 , 〈y, 0〉) ∧ (y mod 2) = 1

where

φ(〈x, i〉 ,
〈
x′, i′

〉
) ≡ (bx/2c = x′) ∧ (i′ + 1 = i).

14.6.3 Expressing log-space languages

Suppose we have a deterministic log-space machine M , and we want to write
a formula that expresses whether or not M(x) accepts. We can do this in
FO(DTC) using the following approach. As usual we assume that M is a
one-tape machine just to make our life easier, and we will also assume that
whether or not it accepts can be detected by observing a particular bit of its
configuration that occurs only in terminal accepting states.

1. We represent configurations of M as bit-vectors of length O(logn),
corresponding to a sequence of tape cell states possible with a tape
head state attached.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 110

2. Using the BIT operator and our ability to do arithmetic, we can write
a formula φ in FO(DTC) such that φ(x, x′) holds if and only if x′ is a
configuration of the machine that can follows from x.

3. Also using BIT plus arithmetic, construct a predicate α that recognizes
the initial configuration of the machine (based on the input as accessed
through P or →).

4. Evaluate the formula ∃s∃t : α(s)∧ DTC(φ, s, t)∧ BIT(t, i), where i is the
fixed bit that indicates acceptance.

Because we are using DTC, this formula will be true if and only if there is
a sequence s = x0 . . . xm = t such that s is the initial configuration, each xi
leads deterministically to xi+1, and xm = t is an accepting state. This puts
L ⊆ FO(DTC). If we adjust φ to allow nondeterministic transitions and use
TC instead of DTC, then we get NL ⊆ FO(TC) instead. We will show in the
next section that both of these containments are in fact equality.

14.6.4 Evaluating FO(TC) and FO(DTC) formulas

To show that we can evaluate a formula φ in FO(TC), we apply structural
induction, where our induction hypothesis is that any subformula can be
evaluated in L and we must show that the formula as a whole can be. The
possible structures we can have are:

1. P (i) for some i. Here we just check the i-th bit of the input. (If we
have a graph formula, this is messier, but still clearly in L.)

2. ¬φ, φ ∧ ρ, φ ∨ ρ: In each case, we carry out one or two log-space
computations and combine the results as appropriate.

3. ∃xφ, ∀xφ. Using O(logn) space to hold x, enumerate all possibilities
and evaluate φ (also using O(logn) space) on each. Return the OR or
AND of the results depending on the quantifier.

4. DTC(φ, s, t). Use O(logn) space to hold a pair of tuples x and x′, plus
a counter c. Initialize x to s and c to nc > 2|s|. For each iteration,
enumerate all possible x′ and test φ(x, x′). If we get 0 or more than
one solution, return false; if we reach t, return true; if c drops to 0,
return false (we are looping). Otherwise, set x to the unique solution
x′, decrement c, and try again.

CHAPTER 14. DESCRIPTIVE COMPLEXITY 111

This shows that FO(DTC) ⊆ L and thus that FO(DTC) = L.
The reason this works is that LL = L, so whenever we need to call a

L subroutine to evaluate some subformula, we can do so and stay within
L. For NL, this is less obvious, but we have Immerman-Szelepcsényi to
save us: since NLNL = NL, we can call a NL subroutine to evaluate a
subformula and stay in NL. This covers pretty much everything we did
in the above list, with the only thing being missing an implementation of
TC. But this is a straightforward modification of the DTC code: instead of
enumerating all possible x′ and counting those for which φ(x, x′) is true,
we nondeterministically guess x′ and reject if φ(x, x′) is false. This gives
FO(TC) ⊆ NL and thus FO(DTC) = NL.

14.7 Descriptive characterization of PSPACE and
P

Fixed-point operators give the ability to work on sequence of relations each
define in terms of previous one. This gives power similar to the transitive
closure operators, but with a sequence of relations instead of a sequence of
tuples of elements. Since a relation can represent polynomially-many bits, it
is not surprising that using a fixpoint operator gives us PSPACE.

14.7.1 FO(PFP) = PSPACE

The PFP (partial fixed point) operator of applies to a formula φ(P, x)
where P and x are free variables (for x, possibly a tuple of free variables). To
evaluate PFP(φ, y), let P0 be the empty relation (that is false on all arguments).
Then let Pi+1(x) = φ(Pi, x); this means that to compute whether Pi+1 is
true on x, φ can use the entire truth table for Pi, plus the value of x. If at
some point Pi+1 = Pi, then PFP(φ, y) = Pi(y) for that value of i. If this does
not occur, then PFP(φ, y) is false.

It’s easy to evaluate PFP(φ, y) in PSPACE: since the truth table for Pi
has polynomial size, we can store it and evaluate φ(Pi, y) on all (polynomially-
many) y to compute Pi+1. We can then re-use the space for Pi to store Pi+2,
and so on. Either we eventually reach a fixed point Pi+1 = Pi, and can read
PFP(φ, y) directly from the truth table, or we reach i > 2|P |; in the latter
case, we are looping, and so we can return false. Since we can evaluate the
rest of first-order logic in PSPACE using essentially the same approach as
we used to put FO(DTC) in L, this gives FO(PFP) ⊆ PSPACE.

In the other direction, given a PSPACE machine M , we can construct

CHAPTER 14. DESCRIPTIVE COMPLEXITY 112

a first-order formula φ such that Pi+1(x) = φ(Pi, x) is true if and only if
the x-th bit of the state of M at time i + 1 is 1, given that Pi describes
the state of M at time i. This is essentially the same construction as we
used to show L ⊆ FO(DTC); the only difference is that now we are using a
relation to store the state instead of encoding it in a variable.2 This gives
SPACE ⊆ FO(PFP) and thus PSPACE = FO(PFP).

14.7.2 FO(LFP) = P

The LFP (least fixed point) operator is similar to PFP, but when computing
Pi+1 from Pi we let Pi+1(x) = Pi(x) ∨ φ(Pi, x). This means once we set
a bit in the relation, we can’t unset it later, and make LFP less of a full-
blown iteration operator and more of a tool for building up definitions
recursively. Formally, we again start with P0 empty, iterate until Pi+1 = Pi
and define LFP(φ, y) = Pi(y). Note that because the sequence of relations is
non-decreasing, we must eventually hit some fixed point, so there is no need
to define what happens if we don’t.

One way to think about LFP is that it expresses recursive definitions,
where we say that x has some property P if we can show some collection of
of precursors a, b, c, . . . have property P . For example, if we want to define
the property that x is even (given a successor operation), we can write it as
LFP(φ, x) where φ(P, x) ≡ (x = 0)∨Px∨ (∃y∃z : Py∧ z = y+ 1∧x = z+ 1).

Computationally, the nice thing about LFP is that we always reach
the fixed point in polynomially-many iterations, because there are only
polynomially-many bits to set in each Pi. This means that we can evaluate
LFP(φ, y) in P, and more generally we have FO(LFP) ⊆ P.

In the other direction, given an machine M and input x, we can use LFP
to fill in the tableau for the Cook-Levin theorem. The idea is that we let Pi
contain the first i rows of the tableau, corresponding to the first i steps of
M . We can easily build a formula φ that extends this by one row at each
iteration. This gives P ⊆ FO(LFP) and thus P = FO(LFP).

A consequence of this fact is that we can recast the P ?= NP problem in
terms of the relative expressiveness of different logics: P = NP if and only
if FO(LFP) = SO, or in other words if the full power of second-order logic
(when applied to finite models) adds nothing to the ability to write recursive
definitions.

2Conveniently, this means we don’t need to build BIT, since we can index Pi directly.

Chapter 15

Interactive proofs

An interactive proof [GMR89] generalizes the notion of certificates in NP;
it involves a verifier V , which is a randomized polynomial-time Turing
machine, and a prover P , which is an arbitrary collection of functions that
respond to a sequence of questions posed by the verifier.

Each round of the interactive proof consists of V flipping some coins to
produce a question, and P responding. For a k-round protocol we have a
sequence of 2k messages alternately going from the V to P and vice versa.
At the end of this sequence of messages, V decides to accept or reject its
original input x.

An interactive proof system is just the code for V , allowing it to
carry out interactive proofs. An interactive proof system for a language L is
complete if, whenever x is in L, there exists a prover P that causes V to
accept with probability at least 2/3, and sound if every prover P causes V
to accept with probability at most 1/3. We say that L is in IP if there is
an interactive proof system that uses polynomially-many rounds and that is
both complete and sound for L.

The reason we make the verifier randomized is that a deterministic
verifier only gives us NP: An NP-machine can guess the entire sequences of
questions and answers, and check that (a) each question is in fact what the
original verifier would have asked at that step; and (b) the final decision is
accept. Since a deterministic verifier accepts or rejects with probability 1, if
there is any set of answers from the prover that works, then the NP-machine
will find it, and if there isn’t, it won’t.

It’s also worth noting that the probability bounds are the same as for
BPP, and as with BPP, we can repeat a protocol multiple times and take
majorities to amplify them. So we will be happy if we get any probability

113

CHAPTER 15. INTERACTIVE PROOFS 114

bounds that are separated by at least a polynomial in n, and will assume
if needed that we can make the actual gap be ε, 1 − ε where ε may be
exponentially small.

15.1 Private vs. public coins

The original definition of IP assumed private coins: when the prover
chooses its answers, it can see the input and the questions from the verifier,
but it can’t tell what coins the verifier used to generate the questions.

A similar class, the class of Arthur-Merlin games [BM88], assumes
instead that the protocol uses public coins, where the prover can observe
both the questions the verifier asks and the coins used to generate them.

This actually allows for a very simple definition of the class. There is no
need for Arthur (the verifier) to actually pose any questions: since Merlin is
all-powerful and can observe Arthur’s (past) coins, Merlin can simply answer
the question Arthur would have asked. This means that we can model Arthur
in terms of a nondeterministic Turing machine as a node that averages over
all choices of coins and Merlin as a node that takes the maximum probability
of causing the machine to accept. A language L is decided by such a machine
if it accepts any x ∈ L with probability at least 2/3 and any x 6∈ L with
probability at most 1/3, where in both cases Merlin (the maximizer nodes)
are trying the maximize the probability of acceptance.

The class AM consists of all games where Arthur goes first and Merlin
responds. The class MA has Merlin go first, generating a single, deterministic
witness intended to maximize the probability that Arthur accepts: this is
essentially NP with a BPP verifier instead of a NP verifier. In general,
AM[k] consists of k layers of alternating averaging and maximizing nodes,
with maximizing nodes coming last. This makes AM = AM[2].

In principle, private coins (as in IP) would seem to provide more power
to the verifier than public coins (as in AM), since it should be easier for
the verifier to catch a cheating prover’s lies if the verifier has extra private
information that the prover doesn’t know about. This turns out not to be
the case. Below, we will give an example of how we can replace a private-coin
protocol for a particular problem with a public-coin protocol, and then talk
a bit about how this generalizes.

15.1.1 GRAPH NON-ISOMORPHISM with private coins

TheGRAPH NON-ISOMORPHISM (GNI) problem takes as input two
graphs G and H, and asks if G is not isomorphic to H (G 6' H). Recall that

CHAPTER 15. INTERACTIVE PROOFS 115

G ' H if there is a permutation of the vertices of G that makes it equal to
H. An NP-machine can easily solve the GRAPH ISOMORPHISM problem
by guessing the right permutation; this puts GRAPH NON-ISOMORPHISM
in coNP. We can also give a simple one-round protocol using private coins
that puts it in IP.

Given G and H, the verifier picks one or the other with equal probability,
then randomly permutes its vertices to get a test graph T . It then asks the
prover which of G or H it picked.

If the graphs are not isomorphic, the prover can distinguish T ' G from
T ' H and answer the question correctly with probability 1. If they are
isomorphic, then the prover can only guess: T gives no information at all
about which of G or H was used to generate it. So in this case it answers
correctly only with probability 1/2. By running the protocol twice (which can
even be done in parallel), we can knock this probability down to 1/4, which
gets us outside the (1/3, 2/3) gap needed for soundness and completeness.

15.1.2 GRAPH NON-ISOMORPHISM with public coins

The problem with the preceding protocol using public coins is that the prover
can ignore T and just tell the verifier the outcome of its initial coin-flip. This
is not very convincing. So instead we will have the prover do something else:
it will show that size of the set of S = {T | T ' G ∨ T ' H} possible test
graphs T is large (2n!) when G 6' H, in a way that does not allow it to do
so when S is small (n!) when G ' H.

The method for doing this is to use an approximate counting protocol
due to Goldwasser and Sipser [GS86], who in fact extended this to convert
any private-coin protocol into a public-coin protocol. The Goldwasser-Sipser
protocol in general allows a prover to demonstrate that a set S is big whenever
it can prove membership in S. The intuition is that if S makes up a large
part of some universe Ω, then the verifier can just pick some ω uniformly in Ω
and have the prover demonstrate that ω is in S, which will cause the verifier
to accept with probability |S|/|Ω|. The problem is finding an Ω so that this
probability will show a polynomial-size (ideally constant gap) between large
and small S.

For example, with graphs, the verifier could try to generate a random
graph R and ask the prover to demonstrate that R is isomorphic to at least
one of G and H. But this gives bad probabilities: since there are 2(n2) � 2n!
possible graphs R, it is exponentially improbable that R would be isomorphic
to either. So we need to crunch the space down to make S take up a larger
proportion of the possible choices.

CHAPTER 15. INTERACTIVE PROOFS 116

We can do this using a pairwise-independent random hash function. Let
n be the number of bits used to represent each element of S. Let N be such
that a large S has size at least N and a small S has size at most N/2. (For
GRAPH NON-ISOMORPHISM, N = 2n!.) To distinguish whether S is large
or small, pick m such that 2n−1 ≤ N ≤ 2n, and consider the family of hash
functions hab : {0, 1}n → {0, 1}m given by hab(x) = (ax+ b) mod 2m where
multiplication and addition are done over the finite field GF [2n] and a and b
are chosen uniformly and independently at random from GF [2n]. These hash
functions have the property of pairwise-independence: if x 6= y, for any
x′ and y′ the probability Pr [hab(x) = x′ ∧ hab(y) = y′] is exactly 2−2m. To
prove this, observe first that for any x′′ and y′′, Pr [ax+ b = x′′ ∧ ax+ b = y′′]
is exactly 2−2n, since given x 6= y, x′′, and y′′, we can solve for the unique
values of a and b that make the system of linear equations hold. Now sum
over all 22(n−m) choices of x′′ and y′′ that map through mod2m to a specific
pair x′ and y′.

Now the idea is that the verifier will pick a random hash function h,
and ask the prover to find a graph R such that h(R) = 0, together with
an explicit isomorphism R ' G or R ' H. If G ' H, the chance that the
prover can pull this off will be smaller than if G 6' H, since there will be
fewer candidate graphs R.

For any fixed graph R, the probability that h(R) = 0 is exactly 2−m. If
G ' H, there are at most n! possible graphs R that the prover could choose
from, giving a probability of at most 2−mn! that it convinces the verifier.
If G 6' H, then there are 2n! possible choices. The event that at least one
such choice maps to 0 is bounded from below by 2n! · 2−m −

(2n!
2
)
2−2m >

2n! · 2−m − 1
2(2n! · 2−m)2 by the inclusion-exclusion principle. If we let

p = 2n! · 2−m, we get a gap between p and 2(p− p2) for the cases where G
and H are or are not isomorphic. This gives a gap of p − 2p2, which will
be nonzero for p < 1/4. We can’t set p arbitrarily, since we can only make
2−m a power of 2, but by picking m to make 1/16 ≤ p ≤ 1/8 we can get a
nontrivial gap that we can then amplify by repetition if needed.

15.1.3 Simulating private coins

It turns out that we can simulate private coins with public coins in general,
not just for GRAPH ISOMORPHISM, a result due to Goldwasser and
Sipser [GS86]. This means that we don’t need to make a distinction between
the public coins used in Arthur-Merlin games and the private ones used in
interactive proofs, and can pick either model depending on which is more
convenient.

CHAPTER 15. INTERACTIVE PROOFS 117

We give a very sketchy description of the argument below, specialized for
the one-round case. This description roughly follows some lecture notes of
Madhu Sudan; for the full argument, see the paper. It helps to amplify the
probabilities a lot first: we will assume that we have a private-coin interactive
proof where the probability that the verifier fails to recognize a valid proof
is exponentially small.

The intuition is that the same hashing trick used to approximately count
graphs in GRAPH NONISOMORPHISM works for approximately counting
anything: if the verifier wants to distinguish many objects with some property
from few, it can pick a random hash function, appropriately tuned, and
ask the prover to supply an object that has the property and hashes to a
particular value. To get rid of private coins, what we want to do is get the
prover to demonstrate that there are many choices of private coins that will
cause the verifier to accept.

Recall that in a one-round private-coin protocol, V chooses some random
r and computes a question q(x, r), P responds with an answer a(x, q), and
V then chooses whether to accept or not based on x, q, and r. What we
want to do is get the prover to demonstrate that there are many questions
for which it has good answers, that is, answers which are likely to cause the
verifier to accept.

Let Sqa be set of random bits that cause verifier to ask q and accept
answer a. Let Nq = maxa|Sqa|. Then the maximum probability that the
prover can get the verifier to accept in the original private-coin protocol
is 2−|r| ·

∑
qNq. To show that the sum is big, we’ll pick some reasonable

value N , and have the prover demonstrate that there are many q such that
Nq ≥ N .

For any particular q, the prover can demonstrate that Nq ≥ N by picking
the best possible a (which it will tell to the verifier) and showing that Sqa
is large (using the hashing trick). To show that there are many good q, we
wrap this protocol up another layer of the hashing trick. So the full protocol
looks like this:

1. The verifier picks a hash function h1.

2. The prover responds with a question q such that h1(q) = 0 and an
answer a.

3. The verifier picks a second hash function h2.

4. The prover responds with an r ∈ Sqa such that h2(r) = 0.

CHAPTER 15. INTERACTIVE PROOFS 118

If the prover fails to get h1(q) = 0 or h2(r) = 0, the verifier rejects,
otherwise it accepts. Assuming we tune the ranges of h1 and h2 correctly,
the prover can only win with high probability if there are many q (first
round) such that Nq is large (second round). But this implies

∑
qNq is large,

meaning that the original x ∈ L.

15.2 IP = PSPACE

In this section, we sketch a proof of Shamir’s surprising result that IP =
PSPACE [Sha92]. This had a big impact when it came out, because (a)
the result showed that IP had more power than anybody expected, (b) the
technique used doesn’t relativize in any obvious way, and (c) it was one of
the few results out there that shows equality between two complexity classes
that don’t seem to be obviously connected in some way. As a bonus, if for
some reason you don’t like one of IP or PSPACE, you can forget about it
and just use the other class instead.

15.2.1 IP ⊆ PSPACE

This is the easy direction: express a IP computation as polynomially-deep
game tree of averages (verifier moves) and maxima (prover moves) over
polynomially-sized choices. The obvious recursive algorithm evaluates the
probability that the verifier accepts, assuming an optimal prover; we can
then just check if this probability is nonzero or not.

15.2.2 PSPACE ⊆ IP

To show PSPACE ⊆ IP, we’ll give an interactive proof system for the
PSPACE-complete language TQBF of true quantified Boolean formulas.
The technique involves encoding a quantified Boolean formula as a (very
large) polynomial over Zp for some suitable prime p, and then using properties
of polynomials to get the prover to restrict the original problem down to a
case the verifier can check, while using properties of polynomials to keep the
prover from cheating during the restriction process. We will start by showing
how to do this for #SAT, which will give the weaker result P#P ⊆ IP.

15.2.2.1 Arithmetization of #SAT

Here we want to show that if a Boolean formula has exactly k solutions, the
prover can convince the verifier of this. The main technique is arithmetiza-

CHAPTER 15. INTERACTIVE PROOFS 119

tion: we replace the Boolean operations in the formula, which apply only to
0 or 1, with arithmetic operations over a field Zp that give the same answers
for 0 and 1. This is done in the obvious way:

x ∧ y ≡ x · y
¬x ≡ 1− x

x ∨ y ≡ 1− (1− x) · (1− y) = x+ y − x · y

When arithmetizing a formula, we won’t actually rewrite it, because this
would make the formula bigger if it involves ORs. Instead, we will use the
same Boolean operators as in the original formula and just remember their
arithmetic interpretations if we need to apply them to numbers that aren’t 0
or 1.

We now want to play something like the following game: Given a formula
φ(x1, . . . , xm), the verifier asks the prover to tell it how many solutions it
has. To check this number, the verifier will ask the prove to split this total
up between φ(0, x2, . . . , xm) and φ(1, x2, . . . , xm). It can then pick one of
these subtotals and split it up into two cases, repeating the process until it
gets down to a fixed assignment to all of the variables, which it can check
for itself.

The problem is that the prover can lie, and it’s hard for the verifier to catch
the lie. The prover’s trick will be to offer answers for #SAT(φ(0, x2, . . . , xm))
and #SAT(φ(1, x2, . . . , xm)) that add up to the claimed total, and make one
of them be the real answer. This gives it a 50% chance at each step of having
the verifier recurse into a subtotal about which the prover is not actually
lying. Over m variables, there is only a 2−m chance that the verifier picks
the bogus answer at each step. So when it gets to the bottom, it is likely to
see a true answer even if the initial total was wrong.

This is where the polynomials come in. We will use the fact that, if p(x)
and q(x) are polynomials of degree at most d in a single variable x ∈ Zp, and
p 6= q, then Pr [p(r) = q(r)] for a random r ∈ Zp is at most d/p. This follows
from the Fundamental Theorem of Arithmetic, which says that the degree-d
polynomial p− q has at most d zeros. To apply this fact, we need to get the
prover to express their claim about #SAT(φ) in terms of a polynomial, so
we can use polynomial magic to force its lies to be consistent until they get
small enough that we can detect them.

First observe that the arithmetized version of φ is a degree-n multivariate
polynomial in x1, . . . , xm, where n is the size of φ. This follows via a
straightforward induction argument from the fact that φ contains at most
n AND or OR operations, and each such operation introduces exactly one

CHAPTER 15. INTERACTIVE PROOFS 120

multiplication. Now define the family of polynomials f0, f1, . . . , fm, where

fi(x1, . . . , xi) =
∑

yi+1∈{0,1}

∑
yi+2∈{0,1}

. . .
∑

ym∈{0,1}
φ(x1, . . . , xi, yi+1, . . . , ym).

These polynomials correspond to the stages of restricting the prover’s
answers: f0() just gives the total number of solutions to φ, while fi(x1, . . . , xi)
gives the total number of solutions with given fixed values for the first
i variables. Because they are all sums over restrictions of the degree-n
polynomial φ, they all have degree at most n.

Unfortunately, we can’t just ask the prover to tell us all the fi, because a
degree-n multivariate polynomial can still be exponentially large as a function
of the number of variables. So we will instead supply the prover with fixed
values for all but the last variable in fi, and ask it to tell us the univariate
degree-n polynomial that only depends on the last variable, this being the
variable for which we just got rid of the summation.1 Formally, we define

gi(z) = fi(r1, . . . , ri−1, z) =
∑

yi+1∈{0,1}

∑
yi+2∈{0,1}

. . .
∑

ym∈{0,1}
φ(r1, . . . , ri−1, z, yi+1, . . . , ym),

where r1, . . . , ri−1 will be random elements of Zp chosen during the compu-
tation.

Here is the actual protocol:

1. The verifier asks the prover to supply k = f0() = #SAT(φ), as well
as a convenient prime p between 2n and 2n−1. (Such a prime always
exists by Bertrand’s Postulate.) It checks that p is in fact prime.

2. At stage i = 1, the verifier asks the prover to supply g1(z) = f1(z),
and tests it for consistency by checking g1(0) + g1(1) = k.

3. At each stage i > 1, the verifier chooses a random ri−1 ∈ Zp, sends it
to the prover, and asks for the polynomial gi(z) = fi(r1, . . . , ri−1, z).
It tests gi for consistency by checking gi(0) + gi(1) = gi−1(ri−1).

4. After all m stages, the verifier checks that gm(z) is in fact the same
polynomial as f1(r1, . . . , rm−1, z). It could do this probabilistically
by setting z to a random rm, or it could be lazy and just insist that
the prover provide gm(z) in a form that is syntactically identical to
φ(r1, . . . , rm−1, z).

1Later, we will look at more complicated formulas, where we may want to test different
variables at different times. But the idea will be that there is always some single variable
that we were previously summing or quantifying over that we now need to plug in 0 or 1
for, and in subsequent rounds we will free up that slot by making it random.

CHAPTER 15. INTERACTIVE PROOFS 121

If all the tests pass, the verifier accepts the prover’s claim about k. Otherwise
it rejects.

Technical note: As described, this protocol doesn’t really fit in IP,
because #SAT(φ) is not a decision problem. To make it fit, we’d have to
have the verifier supply k and consider the decision problem #SATD(φ, k)
of determining if φ has exactly k solutions. But in the context of a P#P

problem, we can get away with just using the above protocol, since to simulate
P#P the prover is trying to convince the verifier that there is a sequence
of oracle calls with corresponding answers k1, k2, . . . that would cause the
oracle machine to accept, and for this purpose it’s fine to have the prover
supply those answers, as long the verifier can check that they actually work.

If the prover is not lying, it just supplies the correct value for k and the
correct gi at each step. In this case the verifier accepts always.

If the prover is lying, then in order to avoid getting caught it must stop
lying at some stage in the protocol. A lying prover supplies a sequence of
polynomials g′1, g′2, . . . g′m, and it’s in trouble if g′m 6= gm. So for the cheating
prover to get away with it, there has to be some i for which g′i−1 6= gi−1 but
g′i = gi.

Suppose that this occurs. Then gi(0) + gi(1) = gi−1(ri−1), from the
definition of gi. But we also have gi(0) + g(1) = g′i−1(ri−i1), since this
is tested explicitly by the verifier. The means the prover gets away with
swapping in a correct value for g′i only if g′i−1(ri−1) = gi−1(ri−1). But the
prover hasn’t seen ri−1 yet when it picks g′r−1, so ri−1 is independent of
this choice and has only a d/p < n/2n chance of making this equation true.
It follows that a lying prover has at most an n/2n chance of successfully
escaping at each step, for an at most n2/2n chance of convincing the verifier
overall.

This is exponentially small for sufficiently large n, so the probability of
error is still exponentially small even if we use the same protocol polynomially
many times to simulate polynomially many #P oracle calls. So this gives
P#P ⊆ IP, and in fact the protocol has the even stronger property of having
only one-sided error (which turns out to be feasible for any problem in IP).

15.2.3 Arithmetization of TQBF

Now we want to do the same thing to TQBF that we did to #SAT. We
can arithmetize the Boolean ∀x and ∃y operators the same way that we

CHAPTER 15. INTERACTIVE PROOFS 122

arithmetized ∧ and ∨:

∀x ∈ {0, 1}φ(x) ≡
∏

x∈{0,1}
φ(x),

∃x ∈ {0, 1}φ(y) ≡
∐

y∈{0,1}
φ(x) = 1−

∏
y∈{0,1}

(1− φ(y)).

(It should be noted that using the coproduct
∐

for ∃ is not standard
notation, but it seems like the right thing to do here.)

The problem with this arithmetization is that if we apply it directly to a
long quantified Boolean formula, we double the degree for each quantifier and
get an exponentially high degree overall. This is going to be trouble for our
polynomial-time verifier, even aside from giving a lying prover exponentially
many zeros to play with. Curiously, this does not happen if we limit ourselves
to Boolean values, because then x2 = x and we can knock φ down to a
multilinear polynomial with degree at most m. But this doesn’t work over
Zp unless we do something sneaky.

The sneaky thing to do is to use a operator!linearization lineariza-
tion operator Lx that turns an arbitrary polynomial p into a polynomial
Lx(p) that is (a) linear in x, and (b) equal to p for x ∈ {0, 1}. This operator
is easily defined by

Lx(p(x, y1, . . . , ym)) = (1− x) · p(1, y1, . . . , ym) + x · p(0, y1, . . . , ym).

Using this linearization operator, we will push down the degree of each
subformula of φ whenever some nasty quantifier threatens to push it up.

Suppose that φ has the form Q1x1Q2x2 . . . Qmxmφ(x1, . . . , xm), where
each Qi is ∀ or ∃. Write Li for Lxi . Then construct a polynomial f0() =
(Q1x1)L1(Q2x2)L1L2 . . . (Qnxn)L1 . . . Lnφ(x1, . . . , xn), and derive from it a
sequence of polynomials f1, f2, . . . where each fi strips off the first i operators.

We now have to do a test at each stage similar to the test for #SAT
that fi(x1, . . . , xi) = fi−1(x1, . . . , xi−1, 0) + fi−1(x1, . . . , xi−1, 1). But now
the test depends on which operator we are removing:

• For ∀xj , we check fi−1(x1, . . . , xj−1) = fi(x1, . . . , xj−1, 0)·f(x1, dots, xj−1, 1).
In doing this check, we make all variables except xj be random values
set previously, and what the prover sends is the univariate polynomial
gi(z) that fixes each other xj′ to its most recent random assignment.
After doing the check, we set xj = ri for some random i.

• For ∃xj , we check fi−1(x1, . . . , xj−1) = 1(1− fi(x1, . . . , xj−1, 0)) · (1−
f(x1, dots, xj−1, 1)). As in the previous case, gi(z) is the univariate
polynomial that fixes all variables except xj .

CHAPTER 15. INTERACTIVE PROOFS 123

• For Lxj , we check fi−1 = (1 − xj)fi(x1, dots, xj−1, 0, xj+1, . . . , xk) +
xjfi(x1, dots, xj−1, 1, xj+1, . . . , xk). Here gi(z) is again a univariate
polynomial in xj . What is a little odd is that xj may be a variable we
previously fixed, but that doesn’t stop us from doing the test. It does
mean that for subsequent stages we need to assign xj a new random
value ri independent of its previous value or values, to prevent any
possibility of the prover exploiting its prior knowledge.

In each of these cases, checking that gi(ri) gives a consistent value enforces
that the prover tells a consistent story unless ri happens to land on a zero of
the difference between a correct and bogus polynomial. The error analysis is
essentially the same as for the #SAT cases; over polynomially many tests
we get a total probability of missing a cheating prover’s lies of nc/2n = o(1),
assuming as before that p > 2n. This puts TQBF in IP and thus gives
PSPACE ⊆ IP.

Chapter 16

Probabilistically-checkable
proofs and hardness of
approximation

In this chapter, we discuss results relating the hardness of various approxi-
mation problems to the P ?= NP question. In particular, we will show how a
result known as the PCP theorem can be used to prove the impossibility
of getting tight approximations for many common approximation problems
assuming P 6= NP. The PCP theorem shows that the certificates provided
to a NP-machine can be replaced by probabilistically-checkable proofs,
which can be verified by a randomized Turing machine that uses r random
bits to select q bits of the proof to look at, and accepts bad proofs with less
than some constant probability ρ while accepting all good proofs.

This turns out to have strong consequences for approximation algorithms.
We can think of a probabilistically-checkable as a kind of constraint satis-
faction problem, where the constraints apply to the tuples of q bits that
the verifier might look at, the number of constraints is bounded by the
number of possible random choices 2r, and each constraint enforces some
condition on those q bits corresponding to the verifier’s response to seeing
them. If we can satisfy at least ρ · 2r of the constraints, we’ve constructed a
proof that is not bad. This means that there is a winning certificate for our
original NP machine, and that whatever input x we started with is in the
language accepted by that machine. In other words, we just converted an
approximation algorithm for a particular constraint-satisfaction algorithm
(assuming it runs in deterministic polynomial time) into a polynomial-time
procedure to solve a NP-hard problem. Conversely, if P 6= NP, we can’t

124

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 125

construct such an approximation algorithm.
This is only a sketchy, high-level overview of where we are going. Below

we fill in some of the details. We are mostly following the approach of [AB07,
§§18.1–18.4].

16.1 Probabilistically-checkable proofs

A 〈r(n), q(n), ρ〉-PCP verifier for a language L consists of two polynomial-
time computable functions f and g, where:

• f(x, r) takes an input x of length n and a string r of length r(n) and
outputs a sequence i of q(n) indices i1, i2, . . . , iq(n), each in the range
0 . . . q(n) · 2r(n); and

• g(x, πi) takes as input the same x as f and a sequence πi = πi+1πi2 . . . πi(q)n
and outputs either 1 (for accept) or 0 for (reject); and

• if x ∈ L, then there exists a sequence π that causes g(x, πf(x,r)) to
output 1 always (completeness); and

• if x 6∈ L, then for any sequence π, g(x, πf(x,r)) outputs 1 with probability
at most ρ (soundness).

We call the string π a probabilistically-checkable proof or PCP for
short.

Typically, ρ is set to 1/2, and we just write 〈r(n), q(n)〉-PCP verifier for
〈r(n), q(n), 1/2〉-PCP verifier.

The class PCP(r(n), q(n)) is the class of languages L for which there
exists an 〈O(r(n)), O(q(n)), 1/2〉-PCP verifier.

The PCP theorem says that NP = PCP(logn, 1). That is, any
language in NP can be recognized by a PCP-verifier that is allowed to look
at only a constant number of bits selected using O(logn) random bits from
a proof of polynomial length, which is fooled at most half the time by bad
proofs. In fact, 3 bits is enough [Hås01]. We won’t actually prove this here,
but we will describe some consequences of the theorem, and give some hints
about how the proof works.

16.1.1 A probabilistically-checkable proof for GRAPH NON-
ISOMORPHISM

Here is a probabilistically-checkable proof for GRAPH NON-ISOMORPHISM,
based on the interactive proof from §15.1.1. This is not a very good proof,

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 126

because it is 2(n2) bits long and requires Θ(n logn) random bits to query. But
it only requires the verifier to check one bit.

Recall that in the interactive proof protocol for GRAPH NON-ISOMORPHISM,
the verifier picks one of the two input graphs G and H, permutes its vertices
randomly, shows the permuted graph T to the prover, and asks the prover to
guess whether the chosen graph was G or H. If the graphs are not isomorphic,
the (infinitely powerful) prover can win this game every time. If they are, it
can only win half the time, since T is isomorphic to both G and H and gives
no information about which one was picked.

To turn this into a probabilistically-checkable proof, have the prover
build a bit-vector π indexed by every possible graph on n vertices, writing
a 1 for each graph that is isomorphic isomorphic to H. Now the verifier
can construct T as above, look it up in this gigantic table, and accept if
and only if (a) it chose G and π[T] = 0, or (b) it chose H and π[T] = 1. If
G and H are non-isomorphic, the verifier accepts every time. But if they
are isomorphic, no matter what proof π′ is supplied, there is at least a 1/2
chance that π′[T] is wrong. This puts GRAPH NON-ISOMORPHISM in
PCP(n2, 1) (the n2 is to allow the proof to be long enough).

16.2 NP ⊆ PCP(poly(n), 1)
Here we give a weak version of the PCP theorem, showing that any prob-
lem in NP has a probabilistically-checkable proof where the verifier uses
polynomially-many random bits but only needs to look at a constant number
of bits of the proof: in other words, NP ⊆ PCP(poly(n), 1).1 The proof
itself will be exponentially long.

The idea is to construct a 〈poly(n), 1)〉-PCP for a particular NP-complete
problem; we can then take any other problem in NP, reduce it to this problem,
and use the construction to get a PCP for that problem as well.

16.2.1 QUADEQ

The particular problem we will look at is QUADEQ, the language of systems
of quadratic equations over GF (2) that have solutions.

This is in NP because we can guess and verify a solution; it’s NP-hard
because we can use quadratic equations over GF (2) to encode instances of

1This is a rather weaker result, since (a) the full PCP theorem gives NP using only
O(logn) random bits, and (b) PCP(poly(n), 1) is known to be equal to NEXP [BFL91].
But the construction is still useful for illustrating many of the ideas behind probabilistically-
checkable proof.

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 127

SAT, using the representation 0 for false, 1 for true, 1−x for ¬x, xy for x∧y,
and 1− (1− x)(1− y) = x+ y+ xy for x∨ y. We may also need to introduce
auxiliary variables to keep the degree from going up: for example, to encode
the clause x ∨ y ∨ z, we introduce an auxiliary variable q representing x ∨ y
and use two equations

x+ y + xy = q,

q + z + qz = 1

to enforce the constraints q = x ∨ y and 1 = q ∨ z = x ∨ y ∨ z. It will be
helpful later to rewrite these in a standard form with only zeros on the right:

q + x+ y + xy = 0
q + z + qz + 1 = 0.

This works because we can move summands freely from one side of an
equation to the other since all addition is mod 2.

16.2.2 The Walsh-Hadamard Code

An NP proof for QUADEC just gives an assignment to the variables that
makes all the equations true. Unfortunately, this requires looking at the
entire proof to check it. To turn this into a PCP(poly(n), 1) proof, we
will make heavy use of a rather magical error-correcting code called the
Walsh-Hadamard code.

This code expands an n-bit string x into a 2n-bit codeword H(x), where
H(x)i = x · i when x and the index i are both interpreted as n-dimensional
vectors over GF (2) and · is the usual vector dot-product

∑n
i=1 xjij . This

encoding has several very nice properties, all of which we will need:

1. It is a linear code: H(x + y) = H(x) + H(y) when all strings are
interpreted as vectors of the appropriate dimension over GF (2).

2. It is an error-correcting code with distance 2n−1. If x 6= y, then exactly
half of all i will give x · i 6= y · i. This follows from the subset sum
principle, which says that a random subset of a non-empty set S is
equally likely to have an even or odd number of elements. (Proof: From
the Binomial Theorem,

∑
even i

(n
i

)
−
∑

odd i

(n
i

)
=
∑n
i=0(−1)n

(n
i

)
=

(1 + (−1))n = 0n = 0 when n 6= 0.) So for any particular nonzero x,
exactly half of the x · i values will be 1, since i includes each one in x
with independent probability 1/2. This makes d(H(0), H(x)) = 2n−1.
But then d(H(x), H(y)) = d(H(x), d(H(x + y))) = 2n−1 whenever
x 6= y.

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 128

3. It is locally testable: Given an alleged codeword w, we can check if
w is close to being a legitimate codeword H(x) by sampling a constant
number of bits from w. (We do not need to know what x is to do this.)
Our test is: Pick two indices i and j uniformly at random, and check if
wi +wj = wi+j . A legitimate codeword will pass this test always. It is
also possible to show using Fourier analysis (see [AB07, Theorem 19.9])
that if w passes this test with probability ρ ≥ 1/2, then there is some
x such that Pri[H(x)i = wi] ≥ ρ (equivalently, d(H(x), w) ≤ 2n(1− ρ),
in which case we say w is ρ-close to H(x).

4. It is locally decodable: If w is ρ-close to H(x), then we can compute
H(x)i by choosing a random index r and computing H(x)r +H(x)i+r.
This will be equal to H(x)i if both bits are correct (by linearity of H).
The probability that both bits are corrects is at least 1−2δ if ρ = 1− δ.

5. It allows us to check an unlimited number of linear equations in x by
looking up a single bit ofH(x). This again uses the subset sum principle.
Give a system of linear equations x · y1 = 0, x · y2 = 0, . . . x · ym = 0,
choose a random subset S of {1, . . . ,m} and query H(x)∑

i∈S y
=∑

i∈S x · y. This will be 0 always if the equations hold and 1 with
probability 1/2 if at least one is violated.
This gets a little more complicated if we have any ones on the right-
hand side. But we can handle an equation of the form x · y = 1 by
rewriting it as x · y + 1 = 0, and then extending x to include an extra
constant 1 bit (which we can test is really one by looking up H(x)i for
an appropriate index i).

16.2.3 A PCP for QUADEC

So now to construct a PCP for QUADEC, we build:

1. An n-bit solution u to the system of quadratic equations, which we
think of as a function f : {0, 1}n → {0, 1} and encode as f = H(x).

2. An n2-bit vector w = u⊗ u where (u⊗ u)ij = uiuj , which we encode
as g = H(x⊗ x).

To simplify our life, we will assume that one of the equations is x1 = 1 so
that we can use this constant 1 later (note that we can trivially reduce the
unrestricted version of QUADEC to the version that includes this assumption

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 129

by adding an extra variable and equation). A different approach that does
not require this assumption is given in [AB07, §18.4.2, Step 3].

To test this PCP, the verifier checks:

1. That f and g are (1 − δ)-close to real codewords for some suitably
small δ.

2. That for some random r, r′, f(r)f(r′) = g(r ⊗ r′). This may let us
know if w is inconsistent with u. Define W as the n× n matrix with
Wij = wij and U as the n × n matrix U = u ⊗ u (so Uij = uiuj).
Then g(r ⊗ r′) = w · (r ⊗ r′) =

∑
ij wijrir

′
j = rWr′ and f(r)f(r′) =

(u · r)(u · r′) = (
∑
i uiri)

(∑
j ujr

′
j

)
=
∑
ij riUijrj = rUr′. Now apply

the random subset principle to argue that if U 6= W , then rU 6= rW
at least half the time, and if rU 6= rW , then rUr′ 6= rUr′ at least half
the time. This gives a probability of at least 1/4 that we catch U 6= W ,
and we can repeat the test a few times to amplify this to whatever
constant we want.

3. That our extra constant-1 variable is in fact 1 (lookup on u).

4. That w encodes a satisfying assignment for the original problem. This
just involves checking a system of linear equations using w.

Since we can make each step fail with only a small constant probability,
we can make the entire process fail with the sum of these probabilities, also
a small constant.

16.3 PCP and approximability

Suppose we want to use the full PCP theorem NP = PCP(logn, 1) to
actually decide some language L in NP. What do we need to do?

16.3.1 Approximating the number of satisfied verifier queries

If we can somehow find a PCP for x ∈ L and verify it, then we know x ∈ L.
So the obvious thing is to try to build an algorithm for generating PCPs.
But actually generating a PCP may be hard. Fortunately, even getting an
good approximation will be enough. We illustrate the basic idea using MAX
SAT, the problem of finding an assignment that maximizes the number of
satisfied clauses in a 3CNF formula.

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 130

Suppose that we have some language L with a PCP verifier V . If x ∈ L,
there exists a proof of polynomial length such that every choice of q bits by V
from the proof will be accepted by V . We can encode this verification step as
a Boolean formula: for each set of bits S = {i1, . . . , iq}, write a constant-size
formula φS with variable in π that checks if V will accept πi1 , . . . , πiq for
our given input x. Then we can test if x ∈ L by testing if φ =

∧
S φS is

satisfiable or not.
But we can do better than this. Suppose that we can approximate the

number of φS that can be satisfied to within a factor of 2− ε. Then if φ has
an assignment that makes all the φS true (which followed from completeness
if x ∈ L), our approximation algorithm will give us an assignment that makes
at least a 1

2−ε >
1
2 fraction of the φS true. But we can never make more than

1
2 of the φS true if x 6∈ L. So we can run our hypothetical approximation
algorithm, and if it gives us an assignment that satisfies more than half of
the φS , we know x ∈ L. If the approximation runs in P, we just solved SAT
in P and showed P = NP.

16.3.2 Gap-preserving reduction to MAX SAT

Maximizing the number of subformulas φS that are satisfied is a strange
problem, and we’d like to state this result in terms of a more traditional
problem like MAX SAT. We can do this by converting each φS into a 3CNF
formula (which makes φ also 3CNF), but the cost is that we reduce the gap
between negative instances x 6∈ L and negative instances x ∈ L.

The PCP theorem gives us a gap of (1/2, 1) between negative and positive
instances. If each φS is represented by k 3CNF clauses, then it may be that
violating a single φS only maps to violating one of those k clauses. So where
previously we either satisfied at most 1/2 of the φS or all of them, now we
might have a negative instance where we can still satisfy a 1 − 1

2k of the
clauses. So we only get P = NP if we are given a poly-time approximation
algorithm for MAX SAT that is at least this good; or, conversely, we only
show that P 6= NP implies that there is no MAX SAT approximation that
gets more than 1− 1

2k of optimal.
This suggests that we want to find a version of the PCP theorem that

makes k as small as possible. Fortunately, Håstad [Hås01] showed that it is
possible to construct a PCP-verifier for 3SAT with the miraculous property
that (a) q is only 3, and (b) the verification step involves testing only if
πi1 ⊕ πi2 ⊕ πi3 = b, where i1, i2, i3, and b are generated from the random bits.

There is a slight cost: the completeness parameter of this verifier is only
1− ε for any fixed ε > 0, meaning that it doesn’t always recognize valid proof,

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 131

and the soundness parameter is 1/2 + ε. But checking πi1 ⊕ πi2 ⊕ πi3 = b
requires a 3CNF formula of only 4 clauses. So this means that there is no
approximation algorithm for MAX SAT that does better than 7/8 + δ of
optimal in all cases, unless P = NP. This matches the 7/8 upper bound
given by just picking an assignment at random.2

This is an example of a reduction argument, since we reduced 3SAT first
to a problem of finding a proof that would make a particular PCP-verifier
happy and then to MAX SAT. The second reduction is an example of a
gap-preserving reduction, in that it takes an instance of a problem with
a non-trivial gap (1/2 + ε, 1− ε) and turns it into an instance of a problem
with a non-trivial gap (7/8 + ε, 1 − ε). Note that do be gap-preserving,
a reduction doesn’t have to preserve the value of the gap, it just has to
preserve the existence of a gap. So a gap-reducing reduction like this is
still gap-preserving. We can also consider gap-amplifying reductions: in
a sense, Håstad’s verifier gives a reduction from 3SAT to 3SAT that amplifies
the reduction from the trivial (1− 1/m, 1) that follows from only being able
to satisfy m− 1 of the m clauses in a negative instance to the much more
useful (1/2 + ε, 1− ε).

16.3.3 Other inapproximable problems

Using inapproximability of MAX SAT, we can find similar inapproximability
results for other NP-complete optimization problems by looking for gap-
preserving reductions from MAX SAT. In many cases, we can just use
whatever reduction we already had for showing that the target problem
was NP-hard. This gives constant-factor inapproximability bounds for
problems like GRAPH 3-COLORABILITY (where the value of a solution is
the proportion of two-colored edges) and MAXIMUM INDEPENDENT SET
(where the value of a solution is the size of the independent set). In each
case we observe that a partial solution to the target problem maps back to a
partial solution to the original SAT problem.

2It’s common in the approximation-algorithm literature to quote approximation ratios
for maximization problems as the fraction of the best solution that we can achieve, as in a
7/8-approximation for MAX SAT satisfying 7/8 of the maximum possible clauses. This
leads to rather odd statements when we start talking about lower bounds (“you can’t do
better than 7/8 + δ”) and upper bounds (“you can get at least 7/8”), since the naming of
the bounds is reversed from what they actually say. For this reason complexity theorists
have generally standardized on always treating approximation ratios as greater than 1,
which for maximization problems means reporting the inverse ratio, 8/7− ε in this case. I
like 7/8 better than 8/7, and there is no real possibility of confusion, so I will stick with
7/8.

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 132

In some cases we can do better, by applying a gap-amplification step. For
example, suppose that no polynomial-time algorithm for INDEPENDENT
SET can guarantee an approximation ratio better than ρ, assuming P 6= NP.
Given a graph G, construct the graph Gk on

(n
k

)
vertices where each vertex in

Gk represents a set of k vertices in G, and ST is an edge in Gk if S ∪T is not
an independent set in G. Let I an independent set for G. Then the set Ik of
all k-subsets of I is an independent set in Gk (S ∪ T ⊆ I is an independent
set of any S and T in Ik). Conversely, given any independent set J ⊆ Gk, its
union

⋃
J is an independent set in G (because otherwise there is an either

within some element of J or between two elements of J). So any maximum
independent set in Gk will be Ik for some maximum independent set in G.

This amplifies approximation ratios: given an independent set I such
that |I|/|OPT | = ρ, then |Ik|/|OPT k| =

(|I|
k

)
/
(|OPT |

k

)
≈ ρk. If k is constant,

we can compute Gk in polynomial time. If we can then compute a ρk-
approximation to the maximum independent set in Gk, we can take the
union of its elements to get a ρ-approximation to the maximum independent
set in G. By making k sufficiently large, this shows that approximating the
maximum independent set to within any constant ε > 0 is NP-hard.

There is a stronger version of this argument that uses expander graphs
to get better amplification, which shows that n−δ approximations are also
NP-hard for any δ < 1. See [AB07, §18.3] for a description of this argument.

16.4 Dinur’s proof of the PCP theorem

Here we give a very brief outline of Dinur’s proof of the PCP theorem [Din07].
This is currently the simplest known proof of the theorem, although it is still
too involved to present in detail here. For a more complete description, see
§18.5 of [AB07], or Dinur’s paper, which is pretty accessible.

A constraint graph is a graph G = (V,E), where the vertices in V are
interpreted as variables, and each edge uv in E carries a constraint cuv ⊆ Σ2

that specifies what assignments of values in some alphabet Σ are permitted
for the endpoints of uv. A constraint satisfaction problem asks for an as-
signment σ : V → Σ that minimizes UNSATσ(G) = Pruv∈E [〈(〉σ(u), σ(v)) 6∈
cuv], the probability that a randomly-chosen constraint is unsatisfied. The
quantity UNSAT(G) is defined as minimum value of UNSATσ(G): this is
the smallest proportion of constraints that we must leave unsatisfied. In
the other direction, the value val(G) of a constraint satisfaction problem
is 1−UNSAT(G): this is the largest proportion of constraints that we can

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 133

satisfy. 3

An example of a constraint satisfaction problem is GRAPH 3-COLORABILITY:
here Σ = {r, g, b}, and the constraints just require that each edge on the
graph we are trying to color (which will be the same as the constraint graph
G!) has two different colors on its endpoints. If a graph G with m edges
has a 3-coloring, then UNSAT(G) = 0 and val(G) = 1; if G does not, then
UNSAT(G) ≥ 1/m and val(G) ≤ 1 − 1/m. This gives a (1 − 1/m, 1) gap
between the best value we can get for non-3-colorable vs. 3-colorable graphs.
Dinur’s proof works by amplifying this gap.

Here is the basic idea:

1. We first assume that our input graph is k-regular (all vertices have the
same degree k) and an expander (every subset S with |S| ≤ m/2 has
δ|S| external neighbors for some constant δ > 0). Dinur shows how
these assumptions can be enforced without breaking NP-hardness.

2. We then observe that coloring our original graph G has a gap of
(1−1/m, 1), or that UNSAT(G) ≥ 1/m. This follows immediately from
the fact that a bad coloring must include at least one monochromatic
edge.

3. To amplify this gap, we apply a two-stage process.
First, we construct a new constraint graph G′ (that is no longer a
graph coloring problem) with n vertices, where the constraint graph
has an edge between any two vertices at distance 2d+ 1 or less in G,
the label on each vertex v is a “neighborhood map” assigning a color
of every vertex within distance d of v, and the constraint on each edge
uv says that the maps for u and v (a) assign the same color to each
vertex in the overlap between the two neighborhoods, and (b) assigns
colors to the endpoints of any edge in either neighborhood that are
permitted by the constraint on that edge. Intuitively, this means that

3Though Dinur’s proof doesn’t need this, we can also consider a constraint hyper-
graph, where each q-hyperedge is a q-tuple e = v1v2 . . . vq relating q vertices, and a
constraint ce is a subset of Σq describing what assignments are permitted to the ver-
tices in e. As in the graph case, our goal is to minimize UNSATσ(G), which is now the
proportion of hyperedges whose constraints are violated, or equivalently to maximize
valσ(G) = 1− UNSATσ(G). This gives us the q-CSP problem: given a q-ary constraint
hypergraph, find an assignment σ that maximizes valσ(G). An example of a constraint
hypergraph arises from 3SAT. Given a formula φ, construct a graph Gφ in which each
vertices represents a variable, and the constraint on each 3-hyperedge enforces least one of
the literals in some clause is true. The MAX 3SAT problem asks to find an assignment σ
that maximizes the proportion of satisfied clauses, or valσ(Gφ).

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 134

a bad edge in a coloring of G will turn into many bad edges in G′, and
the expander assumption means that many bad edges in G will also
turn into many bad edges in G′. In particular, Dinur shows that with
appropriate tuning this process amplifies the UNSAT value of G by a
constant. Unfortunately, we also blow up the size of the alphabet by
Θ(kd).
So the second part of the amplification knocks the size of the alphabet
back down to 2. This requires replacing each node in G′ with a set of
nodes in a new constraint graph G′′, where the state of the nodes in
the set encodes the state of the original node, and some coding-theory
magic is used to preserve the increased gap from the first stage (we
lose a little bit, but not as much as we gained).
The net effect of both stages is to take a constraint graph G of size n
with UNSAT(G) ≥ ε and turn it into a constraint graph G′′ of size cn,
for some constant c, with UNSAT(G′′) ≥ 2ε.

4. Finally, we repeat this process Θ(logm) = Θ(logn) times to construct
a constraint graph with size cO(logn)n = poly(n) and gap (1/2, 1).
Any solution to this constraint graph gives a PCP for GRAPH 3-
COLORABILITY for the original graph G.

16.5 The Unique Games Conjecture

The PCP theorem, assuming P 6= NP, gives us fairly strong inapproxima-
bility results for many classic optimization problems, but in many cases these
are not tight: there is a still a gap between the lower bound and the best
known upper bound. The Unique Games Conjecture of Khot [Kho02],
if true, makes many of these bounds tight.

The Unique Games Conjecture was originally formulated in terms of an
interactive proof game with two provers. In this game, the verifier V picks a
query q1 to ask of prover P1 and a query q2 to ask of prover P2, and then
checks consistency of the prover’s answers a1 and a2. (The provers cannot
communicate, and so answer the queries independently, although they can
coordinate their strategy before seeing the queries.) This gives a unique
game if, for each answer a1 there is exactly one answer a2 that will cause V
to accept.

Equivalently, we can model a unique game as a restricted 2-CSP: the
labels on the vertices are the answers, and the consistency condition on
each edge is a bijection between the possible labels on each endpoint. This

CHAPTER 16. PCP AND HARDNESS OF APPROXIMATION 135

corresponds to the two-prover game the same way PCPs correspond to
single-prover games, in that a labeling just encodes the answers given by
each prover.

A nice feature of unique games is that they are easy to solve in polynomial
time: pick a label for some vertex, and then use the unique constraints to
deduce the labels for all the other vertices. So the problem becomes interesting
mostly when we have games for which there is no exact solution.

For the Unique Games Conjecture, we consider the set of all unique
games with gap (δ, 1− ε); that is, the set consisting of the union of all unique
games with approximations with ratio 1− ε or better and all unique games
with no approximations with ratio better than δ. The conjecture states that
for any δ and ε, there exists some alphabet size k such that it is NP-hard to
determine of these two piles a unique game G with this alphabet size lands
in.4

Unfortunately, even though the Unique Games Conjecture has many
consequences that are easy to state (for example, the usual 2-approximation
to MINIMUM VERTEX COVER is optimal, as is the 0.878-approximation
to MAX CUT of Goemans and Williamson [GW95]), actually proving these
consequences requires fairly sophisticated arguments. So we won’t attempt
to do any of them here, and instead will point the interested reader to Khot’s
2010 survey paper [Kho10], which gives a table of bounds known at that
time and citations to where they came from.

There is no particular consensus among complexity theorists as to whether
the Unique Games Conjecture is true or not, but it would be nifty if it were.

4Note that this is not a decision problem, in that the machine M considering G does
not need to do anything sensible if G is in the gap; instead, it is an example of a promise
problem where we have two sets L0 and L1, M(x) must output i when x ∈ Li, but L0∪L1
does not necessarily cover all of {0, 1}∗.

Appendix A

Assignments

Assignments should be submitted in PDF format via the classesv2 Drop Box
mechanism. Give your assignment a reasonable filename like hw1.pdf so I
can figure out which it is. You do not need to format your assignment using
LATEX or some other document preparation system if you don’t want to, but
if your handwriting is particularly illegible or your cell-phone camera is not
very good at taking pictures, I may deduct points for details I can’t parse.

A.1 Assignment 1: due Wednesday, 2017-02-01 at
23:00

A.1.1 Bureaucratic part

Send me email! My address is james.aspnes@gmail.com.
In your message, include:

1. Your name.

2. Your status: whether you are an undergraduate, grad student, auditor,
etc.

3. Anything else you’d like to say.

(You will not be graded on the bureaucratic part, but you should do it
anyway.)

A.1.2 Binary multiplication

A finite-state transducer (FST) is a Turing machine with a read-only
input tape, a write-only output tape, no work tapes, and heads that can

136

mailto:james.aspnes@gmail.com

APPENDIX A. ASSIGNMENTS 137

only stay put or move right at each step. We would like to get a finite-state
transducer to multiple binary numbers by 3.

1. Suppose that the input and output are both given most-significant-bit
(MSB) first: for example, the input 6 is represented by x6y = 110 and
the corresponding output 3 · 6 = 18 is represented by x18y = 10010.
Give a program for a finite-state transducer that multiplies its input by
3 using this representation, or show that no such program is possible.

2. Suppose instead that the input is given least-significant-bit (LSB) first:
now 6 is represented by x6yR = 011 and 3 · 6 = 18 is represented
by x18yR = 01001. Give a program for a finite-state transducer that
multiplies its input by 3 using this representation, or show that no
such program is possible.

Solution

1. A finite-state transducer cannot multiple binary numbers by 3 with
the MSB-first representation.
Let xk, for each integer k > 0, be the input with binary representation
(10)k. Then xk = 2

∑k−1
i=0 4i = 2 · 4k−1

3 , and 3xk = 2 · (4k − 1), which
has the binary representation 12k−10.
Now compare with xk + 1: xxk + 1y = (10)k−111 differs from xxky =
(10)k−110 only in the last bit, but x3(xk + 1)y = 102k1 already differs
from x3xky = 12k−10 on the second bit. We will use this fact to argue
that any FST for this problem must give the wrong answer for some
input xk or xk + 1.
Fix some FST M . Consider executions of M on xk and xk+1. The
second bit inM ’s output is the complement of the last bit it reads, so if
it outputs more than one bit before reading the last bit of its input, it
will be incorrect in one of the two executions. It follows that a correct
M cannot output more than one bit without reading its entire input.
Now consider executions with inputs xk, where k ranges over all positive
integers. Let qk be the state of the finite-state controller when M first
reaches a configuration where the input head is over the last bit of the
input. There are infinitely many k, but only finitely many possible
qk, so there must be two values k 6= k′ such that qk = qk′ . We have
previously established that when M reaches the last input bit in either
xk or xk′ , it is in state qk and has output at most one bit. Any

APPENDIX A. ASSIGNMENTS 138

q read q′ write move
〈0, 0〉 0 〈0, 0〉 0 R
〈0, 0〉 1 〈0, 1〉 1 R
〈0, 0〉 b 〈0, 0〉 b S
〈0, 1〉 0 〈0, 0〉 1 R
〈0, 1〉 1 〈1, 1〉 0 R
〈0, 1〉 b 〈0, 0〉 1 R
〈1, 0〉 0 〈0, 0〉 1 R
〈1, 0〉 1 〈1, 1〉 0 R
〈1, 0〉 b 〈0, 0〉 1 R
〈1, 1〉 0 〈1, 0〉 0 R
〈1, 1〉 1 〈1, 1〉 1 R
〈1, 1〉 b 〈1, 0〉 0 R

Table A.1: Transition table for multiplying by 3 (LSB first)

subsequent bits it outputs depend only on qk and the remaining input
bit (0), since it can’t move the input head left to see any of the other
bits. So the outputs M(xk) and M(xk′) differ by at most the presence
or absence of a single initial bit. But x3xky and x3xk′y differ by at
least two bits, so M gives the wrong answer for at least one of them.

2. But with the LSB-first representation, there is no problem. One way
to see this is that we can compute 3x as x+ 2x, and x2xyR = 0xxyR

is just the input shifted right one position.
If we are processing the input from LSB to MSB, at each step we need
to add together (a) the current input bit, (b) the previous input bit
(for 2x), and (c) whatever carry bit we have from the previous position.
This gives us a value at most 3; we write the low-order bit and keep the
high-order bit as the carry for the next iteration. Between tracking the
and the previous bit we need four states, which turns out to be enough
for the entire computation. A transition table is given in Figure A.1;
here each state is 〈carry, previous〉.
It is possible to optimize this a bit further. We can notice that the
behavior of the TM is the same in states 〈0, 1〉 and 〈1, 0〉. So we could
actually reduce to just three states, representing a combined carry and
shifted input value of 0, 1, or 2.

APPENDIX A. ASSIGNMENTS 139

A.1.3 Transitivity of O and o

Use the definitions given in §3.1.2.1 to show that:

1. If f(n) = o(g(n), then f(n) = O(g(n)).

2. If f(n) = o(g(n)) and g(n) = O(h(n)), then f(n) = o(h(n)).

Solution

1. Fix some c > 0. Then f(n) = o(g(n)) means that there is some N such
that f(n) ≤ c · g(n) for all n ≥ N . But the existence of c and N with
this property means that f(n) = O(g(n)).

2. We want to show that for any c > 0, there exists N such that f(n) ≤
c · h(n) for all n ≥ N . Fix some such c. Let c2 and N2 be such that
g(n) ≤ c2 · h(n) for all n ≥ N2. Let c1 = c/c2 and let N1 be such that
f(n) ≤ c1g(n) for all n ≥ N1. Then for any n ≥ max(N1, N2), we have
f(n) ≤ c1g(n) ≤ c1c2h(n) = (c/c2)c2h(n) = ch(n) as required.

It’s worth noting that essentially the same argument for part 2 shows
that f(n) = O(g(n)) and g(n) = o(h(n)) together imply f(n) = o(h(n)), but
one tedious proof is enough.

A.2 Assignment 2: due Wednesday, 2017-02-15 at
23:00

A.2.1 A log-space reduction

The usual definition of NP-completeness uses polynomial-time reductions,
where A ≤P B if there is a polynomial-time computable f such that x ∈ A if
and only if f(x) ∈ B. But we could also consider other kinds of reductions,
characterized by a different restriction on f .

One of these is a log-space reduction. We write A ≤L B if there is a
function f computable on a standard Turing machine using O(logn) space
such that x ∈ A if and only if f(x) ∈ B.

Show that INDEPENDENT SET ≤L CLIQUE, where the input k and
G = (V,E) to both problems is given by 1k, followed by a delimiter of some
sort (say, “;”), followed by 1|V |, followed by another delimiter, and finally a
sequence of pairs of vertex ids representing the edges (in no particular order),
with each vertex id represented as a binary number in the range 0 . . . |V | − 1,
terminated by the delimiter.

APPENDIX A. ASSIGNMENTS 140

You do not need to (and probably shouldn’t, unless you are bored and
immortal) give an explicit transition table, but you should describe the
workings of a log-space Turing machine that computes f in enough detail
that you can argue that it does in fact run in logarithmic space.

Solution

The usual polynomial-time reduction from INDEPENDENT SET to CLIQUE
replaces G with its complement G, which has the same vertices but contains
each possible edge uv if and only if G does not contain uv. So we would like
to implement this mapping in log space.

For xky and x|V |y, we can just copy the input until we reach the second
delimiter. This requires no space beyond a few states in the finite-state
controller. So the only difficult part is complementing E.

One what to do this is to use three tapes to keep track of binary represen-
tations of v = |V |, and counters i and j that run from 0 to |V | − 1. Observe
that using only a finite number of states in the controller, we can do all of
the following tasks in space O(log|V |):

1. Set a counter to 0.

2. Increment v, i, or j by 1.

3. Compare i or j to v.

4. Search E for an edge ij or ji.

5. Write edge ij to the output tape.

We can then run the algorithm given in Algorithm A.1. Each of the steps
in this algorithm can be done without using any work tape space beyond
the space needed to represent v, i, and j, so the total space complexity
is O(log|V |). This is logarithmic in the size of the input because |V | is
expressed in unary.1

A.2.2 Limitations of two-counter machines

Recall that a two-counter machine consists of a finite-state controller,
a read-only input tape, a write-only output tape, and two counters, that

1It is convenient for us that whoever picked the representation of G made this choice.
If k and |V | were presented in binary, we might have to worry about what happens with
very sparse graphs.

APPENDIX A. ASSIGNMENTS 141

1 Copy xky and x|V |y to the output tape.
2 v ← 0
3 i← 0
4 for each 1 in the representation of |V | do
5 Increment v
6 while i 6= v do
7 j ← 0
8 while j 6= v do
9 if ij 6∈ E and ji 6= E then

10 Write ij to the output
11 Increment j
12 Increment i

Algorithm A.1: Log-space reduction from INDEPENDENT SET to
CLIQUE

support increment and decrement operations, and that can be tested for
equality with zero by the finite-state controller.

Show that if f(n) ≥ n is time-constructible (by a standard Turing
machine) then there exists a language L that can be decided by a two-
counter machine eventually, but that cannot be decided by a two-counter
machine in o(f(n)) time.

Solution

Let L = {〈xMy, x〉 |M is a two-counter machine that rejects x in at most f(n) steps}.
Claim: If R is a two-counter machine that runs in o(f(n)) steps, then

L(R) 6= L. Proof: Let x be large enough that R(〈xRy, x〉) runs at most f(n)
steps. Then 〈xRy, x〉 is in L if and only if R(〈xRy, x〉) rejects. Either way,
L(R) 6= L.

Now we have to show that L can be decided by a two-counter machine
without the time bound. We could build a universal two-counter machine
directly, but this is overkill. Instead, let’s take this approach to show we can
decide L using a Turing machine:

1. We can translate a representation xMy of a two-counter machine to a
representation of xM ′y of a Turing machine using two work tapes with
a single mark to represent zero and the head position to represent the
counter value.

APPENDIX A. ASSIGNMENTS 142

2. We can then use one of our previous constructions to show that we can
decide using a Turing machine if M ′ rejects x in f(n) steps.

This means that there exists a Turing machine that decides L. Since we
can simulate Turing machines using two-counter machines (Lemma 3.1.1),
there is also a two-counter machine that decides L.

A better solution: Though the preceding works, it’s overkill, since we
can avoid diagonalizing over two-counter machines entirely.2

The Time Hierarchy Theorem says that if f(n) is time-constructible, then
there is a language L that cannot be decided by a Turing machine in o(f(n))
time but can be decided by a Turing machine eventually.

Since a Turing machine can simulate a two-counter machines with no
slowdown (use two work tapes with a single mark on each for the counter),
if L can be decided by a two-counter machine in o(f(n)) time, it can also
be decided by a Turing machine in o(f(n)) time, but it can’t. So L is not
decided by a two-counter machine in o(f(n)) time. On the other hand, it is
decided by some Turing machine eventually, and a two-counter machine that
simulates that Turing machine will also decided it eventually.

A.3 Assignment 3: due Wednesday, 2017-03-01 at
23:00

A.3.1 A balanced diet of hay and needles

Call an oracle A balanced if, for each n ≥ 1, |{x ∈ A | |x| = n}| = 2n−1.
Show that there exist balanced oracles A and B such that PA = NPA

and PB 6= NPB.

Solution

Rather than build new oracles from scratch, we’ll show how to encode any
oracle so that it is balanced, and use this to reduce to Baker-Gill-Solovay.

Given an oracle A, define its balanced version Ă = {x0 | x ∈ A} ∪
{x1 | x 6∈ A}.

Since every x with |x| = n produces exactly one element of Ă with
|x| = n+ 1, we get exactly 2n elements of size n+ 1, making Ă balanced.

2I would like to thank Aleksandra Zakrzewska for pointing this out in her solution,
unlike the rest of us lemmings who blindly went ahead and diagonalized over two-counter
machines.

APPENDIX A. ASSIGNMENTS 143

Any machine that uses A can be modified to use Ă instead, by writing
an extra 0 to the end of each oracle call, thus replacing a class to A(x) with
A(x0). In the other direction, a machine that uses Ă can be modified to
use A instead, by replacing the response to each call to Ă(xb) with A(x)⊕ b.
These modifications are easily made to either a P or NP machine.

Now let A and B be the oracles from the Baker-Gill-Solovay Theorem
for which PA = NPA and PB 6= NPB. Then Ă and B̆ are balanced oracles
for which PĂ = NPĂ and PB̆ 6= NPB̆.

A.3.2 Recurrence

Call a vertex u in a directed graph G recurrent if a random walk starting
at u eventually returns to u with probability 1. (This is true if and only
if u is reachable from any node v that is reachable from u.) Let L =
{〈G, u〉 | u is recurrent in G}. Show that L is NL-complete with respect to
log-space reductions.

Solution

We need to show L ∈ NL and ∀L′ ∈ NLL′ ≤L L.

• L is in NL. Proof: We can test u in LNL by iterating over all v and
checking using an STCON oracle if there is a path from u to v and a
path from v to u. If we find the former but not the latter, 〈G, u〉 6∈ L.
This shows L ∈ LNL ⊆ NLNL = NL.

• L is NL-hard. Proof: We’ll show it’s coNL-hard by log-space reduction
from the complement of STCON. Given a graph G = (V,E) and nodes
s and t, construct a new graph G′ = (V,E′) where

E′ = E ∪ {vs | v ∈ V, v 6= t} \ {tv | v ∈ V } .

Let u = s.
Then every v 6= t can reach u in G′. So the only way that u is not
recurrent is if u = s can reach t in G′, which has no outgoing edges. If
there is an s–t path in G, then there is an s–t path in G′, since if some
G path uses an outgoing edge from t we can truncate to the shortest
prefix that reaches t and get an s–t path that doesn’t. Conversely, any
s–t path in G′ gives an s–t path in G by taking the shortest suffix that
contains s. So u is recurrent in G′ if and only if there is no s–t path in
G.

APPENDIX A. ASSIGNMENTS 144

This makes L coNL-hard. But coNL = NL, so L is also NL-hard.

A.4 Assignment 4: due Wednesday, 2017-03-29 at
23:00

A.4.1 Finite-state machines that take advice

A manufacturer of low-budget Turing machines decides that advice is so
powerful, that a machine that uses it might still be useful even without any
write heads.

Define the class FSM/poly to be the set of languages L decided by a
Turing machine M with two read-only input tapes, one of which is a two-way
tape that contains the input x and one of which is a one-way tape that
contains an advice string α|x|, where both tape alphabets consist of bits. We
say that M decides L if and only if there is a family of advice strings {αn} of
size polynomial in n that cause M to always output the correct value when
presented with x and αn.

(The advice tape is one-way, only allowing its head to move to the right,
to keep us from using it as a counter. The input tape is two-way because
making it one-way would just be cruel.)

Show that NC1 ⊆ FSM/poly ⊆ AC1.

Solution

We can show that NC1 ⊆ FSM/poly by showing that a machine as defined
above can simulate a bounded-width branching program, which can in turn
simulate anything in NC1 using Barrington’s Theorem. We make the advice
be a sequence of instructions of the form: (a) move the input tape head
one cell to the left; (b) move the input tape head one cell to the right; (c)
update the state of the branching program according to permutation ξ0 or ξ1
depending on the bit in the current input cell; or (d) halt and accept if the
state of the branching program is not equal to its initial state. Each of these
instructions can be encoded in a constant number of bits,3 so the finite-state
controller can read in an instruction and execute it without needing too
many states.

To encode the branching program, we replace each instruction (ij , ξ0j , ξ1j)
with a sequence of up to n− 1 left or right moves to position the head on top

3At most dlg
(
(5!)2 + 3

)
e = 16, so maybe not something we can run on an 8-bit controller,

but all the cool kids got 16-bit controllers decades ago.

APPENDIX A. ASSIGNMENTS 145

of input bit i (this is a fixed sequence, because we just need to adjust the
position by the constant offset ij − ij−1) and then execute the instruction
for ξ0, ξ1. At the end we put in the halt instruction. We can easily show by
induction on j that the simulated state of the branching program inside our
controller after j such steps is correct, which means that we get the right
answer when we halt.

To show FSM/poly ⊆ AC1, given an FSM/poly machine, represent
its execution as a path in a graph whose vertices are labeled by (i, t, q) where
i is the position of the input head, t is the position of the advice head, and q
is the state of the finite-state controller. If |αn| is bounded by nc, then there
are O(nc+1) vertices in this graph.4

Presence or absence of edges that depend on the input can be computed
directly from individual input bits. There is an edge from (i, t, q) to (i′, t′, q′)
if M can make this transition after observing a particular value b at position
i on the input tape, which means that we can compute the existence of this
edge in our circuit by either taking xi directly or running it through a NOT
gate, depending on b. We also have that M accepts if and only if there is
a path from the initial configuration of M to some accepting configuration,
which we can solve using STCON.5 But STCON is in AC1, so we can detect
if M accepts (and thus decide L) using an AC1 circuit.

A.4.2 Binary comparisons

Suppose that we extend AC0 by adding binary comparison gates . A
2m-input binary comparison gate takes inputs xm−1, . . . , x0 and ym−1, . . . , y0,
and returns 1 if and only if

∑m−1
i=0 2ixi >

∑m−1
i=0 2iyi.

Define the complexity class ACBC0 to consist of all circuits of polynomial
size and constant depth consisting of unbounded fan-in AND, OR, and NOT

4There is a small technical issue here, that I will confess to not noticing until Lee
Danilek pointed it out. We can’t necessarily assuming that the input head position is
bounded by n, because in general we allow the input tape to a Turing machine to contain
infinite regions of blanks extending past the actual input. We can deal with this without
adding any extra vertices by arguing that an FSM/poly machine that moves the head off
the end of the input executes a sequence of steps that do not depend on the input until
the head moves back, and thus we can replace this entire sequence of steps by a single
edge to the resulting configuration. Equivalently, we could use essentially the same idea
to replace whatever bits of the advice are consumed during the off-input rampage by a
single instruction on the advice tape that causes the controller to update its state and
input head position appropriately.

5We probably need to link all the accepting configurations to a single extra sink vertex
to make this work, because a general FSM/poly may not be smart enough to park its
input head in a standard place if we only allow 0 and 1 input bits.

APPENDIX A. ASSIGNMENTS 146

gates, and polynomial fan-in binary comparison gates.
Prove or disprove: PARITY ∈ ACBC0.

Solution

We’ll show PARITY 6∈ ACBC0, by showing that ACBC0 = AC0.
Observe that x > y if and only if there is some position i such that

xj = yj for all j > i, xi = 1, and yi = 0. We can test xj = yj using
the formula (xj ∧ yj) ∨ (¬xj ∧ ¬yj), and we can test x > y using the for-
mula

∨m−1
i=0

(
xi ∧ ¬yi ∧

∧
j = i+ 1m−1(xj = yj)

)
. By replacing each binary

comparison gate with a circuit computing this formula, we transform any
ACBC0 circuit into a AC0 circuit while maintaining polynomial size and
constant depth. It follows that ACBC0 = AC0 as claimed. But since
PARITY is not in AC0, it can’t be in ACBC0 either.

A.5 Assignment 5: due Wednesday, 2017-04-12 at
23:00

A.5.1 BPPBPP

Show that BPPBPP = BPP.

Solution

It holds trivially that BPP ⊆ BPPBPP, so we only need to show that
PBPP ⊆ BPP.

Suppose L is in BPPBPP. Then there is a polynomial-time randomized
oracle Turing machine M such that M accepts any x in L with probability
at least 2/3 and accepts any x not in L with probability at most 1/3, given
an oracle that computes some language L’ in BPP.

Let M ′ be a polynomial-time randomized Turing machine that decides
L′ with probability of error at most 1/3. The oracle calls always give the
right answer, so we can’t necessarily drop M ′ into M without blowing up
the error probability for M . But we can make it work using amplification.

Recall that we can reduce the error of M ′ to ε by running M ′ Θ(log(1/ε))
times and taking the majority. The original machine M makes at most nc
oracle calls for some c. We can replace each such call with a sequence of
Θ(lognc+1) simulations of M ′, whose majority value will be incorrect with
probability at most n−c−1. Taking a union bound, the probability of error
over all these simulated oracle calls is at most 1/n, giving a probability of

APPENDIX A. ASSIGNMENTS 147

error for the computation as a whole bounded by 1/3 + 1/n. This is bounded
away from 1/2 by a constant for sufficiently large n, so we can amplify to
get it under 1/3. Since the entire construction still takes polynomial time,
this puts L in BPP.

A.5.2 coNP vs RP

Show that if coNP ⊆ RP, then NP = ZPP.

Solution

We already have coRP ⊆ NP, so adding the assumption gives coRP ⊆
coNP ⊆ RP. Take complements to get RP ⊆ coRP, which gives RP =
coRP. We then have coRP = RP = NP, and ZPP = RP∩ coRP = NP.

A.6 Assignment 6: due Wednesday, 2017-04-26 at
23:00

A.6.1 NP ⊆ PSquareP

A secretive research lab claims that it is possible to use quantum interference
to build a machine that decide any language in the class SquareP, the set
of languages decided by a polynomial-time nondeterministic Turing machine
that accepts if the number of accepting paths is a perfect square (0, 1, 4, 9, . . .)
and rejects otherwise.

Show that this machine would give a practical procedure for all problems
in NP, by showing that NP ⊆ PSquareP.

Solution

There are a lot of ways to solve this. The easiest is probably to note that
x and 2x (more generally, px for any prime p) are both squares if and only
if x = 0. So if we can tinker with some NP-complete problem to increase
the number of solutions by a prime factor, we can recognize an instance
with no solutions by detecting that the number of solutions x to the original
instance and the number of solutions px to the modified instance are both
squares. This is enough to put NP ⊆ PSquareP, since two oracle queries is
well within the polynomial bound on how many we are allowed to do.

With some additional sneakiness, we can do the same thing with just one
oracle query.

APPENDIX A. ASSIGNMENTS 148

Let SQUARE SAT = {φ | φ has a square number of satisfying assignments}.
It’s easy to see that SQUARE SAT is in SquareP (build a machine that
guesses each possible assignment and verifies it). It’s also the case that a
PSquareP can do poly-time reductions. So we can show NP ⊆ PSquareP by
giving a PSQUARESAT machine to solve SAT.

Given a formula φ with n variables x1, . . . , xn, construct a new formula
φ′ = (z∧ y1∧ y2∧ . . .∧ yn∧φ)∨¬z, where z and y1, . . . , yn are new variables
not appearing in φ. Then if φ has k satisfying assignments, φ′ has k + 22n

satisfying assignments, consisting of (a) k assignments satisfying φ with z
and all yi true, and (b) 22n assignments with z false and the remaining 2n
variables set arbitrarily.

If k = 0, then then number of satisfying assignments for φ′ is 22n = (2n)2,
a square If k > 0, then the number of satisfying assignments is 22n + k ≤
22n + 2n < 22n + 2 · 2n + 1 = (2n + 1)2. Since this last quantity is the smallest
perfect square greater than 22n, 22n + k is not a square. It follows that our
machine can correctly identify whether φ is satisfiable by feeding φ′ to the
SQUARE SAT oracle and accepting if and only if the oracle rejects.

A.6.2 NL ⊆ P

Recall that NL = FO(TC) and P = FO(LFP). Show that NL ⊆ P by
giving an explicit algorithm for converting any FO(TC) formula to a FO(LFP)
formula.

Solution

For each FO(TC) formula φ, let φ̂ be the corresponding FO(LFP) formula,
constructed recursively as described below:

1. If φ is P (x) or x < y, then φ̂ = φ.

2. If φ is ¬ρ, then φ̂ = ¬ρ̂.

3. If φ is ρ ∨ σ, then φ̂ = ρ̂ ∨ (̂σ).

4. If φ is ρ ∧ σ, then φ̂ = ρ̂ ∧ (̂σ).

5. If φ is TC(ρ, x, y), then φ̂ is LFP(σ, y), where σ(P, z) ≡ (z = x) ∨ (∃q :
P (q) ∧ ρ̂(q, z)).

We claim by induction on formula size that φ is true if and only if φ̂
is. Except for the TC implementation, this is immediate from the definition

APPENDIX A. ASSIGNMENTS 149

above. For the TC implementation, we wish to argue by induction on i that
if P0, P1, . . . is the sequence of relations generated by the LFP operator, then
Pi(y) holds precisely if there is a sequence x = x1, x2, . . . , xj = y with j ≤ i
such that φ(xk, xk+1) holds for each k.

This is clearly true for i = 0 (P0 is empty, and there is no sequence) and
i = 1 (P1 contains only x). For larger i, suppose that there is a sequence
of length j ≤ i. If j < i, then Pi−1(y) holds already, and since LFP can
only add new elements to Pi, Pi(y) holds as well. If j = i, then Pi−1(xi−1)
holds by the induction hypothesis, and the formula make Pi(y) true because
Pi−1(xi−1) and ρ̂(xi−1, y) holds (because ρ(xi−1, xi) does). In the other
direction, if Pi(y), then either Pi−1(y) holds, and there is a sequence of
length j ≤ i − 1 ≤ i, or Pi−1(y) does not hold. In the latter case, either
y = x or there exists q such that Pi−1(q) holds and ρ(q, y) is true; either way
we get a sequence ending in y of length at most i.

A.7 Final Exam

Write your answers in the blue book(s). Justify your answers. Work alone.
Do not use any notes or books.

There are three problems on this exam, each worth 20 points, for a total
of 60 points. You have approximately three hours to complete this exam.

A.7.1 LA = PHA

Show that there exists an oracle A such that LA = PHA.

Solution

Let A be EXPCOM = {〈M,x, 1n〉 |M accepts x in at most 2n steps}. Be-
cause a machine that runs in log space also runs in poly time, we have
LA ⊆ PA ⊆ PHA.

For the other direction, we will show that:

1. Any language in NPEXPCOM can be decided by a single call to EXPCOM,
with an appropriate input 〈M,x, 1n〉, and

2. An LEXPCOM machine can generate this input.

Let L ∈ PHEXPCOM. Then L ∈ (Σp
k)EXPCOM for some fixed k. This

means that L can be decided by an alternating oracle Turing machine M
that computes ∃y1∀y2∃y3 . . . QykM

′(x, y1, . . . , yk) where each yi has length

APPENDIX A. ASSIGNMENTS 150

p(n) for some polynomial p andM ′ is a machine with access to an EXPCOM
oracle that runs in time q(n) for some polynomial n.

Each call M ′ makes to the oracle has length at most q(n), so it can be
simulated in time 2O(q(n)), and since M ′ makes at most q(n) many calls, an
entire execution of M ′ can be simulated in time O

(
q(n)2O(q(n)

)
= 2O(q(n)).

There are 2kp(n) choices of y1, . . . , yk, so enumerating all possible choices and
simulating M ′ on each takes time 2O(kp(n)q(n)). Let M ′′ be the machine that
does this on input x.

Our LEXPCOM can thus decide L for sufficiently large inputs x by making
an oracle call with input

〈
M ′′, x, 1nc

〉
where c is chosen so that 2nc exceeds

the maximum time 2O(kp(n)q(n) of M ′′. For smaller inputs, we can just hard-
code the answers into the transition table. This shows L ∈ LEXPCOM and
thus PHEXPCOM ⊆ LEXPCOM. It follows that we have an oracle A for which
LA = PHA.

A.7.2 A first-order formula for MAJORITY

Suppose you have predicates P and <, where < is a total order on the
universe. Suppose also that the universe is finite and non-empty.

Find a first-order formula φ, using P , <, and the usual logical machinery
∀, ∃, ¬, ∧, ∨, such that φ is true if and only if P (x) is true for at least half
of all possible x, or show that no such formula exists.

Solution

There is no such formula. Proof: We know that AC0 can’t compute PARITY.
This means AC0 can’t compute MAJORITY either, because we could use
n circuits for MAJORITY plus a few extra gates to compute PARITY.
But FO ⊆ AC0, since we can implement ∀ and ∃ as (very wide) ∧ and ∨
gates, the other logical connectives as gates, instances of < as constants, and
instances of P as input wires. So FO can’t compute MAJORITY either.

A.7.3 On the practical hardness of BPP

Show that there is a language L that is (a) contained in BPP; and (b) not
decidable in O(n100) time using a deterministic Turing machine.

Solution

The Time Hierarchy Theorem says that there exists a language L that can
be decided by a deterministic Turing machine in O(n101) time but not in

APPENDIX A. ASSIGNMENTS 151

O(n100) time. This language is in P ⊆ BPP.

Bibliography

[Aar17] Scott Aaronson. P ?= NP. Available at http://www.
scottaaronson.com/papers/pnp.pdf as of 2017-01-23, 2017.

[AB07] Sanjeev Arora and Boaz Barak. Computational complexity: A
modern approach. Unpublished draft available at http://theory.
cs.princeton.edu/complexity/book.pdf, 2007.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A
Modern Approach. Cambridge University Press, 2009.

[Adl78] Leonard Adleman. Two theorems on random polynomial time.
In Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, pages 75–83, Washington, DC, USA, 1978.
IEEE Computer Society.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of pure

and applied logic, 24(1):1–48, 1983.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is
in P. Annals of mathematics, pages 781–793, 2004.

[Bab15] László Babai. Graph isomorphism in quasipolynomial time.
CoRR, abs/1512.03547, 2015.

[Bar89] David A Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in nc1. Journal of
Computer and System Sciences, 38(1):150–164, 1989.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-
deterministic exponential time has two-prover interactive proto-
cols. computational complexity, 1(1):3–40, 1991.

152

http://www.scottaaronson.com/papers/pnp.pdf
http://www.scottaaronson.com/papers/pnp.pdf
http://theory.cs.princeton.edu/complexity/book.pdf
http://theory.cs.princeton.edu/complexity/book.pdf

BIBLIOGRAPHY 153

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of
the P=?NP question. SIAM Journal on computing, 4(4):431–442,
1975.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A ran-
domized proof system, and a hierarchy of complexity classes.
Journal of Computer and System Sciences, 36(2):254 – 276, 1988.

[Can91] Georg Cantor. Über eine elementare Frage der Mannigfaltigkeit-
slehre. Jahresbericht der Deutschen Mathematiker-Vereinigung,
1(1):75–78, 1891.

[Coo73] Stephen A Cook. A hierarchy for nondeterministic time com-
plexity. Journal of Computer and System Sciences, 7(4):343–353,
1973.

[DF03] Rod Downey and Lance Fortnow. Uniformly hard languages.
Theoretical Computer Science, 298(2):303–315, 2003.

[Din07] Irit Dinur. The pcp theorem by gap amplification. Journal of
the ACM (JACM), 54(3):12, 2007.

[Edw41] Jonathan Edwards. Sinners in the Hands of an Angry God.
A sermon, preached at Enfield, July 8th, 1741. At a Time of
great Awakenings; and attended with remarkable Impressions on
many of the Hearers. S. Kneeland and T. Green, Boston, in
Queen-Street over against the Prison, 1741.

[FM71] Michael J Fischer and Albert R Meyer. Boolean matrix multipli-
cation and transitive closure. In Switching and Automata Theory,
1971, 12th Annual Symposium on, pages 129–131. IEEE, 1971.

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits,
and the polynomial-time hierarchy. Theory of Computing Systems,
17(1):13–27, 1984.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

[GHR91] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. A
compendium of problems complete for p (preliminary). Technical
Report 91-11, University of Alberta, December 1991.

BIBLIOGRAPHY 154

[GJ79] Michael R Garey and David S Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM Journal on
computing, 18(1):186–208, 1989.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public
coins in interactive proof systems. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 59–68.
ACM, 1986.

[GW95] Michel X. Goemans and David P. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiability problems
using semidefinite programming. Journal of the ACM, 42(6):1115–
1145, 1995.

[Gö31] Kurt Gödel. Über formal unentscheidbare Sätze der “Principia
Mathematica” und verwandter Systeme I. Monatshefte für Math-
ematik und Physik, 38:173–198, 1931.

[Has86] Johan Hastad. Almost optimal lower bounds for small depth cir-
cuits. In Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing, pages 6–20. ACM, 1986.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal
of the ACM (JACM), 48(4):798–859, 2001.

[Hen65] F. C. Hennie. Crossing sequences and off-line turing machine
computations. In Proceedings of the 6th Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1965),
FOCS ’65, pages 168–172, Washington, DC, USA, 1965. IEEE
Computer Society.

[HS66] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape
Turing machines. Journal of the ACM, 13(4):533–546, October
1966.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In
Proceedings of the 10th Annual Structure in Complexity Theory

BIBLIOGRAPHY 155

Conference (SCT’95), SCT ’95, pages 134–, Washington, DC,
USA, 1995. IEEE Computer Society.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
In Complexity of computer computations, pages 85–103. Springer,
1972.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear program-
ming. USSR Computational Mathematics and Mathematical
Physics, 20(1):53–72, 1980.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games.
In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 767–775. ACM, 2002.

[Kho10] Subhash Khot. On the unique games conjecture. In 2010 25th
Annual IEEE Conference on Computational Complexity, pages
99–121, 2010.

[KL80] Richard M Karp and Richard J Lipton. Some connections between
nonuniform and uniform complexity classes. In Proceedings of the
twelfth annual ACM symposium on Theory of computing, pages
302–309. ACM, 1980.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibil-
ity. Journal of the ACM, 22(1):155–171, 1975.

[LOT03] Maciej Liśkiewicz, Mitsunori Ogihara, and Seinosuke Toda. The
complexity of counting self-avoiding walks in subgraphs of two-
dimensional grids and hypercubes. Theoretical Computer Science,
304(1-3):129–156, 2003.

[LP82] Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-
bounded computation. Theoretical Computer Science, 19(2):161 –
187, 1982.

[Min61] Marvin L. Minsky. Recursive unsolvability of Post’s problem of
“Tag” and other topics in theory of Turing machines. Annals of
Mathematics, 74(3):437–455, November 1961.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons. MIT press,
1969.

BIBLIOGRAPHY 156

[Raz85] Alexander A Razborov. Lower bounds on the monotone com-
plexity of some boolean functions. Dokl. Akad. Nauk SSSR,
281(4):798–801, 1985.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded
depth circuits over a complete basis with logical addition. Mathe-
matical Notes of the Academy of Sciences of the USSR, 41(4):333–
338, 1987.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM,
55(4):17:1–17:24, September 2008.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical
Society, 74(2):358–366, 1953.

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Jour-
nal of Computer and System Sciences, 55(1):24–35, 1997.

[RST84] Walter L Ruzzo, Janos Simon, and Martin Tompa. Space-bounded
hierarchies and probabilistic computations. Journal of Computer
and System Sciences, 28(2):216–230, 1984.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM (JACM),
39(4):869–877, 1992.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower
bounds for boolean circuit complexity. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing,
pages 77–82. ACM, 1987.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy.
SIAM Journal on Computing, 20(5):865–877, 1991.

[Tur37] Alan Mathison Turing. On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proceedings of the London
mathematical society, 2(1):230–265, 1937.

[VV86] Leslie G Valiant and Vijay V Vazirani. NP is as easy as detecting
unique solutions. Theoretical Computer Science, 47:85–93, 1986.

[Wil85] Christopher B. Wilson. Relativized circuit complexity. Journal
of Computer and System Sciences, 31(2):169–181, 1985.

Index

0–1 basis, 81
SO∃, 102
∃SO, 102
±1 basis, 81
ρ-close, 128
NL-complete, 62
NP-complete, 28
NP-hard, 28
P/poly, 69
PP, 97
P-complete, 62
UP, 98
#P, 93
⊕P, 98
coNP-complete, 36⊗
Ar(n), q(n), ρĂB-PCP verifier, 125

DTC, 108
LFP, 112
TC, 108
s–t connectivity, 63
SC, 58
EXP, 37
NEXP, 37
coNP, 36
BPP, 90
NP-intermediate, 49
PCP theorem, 125
RP, 88
R, 88
PFP, 111
3-colorable, 35
3SAT, 29

Adleman’s Theorem, 91
advice, 69
algorithm

Las Vegas, 89
Monte Carlo, 89

alphabet, 4, 5, 132
alternating class, 72
alternating polynomial time, 56
alternating polynomial-time hierar-

chy, 53
alternating Turing machine, 54
amplification, 89
arithmetization, 119
arity, 104, 106
Arthur-Merlin game, 114

Baker-Gill-Solovay Theorem, 51
balanced oracle, 142
basis

0–1, 81
±1, 81

binary, 4
binary comparison gate, 145
Boolean circuit, 67
Boolean formula, 67
Boolean function, 67
bounded-width branching program,

75
branch, 25
branching program, 74

bounded-width, 75

canonical decision tree, 78

157

INDEX 158

certificate, 25
Church-Turing hypothesis, 22
Church-Turing thesis, 5

extended, 22, 24
circuit

Boolean, 67
monotone, 71

circuit complexity, 67
circuit family, 68
circuit value problem, 64
class

complexity, 4
Steve’s, 58

CLIQUE, 34
CNF, 29
code

error-correcting, 127
Walsh-Hadamard, 127

codeword, 127
coin

private, 114
public, 114

colorable, 35
commutator, 76
complement, 36
complete, 62, 113

NL-, 62
P-, 62

completeness, 125
complex systems, 1
complexity

circuit, 67
time, 7

complexity class, 1, 4, 23
complexity theory, 1
computation

randomized, 88
computational complexity theory, 1
configuration, 6
conjecture

Unique Games, 134
conjunctive normal form, 29
connectivity

s–t, 63
constraint, 132
constraint graph, 132
constraint hypergraph, 133
constraint satisfaction problem, 132
constructible

space-, 23
time-, 23

constructive, 84
Cook reduction, 94
Cook-Levin theorem, 29
coproduct, 122
course staff, vii

decide, 4
decision problem, 3
decision tree, 77

canonical, 78
decodable

locally, 128
decoding

local, 128
depth, 67
deterministic transitive closure, 108
diagonalization, 38

lazy, 46

error
one-sided, 88

error-correcting code, 127
ESO, 102
existential second-order existential logic,

102
exponential time, 37
extended Church-Turing thesis, 5, 22,

24

Fagin’s Theorem, 102

INDEX 159

family
circuit, 68

fan-in, 67
fan-out, 67
feasible, 24
finite-state control, 5
finite-state transducer, 136
first-order logic, 102
first-order quantifier, 104
fix, 78
fixed point

least, 112
partial, 111

formula
Boolean, 67

function
Boolean, 67

game
Arthur-Merlin, 114
unique, 134

gap, 130
gap-amplifying reduction, 131
gap-preserving reduction, 131
gap-reducing reduction, 131
gate, 67

binary comparison, 145
GNI, 114
graph

implication, 63
GRAPH NON-ISOMORPHISM, 114
group

symmetric, 75

Håstad’s Switching Lemma, 77
halt, 6
Halting Problem, 38
halting state, 6
heads, 5
hierarchy

polynomial-time, 52
alternating, 53
oracle, 52

hierarchy theorem
space, 40
time, 42

hyperedge, 133
hypothesis

Church-Turing, 22
extended, 22

implication graph, 63
independence

pairwise, 116
representation, 4

INDEPENDENT SET, 33
independent set, 33
induction

structural, 110
input, 67
instructor, vii
interactive proof, 113
interactive proof system, 113
is, 63

Karp reduction, 94
kill, 78

Ladner’s Theorem, 46
language, 4
large

property, 85
Las Vegas algorithm, 89
lazy diagonalization, 46
least fixed point, 112
lemma

Håstad’s Switching, 77
Levin reduction, 94
linearization operator, 122
locally decodable, 128
locally testable, 128

INDEX 160

log-space, 58
nondeterministic, 58
randomized, 58
symmetric, 59

log-space reduction, 139
logic

first-order, 102
second-order, 102
existential, 102

logspace-uniform, 71

machine
oracle, 50
Turing, 5
randomized, 88
universal, 19, 41

two-counter, 140
many-one reduction, 94

polynomial-time, 28
monotone circuit, 71
Monte Carlo algorithm, 89

natural, 85
natural proof, 71
natural proofs, 84
neural network, 87
Nick’s class, 72
non-uniform, 71
Nondeterministic log-space, 58
nondeterministic log-space, 58
nondeterministic polynomial time, 26
nondeterministic Turing machine, 25

one-sided error, 88
one-to-one reduction, 95
operator

linearization, 122
oracle

balanced, 142
oracle machine, 50
oracle polynomial-time hierarchy, 52

oracle tape, 50
output, 67

padded, 37
padding, 37
pairwise-independence, 116
parity P, 98
parsimonious reduction, 95
partial fixed point, 111
PCP, 125
PCP theorem, 124, 125
perceptron, 87
polylog space, 58
polynomial time, 23

nondeterministic, 26
probabilistic
zero-error, 89

polynomial-time hierarchy, 52
alternating, 53
oracle, 52

polynomial-time many-one reduction,
28

private coin, 114
probabilistic P, 97
probabilistic polynomial time

zero-error, 89
probabilistically-checkable proof, 124,

125
problem

decision, 3
promise, 97, 135
search, 93

program
bounded-width branching, 75
branching, 74

promise problem, 97, 135
proof

natural, 71
probabilistically-checkable, 124

property, 84

INDEX 161

constructive, 84
large, 85

prover, 113
pseudorandom function generator, 85
public coin, 114

quantifier
first-order, 104
second-order, 104

RAM, 20
random access machine, 20
random restriction, 77
randomized computation, 88
randomized log-space, 58
randomized Turing machine, 88
Razborov-Smolensky Theorem, 81
recurrent, 143
reducation

polynomial-time many-one, 28
reducibility

self-, 95
reduction

gap-amplifying, 131
gap-preserving, 131
gap-reducing, 131
Karp, 94
Levin, 94
log-space, 139
many-one, 94
one-to-one, 95
parsimonious, 95

relation
relation, 25

relativization, 50, 51
relativize, 51
relativized, 50
representation independence, 4
restriction, 77

random, 77

Rice’s Theorem, 39
round, 113

Savitch’s Theorem, 60
search problem, 93
second-order logic, 102
second-order quantifier, 104
seed, 85
self-reducibility, 70, 95
self-reducible, 95
semantic, 39
sequence

crossing, 17
set

independent, 33
Sipser-Gács-Lautemann Theorem, 92
size, 7, 67
sound, 113
soundness, 125
space, 2

polylog, 58
space complexity, 7
Space Hierarchy Theorem, 40
space-constructible, 23
staff, vii
state, 6

halting, 6
STCON, 63
Steve’s class, 58
structural induction, 110
subset sum principle, 127
supertask, 5
Switching Lemma

Håstad’s, 77
symmetric group, 75
symmetric log-space, 59

tableau, 65
tapes, 5
test

INDEX 162

local, 128
testable

locally, 128
theorem

Adleman’s, 91
Baker-Gill-Solovay, 51
Cook-Levin, 29
Ladner’s, 46
PCP, 124, 125
Razborov-Smolensky, 81
Rice’s, 39
Savitch’s, 60
Sipser-Gács-Lautemann, 92
space hierarchy, 40
time hierarchy, 42

time
exponential, 37
polynomial
nondeterministic, 26

time complexity, 7
Time Hierarchy Theorem, 42
time-constructible, 23
TM, 5
TQBF, 56
transducer

finite-state, 136
transition function, 6
transition relation, 25
transitive closure, 108
tree

decision, 77
canonical, 78

TRUE QUANTIFIED BOOLEAN FOR-
MULA, 56

Turing Machine
universal, 41

Turing machine, 5
alternating, 54
nondeterministic, 25
randomized, 88

universal, 19
two-counter machine, 140

unary, 4
undecidable, 39
Undergraduate Learning Assistant, vii
uniform, 71

logspace-, 71
non-, 71

unique P, 98
unique game, 134
Unique Games Conjecture, 134
universal, 19
universal Turing Machine, 41
universal Turing machine, 19

value, 132
verifier, 113
VERTEX COVER, 35

Walsh-Hadamard code, 127
width

of a DNF formula, 77
witness, 25

zero-error probabilistic polynomial time,
89

	Table of contents
	List of figures
	List of tables
	List of algorithms
	Preface
	Syllabus
	Lecture schedule
	Introduction
	Problems and languages
	Models of computation
	Turing machines
	Computations
	Complexity
	Asymptotic notation

	Programming a Turing machine
	Example of computing a function
	Example of computing a predicate

	Turing machine variants
	Limitations of simulations
	Universal Turing machines

	Random access machines
	The extended Church-Turing thesis

	Time and space complexity classes
	Nonterminism and NP
	Examples of problems in NP
	Reductions and NP-complete problems
	The Cook-Levin theorem
	More NP-complete problems
	1-IN-3 SAT
	SUBSET SUM and PARTITION
	Graph problems
	Reductions through INDEPENDENT SET
	GRAPH 3-COLORABILITY

	coNP and coNP-completeness
	Relation to EXP

	Diagonalization
	Undecidability of the Halting Problem
	Hierarchy theorems
	The Space Hierarchy Theorem
	The Time Hierarchy Theorem

	Hierarchy theorems for nondeterminism
	Ladner's Theorem

	Oracles and relativization
	Oracle machines
	Relativization
	The Baker-Gill-Solovay Theorem

	The oracle polynomial-time hierarchy

	Alternation
	The alternating polynomial-time hierarchy
	Equivalence to alternating Turing machines
	Complete problems
	Equivalence to oracle definition
	PH PSPACE

	Space complexity
	Space and time
	PSPACE and TQBF
	Savitch's Theorem
	The Immerman-Szelepcsényi Theorem
	Oracles and space complexity
	L?= NL?= AL= P
	Complete problems with respect to log-space reductions
	Complete problems for NL
	Complete problems for P

	AL= P

	Circuit complexity
	Polynomial-size circuits
	P/poly
	Information-theoretic bounds
	The Karp-Lipton Theorem

	Uniformity
	Bounded-depth circuits
	Parallel computation and NC
	Relation to L and NL
	Barrington's Theorem
	PARITY AC0
	Håstad's Switching Lemma
	Application to PARITY
	Low-degree polynomials

	Natural proofs
	Natural properties
	Pseudorandom function generators
	The Razborov-Rudich Theorem
	Examples of natural proofs

	Randomized classes
	One-sided error: RP, coRP, and ZPP
	P RP NP
	Amplification of RP and coRP
	Las Vegas algorithms and ZPP

	Two-sided error: BPP
	Adleman's Theorem

	The Sipser-Gács-Lautemann Theorem

	Counting classes
	Search problems and counting problems
	Reductions
	Self-reducibility

	FP vs #P
	Arithmetic in #P
	Counting classes for decision problems
	PP
	P
	UP and the Valiant-Vazirani Theorem

	Toda's Theorem
	Reducing from k to BPPP
	Reducing from BPPP to P#P

	Descriptive complexity
	First-order logic
	Second-order logic
	Counting with first-order logic
	Fagin's Theorem: ESO = NP
	Descriptive characterization of PH
	Descriptive characterization of NL and L
	Transitive closure operators
	Arithmetic in FO(DTC)
	Expressing log-space languages
	Evaluating FO(TC) and FO(DTC) formulas

	Descriptive characterization of PSPACE and P
	FO(PFP) = PSPACE
	FO(LFP) = P

	Interactive proofs
	Private vs. public coins
	GRAPH NON-ISOMORPHISM with private coins
	GRAPH NON-ISOMORPHISM with public coins
	Simulating private coins

	IP= PSPACE
	IP PSPACE
	PSPACE IP
	Arithmetization of #SAT

	Arithmetization of TQBF

	Probabilistically-checkable proofs and hardness of approximation
	Probabilistically-checkable proofs
	A probabilistically-checkable proof for GRAPH NON-ISOMORPHISM

	NP PCP(`39`42`"613A``45`47`"603Apoly(n), 1)
	QUADEQ
	The Walsh-Hadamard Code
	A PCP for QUADEC

	PCP and approximability
	Approximating the number of satisfied verifier queries
	Gap-preserving reduction to MAX SAT
	Other inapproximable problems

	Dinur's proof of the PCP theorem
	The Unique Games Conjecture

	Assignments
	Assignment 1: due Wednesday, 2017-02-01 at 23:00
	Bureaucratic part
	Binary multiplication
	Transitivity of O and o

	Assignment 2: due Wednesday, 2017-02-15 at 23:00
	A log-space reduction
	Limitations of two-counter machines
	A better solution:

	Assignment 3: due Wednesday, 2017-03-01 at 23:00
	A balanced diet of hay and needles
	Recurrence

	Assignment 4: due Wednesday, 2017-03-29 at 23:00
	Finite-state machines that take advice
	Binary comparisons

	Assignment 5: due Wednesday, 2017-04-12 at 23:00
	BPPBPP
	coNP vs RP

	Assignment 6: due Wednesday, 2017-04-26 at 23:00
	NP PSquareP
	NL P

	Final Exam
	LA = PHA
	A first-order formula for MAJORITY
	On the practical hardness of BPP

	Bibliography
	Index

